

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 478

A Practical Approach to Software Cost Estimation Using

Stochastic Modelling

1Dr. Swati Saxena, 2Dr. Shiv Kumar Singh, 3Mr. Nargish Gupta, 4 Meena Malik,

 5Ankur Goyal

Submitted: 23/12/2023 Revised: 29/01/2024 Accepted: 07/02/2024

Abstract— Software cost estimation plays a very critical role in Software Project Management. If the cost of the software

has not been estimated properly, it can have a drastic impact on the project execution and delivery. Traditional models for

software cost estimation fail to model correctly, the cost components associated with the project. There is enormous research

literature related to software cost estimation but only a handful of them relate to cost measures that include both software

development and software support. This is mainly because, in recent years, there has been a remarkable change in the way

the software is now developed and supported. Needless to say, the software exists everywhere from elementary education to

nuclear reactors and from civil engineering to genetic engineering. As such, one cannot bind it into the same set of measures

related to development and delivery. In this research, we focus on customers like hotels, airways, banking, etc., particularly

massive ERP systems, for development and customization support. Such software once purchased, requires one or more

support teams to ensure its availability for the client. The infrastructure teams usually maintain server support whereas the

application maintenance teams provide customization and functionality support. In this research, we have developed a model

that considers the fixed cost and the recurring costs associated with the software. The fixed cost is related to the cost of

development whereas the recurring cost involves the cost associated with the cost of cloud/on-premise deployment and the

cost associated with support teams. The contribution of this research is twofold. We have proposed a model that considers

the largest set of parameters of cost-related estimation, aligned with both development and support, which is highly mapped

to ERP-like software. To the best of our knowledge and belief, no existing research considers all these parameters. To make

the analysis applicable to a number of case studies, we have fuzzified the parameters to make them align with linguistic

hedges. The possible deviations in the cost computation are estimated using linear regression ML models. We have

considered the supports and customization part in accordance with modern bug-tracking tools like JIRA. The analysis is

done for the case of an educational ERP with LMS and compared the result with those available as open-source in the UCI

repository.

Keywords: Software Cost Estimation, Fuzzy Logic, Linear Regression Analysis, JIRA

Introduction
Software is the driving force behind modern society.

We have software for essentially everything from

ICUs of Hospitals to Space Stations, from Humidity

Sensors to driverless cars, and it’s infinite. Associated

with the usage, domain, technology, device, etc., we

have several classification schemes, like system

software, application software, embedded systems,

real-time systems, management systems, standalone-

web-based systems, etc. and this classification

criterion is also endless. A given software can fall into

one or more of these criteria. In this study we have

investigated the type of software which is on Cloud

/Web Based, developed by a Team of Developers for

the management of workflow of some organization,

and also has a development and one or more support

teams to ensure its availability and maintenance to the

end users. The term, software cost estimation is a task

to determine the overall cost expense associated with

the software product. This estimate must be conveyed

to the customer at the time of the agreement. Also, as

1Department of Mathematics Sagar Institue of Science &

Technology, Bhopal

2Department of Mathematics Sagar Institue of Science &

Technology, Bhopal

3Department of Computer Science & Engineering Sagar

Institue of Science & Technology, Bhopal

4Department of Computer Science & Engineering

Chandigarh University, Mohali.

5Department of CSE, Symbiosis Institute of Technology,

Symbiosis International Deemed University, Pune

Swatisaxena@sistec.ac.in, nargishgupta@sistec.ac.in,

Shivkumar@sistec.ac.in, meenamlk@gmail.com,

Ankur_gg5781@yahoo.co.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 479

it is an estimation, related to a sizeable entity, and also

includes the recurring component, must be done very

carefully, failing which can cause disaster to the

customer business.

This research focuses upon the estimation of the

software cost which includes both the costs of

development and maintenance of the software. Thus it

includes the one-time cost as well as recurring costs.

This study is based purely on the agile practices which

are now adopted by almost all the software

development / support organization.

Problem Statement

Software development and support practices may have

varying scenarios. Not every time it is the same

organization that both develops and maintains the

software. At times, there is one organization that

develops the software which may be maintained by

another organization, which specializes in IT support.

This is applicable in those industries for which there is

a popular software product, by one company, which is

then taken care of by another organization for the

client. Popular software architectures for this type of

scenario consist of (at least) two layers; a core part

and a customization layer specific to the client. The

customization itself includes the development of new

features specific to the client, as well as software

support for the existing features. Moreover, the

infrastructure support; server loads, memory-usage in

servers, etc., need to be monitored or at times, need

special scripts to automate this task. A popular tool for

server monitoring, at the time of this writing, is

Grafana, which has a built-in/available of

customization “Alert Engine”. All this comes blurred

between software development and software support.

As such, it seems worth researching, to develop a cost

estimation model which is applicable in such realistic

scenarios of the modern software industry.

Considering both these scenarios, the cost of software

estimation must be adjusted correspondingly. We

attempt to develop the software cost estimation model

which considers all these possibilities. To the best of

our knowledge, no existing study has included both

these scenarios.

Literature Review

One of the most fundamental type of cost estimation

models in software engineering is the COCOMO

model. This model is based upon regression and takes

up as input, either one of the two parameters, namely

Lines of code (LOC) or Function Points (FP). As lines

of code cannot be taken as a true parameter of

measure (with the advent of on-the-shelf software

components), only FP is relevant for almost all cost

estimation practices.

A review of most cost estimation techniques

presented in the literature uncovered represents the

primary remarkable dissimilarity among all the

estimation models is for the LOC considered as the

prime input models and which uses FPs. The state-of-

the-art cost estimation models use LOC, which was

selected early as a metric due to its quantifiability and

seeming objectivity. This was the era when we had

most three and four available choices of programming

languages in the tech stack. By following it, a

complete domain has developed in order to decide the

best LOC counting scheme []. Gradually, with experts’

objections for estimating LOC in advance for a project,

the new developed models suggested not to use SLOC

as the most important input []. The new model take

different parameters to objectively estimate the cost of

the software. Most such models use function-points.

To determine well regarded models there is a need to

consider two important factors: Firstly, the inventor of

famous COCOMO model aka Barry Boehm has

presented a detailed analysis of all the important

models in his book entitled Software Engineering

Economics [5]. The candidate generation was done

with the help of list. Secondly, the review presented in

various article in the Journal of Parametrics,

contributes major portion of the articles for

representing the software estimation. The resulting

scenario thereby validate the Boehm work for most

cited articles. Boehm evaluation and examination

provide eight different models in his work as follow:

SDC, COCOMO, Wolverton, Doty, SLIM, PRICE,

Boeing , IBM- FSD. The detailed investigation for

candidates list, an analysis of latest issues of the

Journal of Parametric is very helpful, in order to

express the popularity of all the models in other

research work by demonstrating all the parameters.

The fundamental factors to define the quality of the

software products, that are presented as a result of the

Cocomo model are schedule and effort:

1. Effort: The number of people required for the task

completion represents the effort required and the

measurement unit is person per months.

2. Schedule: Represents the total time that is essential for

the job completion, obviously that will be always

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 480

proportional to the effort placed. The measurement

unit for time is represented in weeks, or months.

At different project levels, several Cocomo Models

have already been offered in order to predict the cost

estimation on the basis of correctness and accuracy.

These models are applicable to a wide range and type

of projects, the features will be determining factor for

the constant value need to be applied in the following

calculations. These features refer to different types of

systems as mentioned below.

As per Boehm’s description of projects for different

types such as organic, semidetached, and embedded

systems are defined as follows:

1. Organic – A software project falls under the category

of organic type when the problem domain properly

understood, it is previously solved already means the

team is having a little exposure of the domain and the

size of team is effectively small.

2. Semi-detached – A software project comes under this

category when the dynamic features for example

team-size, the work experience of team members, the

expertise level in different programming environment

falls in between to the dynamic features of organic

type and Embedded type. The projects under this

category are relatively challenging to develop in

comparison to the organic type and demands

additional experience and more expertise in order to

deliver better creativity and guidance. Eg: All types of

Compilers and Embedded Systems come under

Semi-Detached type.

3. Embedded – A software project which involve high

complexity and demands more expertise and

creativity, falls in this category. This type involves a

big team size as compared to the other two types and

the developers must possess adequate experience and

innovative level in order to develop such complex

models.

Types of Models:

In COCOMO, the hierarchy contains three

comprehensive and precise forms. For our

requirements any one out of the three practices may be

used as per the problem requirements. The three types

of models are as below:

1. Basic COCOMO Model

2. Intermediate COCOMO Model

3. Detailed COCOMO Model

The Basic COCOMO may be applied for

considerably rough and fast Software Costs

calculations. But the accuracy of this model is

restricted to some extent due to the lack of necessary

factors for considerations. The second model i.e.

Intermediate COCOMO considers Cost Drivers as

important criteria and the third model that is Detailed

COCOMO furthermore considers the individual

project phases as an influence for deciding the actions,

so in case of Detailed model, all cost drivers along

with the calculations need to be performed phase-wise

thereby resulting in a more clear and accurate result.

Model Development

Before starting the model equations which describe

the estimation for the software cost, we enlist here the

model behavior and also depict the corresponding

flow in the form of a flow diagram. Throughout this

writing, we have used the term Issue/JIRA

interchangeably to indicate any flaws in the software

working.

Fact#1: Agile software development follows a practice

in which the software is delivered to the customer in

iterations wherein each iteration enhances the desired

functionality.

Corollary#1: In the case of large software, the core

functionality is delivered to the customer at once and

the other enhancements to be made are put in the form

of “user-stories”, which are prioritized.

Corollary#2 The enhancements are picked up by the

development team, based on the recommendations of

“system specialists” for the enhancements. New user

stories are created, if there is a change required in the

existing/desired functionality.

Fact#2: Once the core part of the software is tested

and released to production, the new enhancements

need to be tested thoroughly before these changes are

merged into the core software.

Corollery#1: There is a need for thorough testing of

the new feature before it can be merged into the main

software which is running in a live environment. We

assume, as in most cases, there are three environments

that are deployed by the development/maintenance

organizations; viz, Development Testing and

Production Environment. For practical reasons, Test

Env. Is usually called UAT (User Acceptance Testing)

Environment.

Corollery#2: As suggested by the above corollary, the

distinction between software development and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 481

software support has become blurred. An issue faced

by the customer in the production environment might

have the only resolution in the form of a new feature

to be developed, by the support team. Such issues are

registered in the form of new user stories.

Corollery#3: An issue/incident reported by any user

might end up in a support bug/ JIRA, which needs to

be handled like any other JIRA issue in the backlog.

Typical Workflow of Software Development and Support: Agile Methodology

Model Pseudocode:

Variables for Initialization and Possible Values

The variable names and enumerated values are listed

in Table 1.

Table 1

S. No. Variable Name Enumerated Values

1 SOFTWARE ACTIVITY DEV, SUPPORT, BOTH

2 SUPPORT ACTIVITY L1, L2, L3, L1&L2, ALL

3 L1 Support Control Panels, Call, Both

4 L2 Support Adding/Modifying DB, Debug Operation, ALL

5 L3 Support Debug Existing Features, Develop New Features, Both

6 New Prod Release Weekly, Monthly, Quarterly

7 System Specialist On Team, On Client

Software Development:

Core Part

Software Deployed to

Production

Software Maintenance

Software Bugs / Issues to

be fixed New Enhancements

Dev-Env. UAT-Env. Production-Env. Existing Features-

New Enhancements

Monitoring Activities

Daily / Weekly / Monthly Monitoring / Patching Activities

New Version of Infra-Software Eg.
Linux Database Backup / Upgrade Licenses

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 482

8 Infrastructure On-Premise, On Cloud, Scattered

9 Third-Party Software Licensing On Team, On Client

10 Incident Frequency <2 Per Day, <5 Per Day, <10 Per Day, >10 Per Day

11 Severity of Incident Often low Severity, Often High Severity, Both

12 Incident Resolution Within 3 Hrs, Within 8 Hrs, Within 24 Hrs., Mixed of

Incident Types

Workflow:

For a steady state, we assume that software is

deployed and available to the users in the production

environment. The rate of generation of events is

defined in Table 2. These rate values mention the rate

of generation of issues and the rate of resolution. With

these rates, we can define the steady state equations

which give the threshold values of the required

parameters which are fundamental values for the

estimation if the cost of the software.

Table 2

S. No. Rate Parameter Description

1 λh Rate of issue reporting by the stakeholder (Sev#High)

2 λm Rate of issue reporting by the stakeholder (Sev#Medium)

3 λl Rate of issue reporting by the stakeholder (Sev#Low)

4 γ (Variable) Rate of picking up issues from the backlog by the developer Team

5 𝛍h Rate of Fixing up of the issues reported with sev#high

6 𝛍m Rate of Fixing up of the issues reported with sev#Medium

7 𝛍l Rate of Fixing up of the issues reported with sev#Low

8 ξ Rate of issues getting fixed, the issues which are picked from the backlog

We these rates we can find the steady-state

probabilities of the size of the development team. To

keep the calculation of cost estimation simple, we can

safely assume that all the developers in the

development team have the same expertise related to

the issue.

We formulate the recurrence equations, describing

the model on the basis of queueing theory. For the

following equations, we consider the following

formulation:

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑞𝑢𝑒𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

= (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛 − 1 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑡 − 1))

∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑂𝑁𝐸 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑛 𝑡𝑖𝑚𝑒 𝛥𝑡 ∗ 𝑃𝑟𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑁𝑂 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝛥𝑡

+ (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑡 − 1))

∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑁𝑂 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑛 𝑡𝑖𝑚𝑒 𝛥𝑡 ∗ 𝑃𝑟𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑁𝑂 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝛥𝑡

+ (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛 + 1 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑡 − 1))

∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑁𝑂 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑛 𝑡𝑖𝑚𝑒 𝛥𝑡 ∗ 𝑃𝑟𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑂𝑁𝐸 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝛥𝑡

We consider the following equation for all three

types of incidents as mentioned in Table 2.

The Probability of n incidents (Priority High)

waiting in the queue to get fixed, at any given time, is

given by the following recurrence relations.

𝑃𝑛ℎ = (𝑃𝑛−1 ∗ 𝜆ℎ ∗ (1 − 𝜇ℎ)) + 𝑃𝑛 ∗ (1 − 𝜆ℎ) ∗ (1 − 𝜇ℎ) + 𝑃𝑛+1 ∗ 𝜇ℎ ∗ (1 − 𝜆ℎ)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 483

The Probability of n incidents (Priority Medium)

waiting in the queue to get fixed, at any given time, is

given by the following recurrence relations.

𝑃𝑛𝑚 = (𝑃𝑛−1 ∗ 𝜆𝑚 ∗ (1 − 𝜇𝑚)) + 𝑃𝑛 ∗ (1 − 𝜆𝑚) ∗ (1 − 𝜇𝑚) + 𝑃𝑛+1 ∗ 𝜇𝑚 ∗ (1 − 𝜆𝑚)

The Probability of n incidents (Priority Low)

waiting in the queue to get fixed, at any given time, is

given by the following recurrence relations.

𝑃𝑛𝑚 = (𝑃𝑛−1 ∗ 𝜆𝑚 ∗ (1 − 𝜇𝑙)) + 𝑃𝑛 ∗ (1 − 𝜆𝑙) ∗ (1 − 𝜇𝑙) + 𝑃𝑛+1 ∗ 𝜇𝑙 ∗ (1 − 𝜆𝑙)

The following are the constraints for steady state:

 𝜆ℎ < 𝜇ℎ

 𝜆ℎ + 𝜆𝑚 + 𝜆𝑙 < 𝜇ℎ + 𝜇𝑚 + 𝜇𝑙

To ensure the fixing in the backlog, we can state the above equation like:

 𝜆ℎ + 𝜆𝑚 + 𝜆𝑙 + γ = 𝜇ℎ + 𝜇𝑚 + 𝜇𝑙 + ξ

To ensure the “rate of enhancements” in the software to keep above a threshold.

The steady state queue length is given by the equation:

𝐿 =
𝜆

𝜇 − 𝜆

If (𝛍-λ) is kept as a random variable between 0 and α,

then the length of the queue is directly proportional to

the arrival rate as shown in the figure 1 given below:

Fig 1: Stationary Values of Queue Length for Varying values of Service Rate

The above values indicate that queue length increases

with the increase of arrival rate of incoming service

request for support bugs and issues. The values given

here are normalized between 0 and 1. However these

give a count of the efforts required with respect to

incoming requests.

The above graph presumes the steady state conditions

that are necessary and sufficient condition stated in

above equations, which indicates that the incoming

rate of issues/bugs/enhancements are less than the

rates at which these are fixed by the team.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 484

For drawing a more concerte interpretation of the

above stated equations, we need to consider the case

study of a software project managed by a Team of

Technical staff. To keep the model close to the

practical scenario, we consider the case study of a

Hospital Management System which is developed and

maintained by a set of Teams each consisting of

specific number of individuals. We conducted study of

number of hospitals management system available

from popular vendors to make a set of features

applicable to out hypothetical model to be used in this

case study. These are mentioned below in tabular

format.

Table 2

Features Of The Software: Hospital Management System

S. No. Feature Specification

1 Patient Registration

2 Appointment & Scheduling

3 Outpatient Management

4 Inpatient Management

5 Billing

6 Discharge Summary

7 Laboratory Management

8 Radiology Management

9 Pharmacy Management

10 Consultant Management

11 Inventory Management

12 Security Management

13 Health Records Data

14 Reception Management

15 Web Portal

16 MIS Reports

17 Analytics & Dashboards

18 Accounts Management

19 Mobile Apps

20 Biometric Device Interface

21 RFID Interface

22 Email Integration / SMS Integration

23 Web Camera Interface

24 Voice-To-Text Integration

25 Ambulance Management

26 Blood Bank Management

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 485

27 Canteen Management

28 Attendance Management

29 Feedback Management

30 Nurse Station

31 Operation Theatre Management

32 Equipment Maintenance Management

The above-mentioned software has 32 different

modules. This typically represents a large class of

software deployed for hospitals. This also represents,

to a large extent, software used in Academic

Institutions, Railways, Banks, etc.

Although, each module has its own specific size and

further granularity in features, for the sake of

simplicity, we can assume that on an average, there

are N number of features in each module.

We presume a scenario wherein the core product is

delivered to the client and the enhancement features

are prioritized in the backlog, to be delivered to the

client along-with the maintenance of the software.

We tabulate below, the parameters which represents

the typical values, averaged, for such size of software.

Table 3

Technical Team Description

S. No. Team Name Team Size

1 Software Development Team Ssd
 ~15

2 Database Team Sdb~5

3 IT/Software Support Team (Level 1/ Level 2) Sit~12 (4 per shift of 8 Hrs)

Out of the 32 modules listed above, each, on an

average having N features, we have a total of 32N

features in the software. To keep the calculations

further simplified, we assume that, on an average,

from N features of each module, n features form the

core part and N-n are to be delivered to the client in

the form of enhancements.

If each feature takes “m” person-hours, then the total

efforts involved in the development of the core part of

the software requires a total effort of 32XnXm. The

enhancements are to be prioritized by the system

specialists, along with the regular maintenance

activities.

We consider the following typical (realistic) values of the parameters:

Table 4

Model Values

Parameter Values

Module Count 32

Sub-Feature Avg. Value 20

Core Features 8

Enhancement Features 12

Each Feature Dev. Time 12 Person - hrs

Each Feature Testing Time 4 Person-Hrs

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 486

Core Part Architecture Design Time 3 Months

Time for Development 3072

Development Team Size 12 Developers

Testing Team Size 3 Testers

Time for Development

1.6 Months (Considering 40 hrs per week effort by

individuals)

System Testing (Feature-wise) 4 hrs/Feature

Testing Time 2.133333

Total Delivery Time 3.7

With these features, the time for development will be

1.6 months and the time for testing will be 2.13

months. As the Core Part Architecture design time is

approx. 3 months, the delivery time for the core part

of the module comes out to be 7 months. Neither of

these activities can be done in parallel for the core part

of the development.

A variation of the number of features from 20-32, with

a development team size varying from 6-12, along

with 2-4 testers gives a delivery time from 7 months to

1.5 years for the core part of the software.

The maintenance of the software is an ongoing

activity which can be taken care by the same or

different team. The features for enhancements can be

kept in backlog to be picked by the team maintaining

the software.

With the above values of the model parameters, we

can compute the rate of enhancements to be added to

the software, provided we have the rate of issues/bug

fixes as demanded by the users of the software.

The figure 2 gives an estimate of time-to-deliever core

software on the basis of the above parameters. In this

figure, the horizontal scale gives the number of

modules in the software, with each module consisting

of approx. 12 core features.

Fig 2. Variation of time-to-deliver (in-months) the core part with the count of modules in the software.

Figure 3 shows the variation of time to delivery of the

core software module with respect to the count of

features in each module which comprises the core part

of software.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 487

Fig 3. Variation of time-to-deliver (in months) the core part with the count of features in the modules in the

software, assuming average of 25 modules in the software.

Conclusion And Future Scope
The given literature gives a practical approach towards

estimation of the efforts required in any development

and support project managed by a team of developers

in which the team handles the support issues and new

enhancements of the software. This study matches

best in its class by inculcating all the workflow and

practices handled by modern software development

teams in current scenarios.

As a future scope of the current work, we will be

modelling fuzzy logic based model equations for

finding the steady state values of queue length the

required count of manpower for managing the

software project.

References
[1] P. Rodríguez et al., Continuous deployment of

software intensive products and services: a

systematic mapping study J Syst Softwe (2017)

[2] M. Jørgensen, Top-down and bottom-up expert

estimation of software development effort, Inform

Softw Technol (2004)

[3] S.A. Butt et al., A software-based cost estimation

technique in scrum using a developer's expertise,

Adv Eng Softw (2022)

[4] M. Kuhrmann et al., What makes agile software

development agile

[5] IEEE Trans Software Eng, (2021)

[6] A. Khalid et al. Agile scrum issues at large-scale

distributed projects: scrum project development at

large

[7] Int J Softw Innov (IJSI), (2020)

[8] R. Kaim et al. , Benefits of agile project

management in an environment of increasing

complexity—a transaction cost analysis

Intelligent decision technologies 2019, (2019)

[9] Y. Khmelevsky et al., Software development

using agile and scrum in distributed teams

[10] A. Rasheed et al., Requirement engineering

challenges in agile software development, Math

Probl Eng, (2021)

[11] M.A. Ramessur et al., A predictive model to

estimate effort in a sprint using machine learning

techniques, Int J Inform Technol, (2021)

[12] N.A. Obilor et al., Constructive cost model II

metrics for estimating cost of indigenous software,

Int J Adv Eng Res Sci, (2021)

[13] S.A. Butt et al., Frequent change request from

user to handle cost on project in agile model, Proc

Asia Pacific J Multidiscipl Res, (2017)

[14] S.M.R. Chirra et al., A survey on software cost

estimation techniques, J Softw Eng Applic, (2019)

[15] J. Shah et al., Extending function point analysis

effort estimation method for software

development phase

[16] V. Venkatesh et al., How agile software

development methods reduce work exhaustion:

Insights on role perceptions and organizational

skills Inform Syst J (2020)

[17] I. Kaur et al. Neuro fuzzy—COCOMO II model

for software cost estimation Int J Inform Technol

(2018)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 478–488 | 488

[18] M. Jorgensen Relationships between project size,

agile practices, and successful software

development: results and analysis IEEE Softw

(2019)

[19] N. Rankovic et al. A new approach to software

effort estimation using different artificial neural

network architectures and Taguchi orthogonal

arrays IEEE Access (2021)

[20] L. Villalobos-Arias et al. Evaluating hyper-

parameter tuning using random search in support

vector machines for software effort estimation

[21] H. Rygge et al. Threat poker: Solving security and

privacy threats in agile software development

H.L.T.K.

[22] Nhung et al., A review of use case-based

development effort estimation methods in the

system development context

[23] S. Shekhar et al. Review of various software cost

estimation techniques, Int J Comput Applic (2016)

[24] S. Dalal et al. Efficient tuning of COCOMO

model cost drivers through generalized reduced

gradient (GRG) nonlinear optimization with best-

fit analysis Progress in Advanced Computing and

Intelligent Engineering (2018)

