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Abstract: Researchers engaged in Human Motion Detection (HMD) grapple with a primary challenge related to occlusion, 

where individuals or their body parts become obscured within image or video frames. Occlusion manifests in two distinct 

forms: Self-occlusion, occurring when one part of the human body hides another, and External occlusion, arising from external 

objects obstructing humans. This proposed work specifically focuses on self-occlusion and partial-occlusion. To discern 

human motion from visual data, three fundamental methods are deployed. The initial method, motion segmentation, entails 

identifying the moving object in a video. The second method, Object Classification, determines whether the moving object is 

human. The final method, the Tracking algorithm, is employed for identifying human gestures. Occlusion persists as a central 

concern in HMD. In our proposed methodology, we employ a Mask Region-based Convolutional Neural Network (Mask R-

CNN) for motion segmentation to address the occlusion challenge. Object classification utilizes a Recurrent Neural Network 

(RNN), and for tracking human motion, even during self-occlusion, Multiple Hypothesis Tracking (MHT) is applied. This 

study presented an innovative hybrid algorithm, the Whale Optimization Algorithm and Red Deer Algorithm (WOA-RDA), 

demonstrating superior convergence speed coupled with high accuracy. Our HMD approach incorporates an RNN trained with 

2D representations of 3D skeletal motion. Diverse datasets, encompassing scenarios with and without occlusion, are integrated 

into our proposed work. The experimental findings underscore the effectiveness of our approach in accurately identifying 

human motion under varied conditions, including both with and without occlusion scenarios.  

Keywords: Human motion detection, Occlusion, Recurrent Neural Network, Mask Region-based Convolutional Neural 

Network, Multiple Hypothesis model, WOA-RDA 

1. Introduction 

Human Motion Detection (HMD), within the broader 

domain of computer vision, involves processing video or 

image inputs to comprehend and identify human movement. 

Envision a computer program capable of interpreting and 

recognizing human actions within pictures or videos – this 

capability encapsulates the essence of Human Motion 

Detection (HMD). Essentially, it endows the computer with 

the ability to perceive and comprehend human behaviour 

visually. This facet of computer vision has become a focal 

point for researchers, reflecting the intricate nature of 

extracting meaningful insights from visual data [1]. The 

primary objective of HMD is to discern and categorize 

human motion within visual data. However, this proposed 

work is confronted with a notable challenge, namely 

occlusion. Occlusion manifests in two distinct forms: self-

occlusion and external occlusion. Self-occlusion pertains to 

instances where a part of the human figure conceals another 

part of its own body within visual data, posing a significant 

hurdle in deciphering human gestures and postures in 

computer vision. External occlusion occurs when external 

objects obstruct parts of the human body in visual data. This 

research specifically directs its attention to the complexities 

associated with self-occlusion and partial occlusion, aiming 

to enhance the understanding and mitigation of these 

challenges within the realm of Human Motion Detection. 
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HMD finds diverse applications across various domains. 

Examples include extracting human gestures from visual 

data, enabling autonomous vehicles to perceive the road 

environment, healthcare applications such as fall detection, 

identifying abnormal human activities from visual data, 

discerning player actions in sports, and enhancing 

surveillance capabilities [2]. In this study, our emphasis is 

on discerning human motion in scenarios both with and 

without occlusion. To achieve this, we employ three distinct 

methods for detecting human motion. 

A. Motion Segmentation 

B. Object Classification 

C. Tracking Algorithm 

In visual data, we encounter various objects, some stationary 

and others in motion. Motion segmentation, a crucial step, 

helps identify only the elements that are moving, like birds, 

humans, or fans. In our proposed method, we use Mask 

RCNN to precisely pinpoint these moving objects. Once 

identified, we focus exclusively on humans through object 

classification. In our approach, Recurrent Neural Networks 

(RNN) trained with 2D representations of 3D skeletal 

motion are employed for human recognition. Next, we need 

to track the movements of these identified humans. 

However, Human Motion Detection (HMD) faces a 

significant challenge known as occlusion. Our work 

specifically addresses issues related to self-occlusion and 

partial occlusion. To handle these challenges during 

occlusion, we employ Multiple Hypothesis Tracking 

(MHT), a method adept at managing uncertainties by 

maintaining and updating hypotheses about human identities 

and states. In our proposed method, we use the MediaPipe 

library in Python to estimate key points in the skeleton for 

each instance in the frame. However, a tricky problem arises 

known as "occlusion." Occlusion occurs when something 

hides a person in a picture or video. It could be the person 

themselves hiding parts of their own body, known as "self-

occlusion," or other elements in the environment hiding 

people, termed "external occlusion." This hiding makes it 

challenging for computers to see and understand a person's 

full motion. Our goal in this work is to address partial 

occlusion and self-occlusion, as these challenges impact the 

accuracy and performance of Human Motion Detection 

(HMD). To enhance the robustness of our approach, we 

incorporate insights from various datasets, especially those 

involving self and partial occlusion. 

In our research, we address the challenge of occlusion within 

the realm of Human Motion Detection (HMD). Our method 

incorporates the use of Mask R-CNN, an advanced computer 

program designed to identify moving objects within video 

sequences. Additionally, we employ a Recurrent Neural 

Network (RNN), a sophisticated computational model, to 

discern whether the detected movement corresponds to a 

human. This work implements the optimized hybrid Whale 

Optimization Algorithm and Red Deer Algorithm (WOA-

RDA) in conjunction with a Recurrent Neural Network 

(RNN) to enhance the classification process for determining 

human presence. For continuous tracking of individuals, 

even during instances of self-occlusion and partial 

occlusion, we leverage the capabilities of Multiple 

Hypothesis Tracking (MHT). An important aspect of our 

methodology involves training the computer to understand 

human motion by exposing it to images that depict the 

skeletal structure, including bones and joints. This training 

process enables the computer to effectively learn and 

recognize various moves or gestures, contributing to an 

enhanced interpretation of human actions. 

We evaluated our approach using diverse sets of images and 

videos, encompassing scenarios involving both self-

occlusion and partial occlusion in the visual data. For this 

research, we utilized Python 3.10.8, the MediaPipe library, 

and an Intel Core i5 processor. Our experiments demonstrate 

the effectiveness of our computer program in accurately 

identifying and interpreting human movements, even when 

individuals are partially concealed. This research contributes 

to the advancement of systems capable of comprehending 

human actions across a range of situations.  

This paper is organized as follows to ensure a coherent 

presentation: Section II provides background information 

and situates the study within the existing research landscape 

on human motion detection and occlusion handling. Section 

III delves into the specific components: Mask RCNN, RNN, 

and Multiple Hypothesis Tracking which provides a detailed 

exploration. In Section IV, we present the experimental 

findings along with meticulous analysis. Finally, Section V 

concludes by summarizing contributions and outlining 

potential directions for future research work. 

2. Related Work 

Recently, researchers have shown a significant increase in 

their interest in exploring human motion detection. 

Moreover, a multitude of studies in this field have been 

undertaken, examining scenarios involving human motion 

detection both with and without occlusion. The subsequent 

paragraphs will provide an in-depth exploration of the 

various tracking approaches that researchers have examined 

within this domain. 

2.1 Spatio-Temporal Clustering 

Mingjun Sima introduced a novel Key Frame Extraction 

Algorithm designed for Human Action Videos using 

dynamic spatiotemporal slice clustering. The algorithm 

strategically chooses slice positions by analyzing the human 

mask heat map, facilitating the extraction of meaningful 

spatiotemporal slice images. Keyframes are then identified 

based on clustering outcomes. The existing algorithm 

demonstrated strong performance with a recall of 96%, 

precision of 93%, and an F1 score of 94% [3]. In our 

proposed approach, we achieved further improvement, 

reaching a recall of 98%, precision of 98%, and an enhanced 

F1 score of 98%. 

In a study conducted by Liang et al., the investigation into 

spatiotemporal slices for video caption extraction was 
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carried out. Distinctive bar-code-like patterns emerge when 

caption pixels are present along horizontal or vertical scan 

lines in a spatiotemporal slice. Incorporating structural 

information from these patterns in both horizontal and 

vertical slices allows precise localization of spatial and 

temporal positions of video captions [4]. However, there is 

room for enhancing the effectiveness of the results obtained 

from this approach. 

2.2 Tracking Via Machine Learning Algorithms 

Kocabas et al. introduced EpipolarPose, a pioneering self-

supervised learning technique tailored for 3D human pose 

estimation. The methodology involves the estimation of 2D 

poses from multi-view images, utilizing epipolar geometry 

to derive both 3D poses and camera geometry. The obtained 

3D pose and camera geometry data are integral to training a 

3D pose estimator [5]. In our proposed methodology, we 

have successfully enhanced the percentage of key points 

compared to the existing approach, showcasing the efficacy 

of our improvements. Chen et al. presented an innovative 

unsupervised learning methodology for recovering 3D 

human pose from 2D skeletal joints obtained from a single 

image [6]. The approach includes a lifting network that takes 

2D landmarks as input and generates an accurate 3D 

skeleton estimation. During training, the recovered 3D 

skeleton is reprojected from random camera viewpoints, 

generating synthetic 2D poses. The lifting of synthetic 2D 

poses back to 3D and re-projecting them in the original 

camera view allows for the definition of self-consistency 

loss in both 3D and 2D spaces. In our proposed work, we 

have achieved a superior percentage of key points compared 

to this existing approach, underscoring the effectiveness of 

our enhancements. 

Wang et al. conducted an in-depth investigation into 3D 

Human Pose Machines using Self-supervised Learning [7]. 

Their research proposed an efficient self-supervised 

correction mechanism designed to acquire a comprehensive 

understanding of intrinsic human pose structures. The 

mechanism encompassed two dual learning tasks: the 2D-to-

3D pose transformation and the 3D-to-2D pose projection. 

These tasks served as a crucial linkage between 3D and 2D 

human poses, facilitating a form of "free" self-supervision to 

enhance the precision of 3D human pose estimation. The 

percentage of key points achieved in this approach was 

found to be lower than in our proposed work, highlighting 

the robustness and effectiveness of our proposed 

methodology. Their method involved leveraging estimated 

2D confidence heat maps of key points and integrating an 

optical-flow consistency constraint to filter out unreliable 

estimations of occluded key points. In instances of 

occlusions, incomplete 2D key points were utilized, feeding 

them into 2D and 3D temporal convolutional networks to 

enforce temporal smoothness, ultimately yielding a 

comprehensive 3D pose. Significantly, by using incomplete 

2D key points rather than complete yet incorrect ones, their 

networks demonstrated reduced susceptibility to error-prone 

estimations of occluded key points. Training the occlusion-

aware 3D Temporal Convolutional Network (TCN) required 

annotated pairs of a 3D pose and a 2D pose with occlusion 

labels. To facilitate training, they projected the model onto a 

2D plane from various viewing angles, enabling the 

acquisition and labeling of occluded key points, thus 

creating a rich dataset for training. Importantly, our 

proposed methodology surpasses the accuracy of the 

existing approach, showcasing advancements in occlusion 

handling for 3D human pose estimation in video. 

 Ghazal et al. introduced a method incorporating 2D skeleton 

data and supervised machine learning for human activity 

recognition [8]. While their approach is notable, the 

percentage of keypoints achieved in their study is lower than 

what is demonstrated in our proposed work. This 

discrepancy underscores the advancements and superior 

performance of our proposed methodology in the domain of 

human activity recognition. 

2.3 Tracking Via Deep Learning Algorithms 

Wandt et al. investigated titled 'RepNet: Weakly Supervised 

Training of an Adversarial Reprojection Network for 3D 

Human Pose Estimation.' Their research centered on 

employing a projection network (RepNet) to transform a 

distribution of 2D poses into a distribution of 3D poses 

through adversarial training. Additionally, the network 

estimates camera parameters, establishing a network layer 

for reprojection from estimated 3D poses back to 2D, 

introducing a reprojection loss function [9]. However, the 

achieved percentage of key points in their study falls short 

of the performance demonstrated in our proposed approach. 

Changai et al. conducted a study aimed at refining Key 

Frame Extraction for Sports Training through advancements 

in deep-learning techniques. The investigation focused on 

selecting crucial video frames from sports training videos to 

highlight specific actions during the training process. Their 

methodology involved the use of a fully convolutional 

network (FCN) to extract the region of interest (ROI) for 

pose detection in frames. Subsequently, a convolutional 

neural network (CNN) was employed to estimate the pose 

probability of each frame. Notably, they introduced a 

distinctive key frame extraction method that considered 

probability differences among neighboring frames [10]. In 

contrast to existing approaches, our proposed methodology 

showcased superior accuracy, sensitivity, specificity, and 

classification rates. 

Meng et al. undertook a thorough investigation with a 

specific focus on applying Deep Key Frame Extraction for 

Sports Training. The research introduced an innovative deep 

key frame extraction methodology tailored to address the 

inherent complexities in such sports training videos. To 

mitigate the challenges posed by intricate backgrounds, the 

researchers employed Fully Convolutional Networks (FCN) 

to accurately isolate the region of interest (ROI). Following 

this, Convolutional Neural Networks (CNN) were utilized to 

estimate the pose probability of each frame within the 

identified ROI. Additionally, the study introduced a unique 
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variation-aware key frame extraction approach, considering 

the differences in probabilities among neighboring frames 

[11]. Although achieving a recall rate of 95% and a precision 

rate of 92%, these results were comparatively lower than the 

outcomes observed in our proposed methodology. 

The R-CNN algorithm is employed to scrutinize video 

frames, which are subsequently transformed into a 3D space. 

Following this transformation, 3D space coordinates are 

acquired and utilized with trained dataset models to discern 

human motion [12]. For human motion analysis in sports 

competitions, an algorithm based on KELM-MFF is devised 

[13]. Time templates are utilized to analyze Deep Learning 

features within video sequences, although this approach falls 

short of thoroughly examining color characteristics. 

Consequently, a focus on color characteristics becomes 

imperative. The application of edge detection eliminates 

redundant image areas, and CNN is employed for 

classification. While enhancing accuracy, recognition rate, 

specificity, and sensitivity, it's noteworthy that the study was 

conducted on a limited-scale dataset [14]. Nitin et al. 

introduce the utilization of the Temporal Convolutional 

Network (TCN) architecture for activity recognition based 

on smartphone-collected sensor data. TCN's adaptability in 

handling input sequences of varied lengths and capturing 

long-term dependencies results in superior activity 

recognition accuracy compared to other deep learning 

methods [15]. Yair A. Andrade et al. propose a novel 

approach using the Temporal Convolutional Neural 

Network (TCNN) for human activity analysis and 

classification [16]. The TCN architecture prioritizes 

minimized computational requirements, rendering it 

compact and rapidly trainable compared to other networks. 

This makes it suitable for real-time analysis and recognition 

of human activities, particularly in resource-limited settings. 

Alzahrani et al. proposed fall detection using Microsoft 

Kinect v2[17]. However, the percentage of keypoints 

achieved in their study is lower than what is demonstrated in 

our proposed work. Franco et al. proposed a multimodal 

approach for human activity recognition based on skeleton 

and RGB data [18]. Nevertheless, the percentage of 

keypoints achieved in their study is lower than what is 

demonstrated in our proposed work. 

As asserted by Gaud et al. [19], a predominant consensus 

among researchers advocates the utilization of potent deep 

learning techniques, including Convolutional Neural 

Networks (CNN), Inception CNN, Long Short-Term 

Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and 

hybrid approaches for various applications. It is noteworthy 

that the human walking pattern serves as a reflective 

indicator of an individual's health condition. 

Yang et al. conducted an exploration into geometric 

structure information by employing a two-layer 

convolutional network in conjunction with a correlation 

filter [20]. Jack et al. introduced an end-to-end algorithm that 

combined correlation filters and neural networks. 

Correlation filter tracking offers advantages in tracking 

targets with minimal prior knowledge and high-speed 

tracking capabilities. On the other hand, deep Convolutional 

Neural Networks (CNNs) exhibit robust representation 

abilities by extracting deep features. The fusion of 

correlation filters and deep CNNs, known as deep 

correlation filter tracking, has gained attention in target 

tracking. However, the real-time performance of deep 

correlation filter tracking is often hindered by the intricate 

network structure and the computational intensity of deep 

CNNs. To address this, Yue Yuan et al. utilized ResNet to 

generate response maps, fused through the AdaBoost 

algorithm along with a scale filter. Despite its merits, the 

computational burden of deep CNNs poses challenges in 

achieving real-time performance, especially when objects 

share similarities, impacting the overall detection system 

[21]. An enhanced Particle Filter is employed by Yuan et al. 

to extract high-order features, combining color features of 

the target with template-derived features using 

convolutional networks [22]. This fusion ensures a 

comprehensive representation of observed data, 

incorporating the target's color information with distinct 

visual characteristics extracted through convolutional 

networks. Hayat et al. utilized Long Short-Term Memory 

(LSTM) to recognize Human Activity in Elderly People. 

Despite achieving a commendable accuracy of 95.04%, the 

Long Short-Term Memory Network's performance falls 

short of the accuracy demonstrated in our proposed work 

[23]. Rui Ma et al. employed a deep convolutional 

generation confrontation network for human motion pose 

recognition, utilizing a deep convolutional stacked hourglass 

network to precisely extract the positions of key joint points 

in the image [24]. However, the percentage of keypoints 

achieved in their study is lower than that demonstrated in our 

proposed work. Angelini et al. introduced a Human Activity 

Recognition (HAR) approach relying on OpenPose for pose 

extraction [40]. Their methodology involved extracting both 

low- and high-level features from body poses using a 1D 

CNN and an LSTM for classification. To simulate real-

world scenarios, they utilized actual CCTV data with partial 

body occlusion and generated synthetic occluded data by 

removing specific body parts. Through experimentation, 

they incorporated occluded samples in training, 

demonstrating that this strategy significantly enhances 

performance in scenarios involving both occlusion and 

missing data. 

2. 4 Tracking Using Filter 

Fakhreddine et al. made significant strides in Human Pose 

Estimation by harnessing the capabilities of a Catadioptric 

Sensor in Unconstrained Environments through the 

implementation of an Annealed Particle Filter [25]. This 

study stands out for its integration of variations to compute 

gradients on spherical images, leading to the development of 

a robust descriptor. When coupled with an SVM classifier 

for human detection, this descriptor notably contributes to 

improved accuracy. In comparison to the existing approach, 

our proposed methodology demonstrates a substantial 

enhancement in accuracy. Particle filters play a pivotal role 
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in human tracking, addressing challenges such as occlusion 

and ensuring smooth and continuous imagery [26]. In this 

pursuit, the system selects highly weighted samples for 

effective human motion tracking. Notably, particle filters 

find application in both single-target and multiple-target 

tracking scenarios [27]. This adaptive approach showcases 

the adaptability and effectiveness of particle filters in 

managing diverse challenges inherent in human pose 

estimation and tracking within dynamic environments. 

The incorporation of the Correlation method leads to 

significant improvements in object detection accuracy and 

success rates, albeit with a marginal reduction in running 

speed [28]. Somayyeh et al. introduced a hybrid algorithm 

that combines a particle filter and genetic algorithm for 

efficient target tracking [29]. This research introduces novel 

concepts, including "marking" (where users define the target 

in the first frame of a video sequence) and "image size 

reduction." The implementation of these concepts results in 

a reduced number of particles, decreased processing time for 

each frame, and an overall reduction in tracking time. 

Additionally, the marking idea notably enhances the 

performance of the proposed RPFGA method in addressing 

occlusion challenges. Results from various challenges, 

including occlusions (OCC), demonstrate an improvement 

in F-measure in our proposed work compared to the existing 

approach. While correlation filter-based object tracking 

enhances efficiency [30], our proposed work prioritizes 

accuracy and outperforms the existing approach in this 

regard. 

3. Proposed Work 

In this research endeavor, our central objective is to propel 

the field of Human Motion Detection (HMD) forward by 

addressing a persistent challenge—occlusion. Occlusion 

arises when portions or the entirety of an individual are 

obscured in images or video frames, presenting a significant 

impediment to precisely identifying and tracking human 

motion. To surmount this challenge, we advocate for a 

comprehensive approach that integrates cutting-edge 

techniques in motion segmentation, object classification, 

and tracking algorithms. Our proposed methodology 

harnesses the capabilities of modern computer vision and 

machine learning methodologies to augment the resilience 

and precision of HMD systems, particularly in scenarios 

involving occlusion. The fundamental components of our 

approach include: 

We employ the Mask Region-based Convolutional Neural 

Network (Mask R-CNN) for motion segmentation, 

leveraging this advanced deep learning model's proficiency 

in precisely identifying and delineating moving objects 

within video streams. By integrating Mask R-CNN into our 

framework, our objective is to enhance the accuracy of 

identifying and isolating human motion, particularly in 

scenarios with occlusion. Object classification is a pivotal 

step in distinguishing whether a moving entity is a human or 

another object. To address this, we propose the use of 

Recurrent Neural Networks (RNN), trained with 2D 

representations of 3D skeletal motion. This approach 

enables the system to learn and recognize human-specific 

movement patterns, contributing to more accurate object 

classification even in occluded scenarios. The Multiple 

Hypothesis Tracking (MHT) plays a crucial role in our 

approach to tackle occlusion during tracking. MHT enables 

the system to maintain multiple hypotheses about the 

identity and location of tracked objects, proving particularly 

valuable in scenarios of self-occlusion, where parts of the 

human body may temporarily hide others. To assess the 

effectiveness of our proposed methodology, we conduct 

experiments using diverse datasets that encompass scenarios 

both with and without occlusion. This allows us to evaluate 

the system's performance in challenging real-world 

conditions.  

A distinctive aspect of our approach involves the utilization 

of 2D representations of 3D skeletal motion. We investigate 

the efficacy of this representation in enhancing the system's 

understanding of human actions, contributing to improved 

object classification and tracking, particularly in occluded 

scenarios. Through our proposed work, we aim to contribute 

to the advancement of Human Motion Detection (HMD) 

systems, enhancing their resilience in scenarios with 

occlusion. The integration of cutting-edge technologies and 

novel representations is anticipated to result in improved 

accuracy and reliability, paving the way for enhanced 

applications in surveillance, gaming, healthcare, and 

beyond. Algorithm 1 provides a detailed explanation of our 

proposed work, outlining the processing steps for detecting 

instances of human motion within an input stream of video 

frames. 

The key inputs include the individual frame "It," the current 

frame index "t," the total number of frames "n," and the 

Video Dataset "V." “𝑀𝑡
𝑖" signifies the segmented masks 

pertaining to individual instances, while "IoU" represents 

the Intersection over Union, and "IoUt" symbolizes the IoU 

threshold. The algorithm commences by initializing critical 

thresholds, including IoU threshold ("IoUt"), Euclidean 

Distance threshold ("Dt"), Statistical Threshold ("ST"), and 

Hypothesis Probability Threshold ("HPT"). For each frame 

iteration within the range of the total frames, the algorithm 

undergoes a sequence of essential steps. It commences by 

preprocessing the current frame "It" and applying the 

Modified Mask R-CNN technique to derive segmented 

masks "𝑀𝑡
𝑖" for individual instances. Within this loop, the 

algorithm evaluates each instance "i" to determine its 

consistency across frames using IoU calculations as follows 

𝐼𝑜𝑈(𝑀𝑡
𝑖 , 𝑀𝑡−1

𝑖 ) = 
|𝑀𝑡

𝑖  ∩𝑀𝑡−1
𝑖 |

|𝑀𝑡
𝑖  ∪𝑀𝑡−1

𝑖 |
 

(1) 

Instances exhibiting IoU greater than the threshold are 

considered as consistent entities. Statistical Thresholding is 

used in the proposed work. Subsequently, Euclidean 

Distance between centroids is computed to gauge instance 

movement, with those surpassing the Euclidean Distance 
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threshold marked as "in motion." Euclidean distance is 

calculated as follows  

Di= √(𝑥𝑡
𝑖−𝑥𝑡−1

𝑖 )
2

+ (𝑦𝑡
𝑖 − 𝑦𝑡−1

𝑖 )
2

  
(2) 

Further, the algorithm calculates Motion Magnitude ("Mm") 

and derives Z-scores for instances based on Motion 

Magnitude, Mean Motion ("Mem"), and Standard Motion 

("Sm").  The motion magnitude is calculated as the Euclidean 

distance between the centroids of an object or region in 

consecutive frames. The formula for calculating the mean 

motion (Mem) is: 

Mem =   
(∑𝑀𝑚𝑖

)

𝑁
 

(3) 

Where: Σ represents the sum across all instances in the 

dataset. 𝑀𝑚_𝑖
 is the motion magnitude of instance i.N is the 

total number of instances in the dataset. Standard Motion 

("Sm") is calculated as follows 

𝑆𝑚 =
√(∑𝑀𝑚𝑖

− 𝑀𝑒𝑚)
2

𝑁
 

(4) 

Where:Σ represents the sum across all instances in the 

dataset. 𝑀𝑚_𝑖
is the motion magnitude of instance i. 𝑀𝑒𝑚 is 

the mean motion magnitude of the dataset. N is the total 

number of instances in the dataset. Z-score is calculated as 

follows. 

Z-score = 
(𝑀𝑚𝑖

−𝑀𝑒𝑚)

𝑆𝑚
 

(5) 

If the absolute value of the Z-score exceeds the Statistical 

Threshold ("ST"), the algorithm then feed segmented mask 

𝑀𝑡
𝑖 into the RNN for classification and then generates 

hypotheses using the Multiple Hypothesis Tracking 

("MHT"). The algorithm computes a Hypothesis Probability 

("P_h") for each hypothesis generated (H_i), and if this 

probability exceeds the Hypothesis Probability Threshold 

("HPT"), the hypothesis is tagged as a legitimate motion 

instance. Finally, the algorithm presents the observed 

occurrences of human motion via output graphics. This 

technique is a complete framework for human motion 

detection that employs Mask R-CNN and a variety of 

associated thresholds and hypothesis generating procedures 

to detect motion instances even in complex settings. 

3.1 Mask R-CNN 

In our proposed methodology, we leverage the Mask 

Region-based Convolutional Neural Network (Mask R-

CNN) to tackle the intricate task of motion segmentation, 

particularly in the context of human activities. Mask R-CNN 

stands out as a formidable deep learning model renowned for 

its prowess in instance segmentation, a nuanced process 

involving the precise identification and delineation of 

individual objects within an image or video sequence. To 

delve into the specifics, the Mask R-CNN architecture 

commences its operations with a backbone Convolutional 

Neural Network (CNN), and in our innovative approach, we 

opt for ResNeXT as the chosen backbone. ResNeXT 

represents an evolution of the ResNet architecture, tailored 

to optimize training efficiency and elevate performance in 

image classification tasks. The distinctive features of 

ResNeXT encompass the incorporation of "cardinality" and 

the introduction of "cardinality groups" within a ResNeXT 

block. Here, cardinality refers to the count of independent 

pathways or groups within a given ResNeXT block. This 

departure from the conventional approach of merely 

increasing the number of filters involves the integration of 

parallel pathways, each with its set of filters. These parallel 

pathways, organized into cardinality groups, enable the 

network to learn diverse features more comprehensively. In 

simpler terms, each cardinality group specializes in 

capturing specific features, and their outputs are 

thoughtfully combined through concatenation, resulting in a 

richer and more nuanced representation of the input data. 

The ResNeXT block, constituting multiple parallel branches 

with individual convolutional layers and filters, operates in 

concert to contribute to the final output. The brilliance of this 

design lies in its ability to harness the power of parallel 

processing, allowing the network to capture a wide range of 

features simultaneously. The inclusion of a shortcut 

connection further streamlines the flow of information 

within the network, enhancing its overall efficiency. In 

essence, our implementation of Mask R-CNN, coupled with 

ResNeXT as the backbone, is geared towards elevating the 

accuracy and efficiency of human motion segmentation, 

especially when confronted with challenges like occlusion. 

This innovative fusion of cutting-edge technologies in deep 

learning aims to contribute significantly to the advancement 

of Human Motion Detection (HMD) systems in real-world 

scenarios. 

In the Mask R-CNN framework, the Region Proposal 

Network (RPN) plays a pivotal role in generating a 

collection of bounding box proposals, commonly referred to 

as anchor boxes. These proposals are determined based on 

the features extracted by the underlying Convolutional 

Neural Network (CNN). Anchor boxes serve as potential 

representations of object locations across various scales and 

aspect ratios. The RPN assigns scores to each of these 

proposals, reflecting the likelihood that a given proposal 

encompasses an object. For every anchor box, the RPN 

makes two distinct predictions for each spatial location 

within the feature map F: the probability of the box 

containing an object (P_obj) and the refined coordinates of 

the box (Δbox).  

The mathematical expressions for these predictions are 

articulated as follows:  P_obj (Probability of objectness for 

an anchor box): 

P_obj = sigmoid(F_cls)  (6) 

where F_cls represents the RPN's classification score for the 

anchor box. Δbox (Bounding box regression values for an 

anchor box): 
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Δbox = F_reg  (7) 

High-scoring proposals are singled out for subsequent 

analysis. Region of Interest (RoI) Align comes into play, 

extracting features from the suggested regions by utilizing 

the features acquired from the underlying Convolutional 

Neural Network (CNN). This guarantees precise alignment 

of features with the spatial positions within each proposed 

region. The RoI head then engages in predicting class 

probabilities for each proposed region through the 

application of a softmax function. Let C denote the number 

of classes; thus, for every RoI, 

P_class = softmax(F_cls)  (8) 

where F_cls denotes the classification score for each class. 

The instance head comprises two parallel branches: one 

dedicated to bounding box regression and the other to object 

classification. Bounding box regression fine-tunes the 

initially proposed boxes to better match the true shapes of 

objects, while the object classification branch assigns a class 

label to each proposed region, identifying the object type it 

represents. Concurrently, the mask head takes on the 

responsibility of predicting segmentation masks for each 

proposed region, generating binary masks for each class that 

precisely delineate the object's boundaries within the 

proposed region. To ensure accurate mask predictions, 

particularly for small or irregularly shaped objects, Mask R-

CNN employs a pixel-to-pixel alignment strategy. The 

model undergoes training using multiple loss functions, 

encompassing bounding box loss, classification loss, and 

mask loss. This combination of losses ensures that the model 

learns to predict bounding boxes, object classes, and 

segmentation masks with high accuracy. In our proposed 

approach, the pre-trained Mask R-CNN model is employed 

on each frame of a video sequence. The model effectively 

segments and delineates regions corresponding to moving 

humans, producing precise masks that highlight the spatial 

extent of each person's motion. Mask R-CNN exhibits 

notable robustness to occlusion, accurately segmenting 

visible portions of humans, even in scenarios involving 

partial occlusion by other objects or the individuals' own 

body parts. The architecture of Mask R-CNN is illustrated in 

the following Figure 1. 

 

 

 

Fig.1: Architecture of Modified Mask RCNN with ResNeXT Backbone 

3.2 RNN 

In our proposed approach, Recurrent Neural Networks 

(RNNs) play a pivotal role in the classification task. RNNs 

are a specialized type of artificial neural network designed 

to handle sequential data, making them particularly effective 

for tasks involving temporal dependencies, such as the 

classification of human motion. In the realm of human 

motion, RNNs excel at learning patterns and relationships 

over time, enabling them to identify and classify diverse 

types of movements or behaviors. The unique strength of 

RNNs lies in their ability to process sequences of data, 

making them well-suited for tasks where the order of input 

information holds significance. In the context of human 

motion classification, the sequential nature of motion data, 

captured over time, is crucial for comprehending various 

actions. Within an RNN, memory cells store information 

about preceding time steps in the sequence, allowing the 

network to maintain context and capture temporal 

dependencies. The hidden state of the RNN serves as a 

memory repository, enabling the network to remember 

patterns from earlier time steps. To tackle the challenge of 

learning long-term dependencies, advanced RNN variations 

like Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) have been introduced. These 
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architectures incorporate mechanisms to selectively 

remember or forget information, enhancing their capability 

to capture more extensive temporal dependencies. In the 

context of human motion classification, the input to the RNN 

comprises sequences of features representing motion data, 

such as joint angles, positions, velocities, or other relevant 

information characterizing the motion. The RNN processes 

these input sequences over time, updating its hidden state at 

each time step, which acts as an internal representation of 

the network's understanding of the input sequence up to the 

current time step. The output layer of the RNN is responsible 

for predicting the class or label associated with the input 

motion sequence. This layer can utilize the final hidden state 

or aggregate information from multiple time steps to make a 

robust classification decision. 

RNNs undergo training utilizing the Backpropagation 

Through Time (BPTT) algorithm, an extension tailored for 

feedforward neural networks. BPTT computes gradients 

across the entire sequence, enabling the network to learn 

from temporal dependencies within the training data. The 

loss function quantifies the variance between predicted class 

probabilities and true labels. Throughout the training, the 

network refines its parameters to minimize this loss, thereby 

enhancing its capacity to accurately categorize human 

motions. Applications of RNN in Human Motion 

Classification encompass diverse domains: Gesture 

Recognition, Activity Classification, and Biomechanical 

Analysis.  RNNs excel in classifying hand gestures or body 

movements, finding applications in human-computer 

interaction and gesture-based control systems.  RNNs 

demonstrate proficiency in classifying intricate activities by 

discerning patterns in sequential data. This capability is 

valuable in surveillance or healthcare for monitoring human 

actions.  In sports science or rehabilitation, RNNs play a 

pivotal role in classifying and analyzing human motion 

patterns, offering insights into biomechanical aspects. RNNs 

present a robust approach to human motion classification, 

harnessing their capability to capture temporal dependencies 

in sequential data. Detailed formulas are provided below for 

a comprehensive understanding. The hidden state (ht)in a 

basic RNN at each time step (t) is updated using the input at 

the current time step (xt) and the hidden state from the 

previous time step (ht-1) 

ht=𝛔(Whx . xt + Whh . ht-1 + bh)  (9) 

Where Whx denotes weight matrix for the input, Whh is the 

weight matrix for the hidden state,  bh  is the bias term, and 

𝛔 is an activation function, often it is the hyperbolic tangent 

(tanh). 

The LSTM includes more sophisticated mechanisms to 

capture long-term dependencies. The LSTM hidden state (ht) 

and cell state (Ct) are updated at each time step (t) using 

input (xt), previous hidden state (ht-1), and previous cell state 

(ct-1). 

ft=𝛔(Wf . [ht-1,xt] + bf)  (10) 

it=𝛔(Wi . [ht-1,xt] + bi)  (11) 

ćt=tanh(Wc . [ht-1,xt] + bc)  (12) 

ct=ft . ct-1 + it . ćt  (13) 

ot=𝛔(Wo . [ht-1,xt] + bo)  (14) 

ht= ot . tanh(ct)  (15) 

Where ft, it, ot are the forget, input and output gates, ćt is the 

candidate cell state, Wf, Wi, Wc, Wo are weight matrices, bf, 

bi, bc , bo  are bias vectors and 𝛔 is the sigmoid activation 

function. 

The output layer (y’t) of the RNN is responsible for 

predicting the class or label associated with the input motion 

sequence. It can use the final hidden state or aggregate 

information from multiple time steps: 

y’t= Dense(ht)  (16) 

Dense is a fully connected layer that maps the hidden state 

to the output space. RNNs are trained using the BPTT 

algorithm, an extension of the backpropagation algorithm 

for feedforward neural networks. BPTT calculates gradients 

over the entire sequence. 

𝛿𝐿

𝛿𝜃
= ∑

𝛿𝐿𝑡

𝛿𝜃

𝑇

𝑡=1

 

 (17) 

Where Lt is the loss at time step t, θ represents the model 

parameters. The loss function measures the difference 

between the predicted class probabilities (y’t) and the true 

labels (yt).  

Lt(yt,y’t) = - ∑i yt,i . log(y’t,i)  (18) 

Where yt,i  and y’t,i are the true and predicted probabilities 

for class I at time step t. During training, the network adjusts 

its parameters (θ) using gradient descent to minimize the 

overall loss. 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 .  
𝛿𝐿

𝛿𝜃
 

 (19) 

Where η is the learning rate. RNNs offer a powerful 

approach to human motion classification by capturing 

temporal dependencies in sequential data, providing 

valuable insights in various domains. 

3.3 Hybrid RDA-WOA 

The advantages of two nature-inspired algorithms are 

combined in a revolutionary meta-heuristic technique called 

the hybrid red deer and whale optimization algorithm (or 

RDA and WOA, respectively). The RDA explores the search 

space and identifies the optimal solutions by imitating red 

deer's natural behaviors, such as fighting, shouting, and 

mating. To identify the most promising areas and improve 

the solutions, the WOA mimics the humpback whale's 

hunting tactics, which include encircling, bubble-netting, 

and spiral attacks. In order to balance population diversity 
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and convergence, the hybrid algorithm uses the RDA for 

global exploration and the WOA for local exploitation. 

Through the incorporation of the suggested hybrid WOA-

RDA optimized RNN technique, there is a notable 

improvement in classification accuracy, precision, recall, 

and F1 score, accompanied by swift convergence speed. 

3.4  Multiple Hypothesis Tracking 

In our proposed methodology, we employ Multiple 

Hypothesis Tracking (MHT) to navigate the challenges of 

uncertainty, partial occlusion, and self-occlusion prevalent 

in object-tracking scenarios. MHT, a proven tracking 

method in computer vision and target tracking applications, 

specializes in addressing the complexities associated with 

occlusion, including self-occlusion and partial occlusion. 

This method operates by concurrently managing and 

evaluating multiple hypotheses related to the identity and 

location of the tracked objects. This adaptability proves 

invaluable in scenarios where objects may encounter 

temporary concealment or overlap. In the MHT framework, 

each tracked object is linked with several hypotheses, with 

each hypothesis representing a potential assignment of an 

object to a track or detection. The maintenance of multiple 

hypotheses is crucial to accommodating uncertainty, 

particularly in occlusion scenarios. MHT operates through a 

prediction-update framework. During the prediction step, 

the existing hypotheses are projected forward based on the 

anticipated motion of the object. Subsequently, in the update 

step, new detections or observations contribute to the 

evaluation and adjustment of the existing hypotheses. The 

primary challenge in tracking lies in associating 

observations (such as detections or measurements) with 

existing tracks or establishing new tracks for unmatched 

observations. MHT addresses this challenge by scrutinizing 

various hypotheses to ascertain the most probable 

association between observations and established tracks. 

Notably, MHT excels in handling self-occlusion, where one 

part of an object may briefly obscure another part. The 

incorporation of multiple hypotheses allows the tracker to 

consider diverse possibilities, ensuring accurate associations 

when the occluded part becomes visible again. Additionally, 

when external occlusion causes partial visibility of an object, 

MHT maintains multiple hypotheses concerning the object's 

location and identity. This flexibility enables the tracker to 

adapt to situations where the complete object is not 

observable in every frame. 

MHT initiates by establishing numerous hypotheses for each 

tracked object, rooted in initial detections. These hypotheses 

undergo forward projection, aligning with the anticipated 

motion of the object. MHT systematically assesses 

associations between existing tracks and incoming 

observations, computing the likelihood of each observation 

being linked to the track for every hypothesis. To streamline 

computational processes and prioritize more viable 

hypotheses, those with low likelihoods are pruned. In 

instances where observations don't align with existing 

tracks, new hypotheses and tracks may emerge. The 

continual updating of hypotheses, informed by fresh 

observations, enhances the precision of object location and 

identity estimates. The adaptive nature of the multiple 

hypotheses framework empowers the tracker to navigate 

occlusion scenarios adeptly, ensuring resilient tracking even 

when objects experience temporary concealment. MHT, 

demonstrating robustness in scenarios marked by heightened 

uncertainty, such as occlusion, strategically explores diverse 

possibilities and adjusts to evolving conditions. Crucially, 

MHT is well-suited for real-time implementation in tracking 

systems, rendering it applicable across domains like 

surveillance, robotics, and beyond. 

 

3.5 MediaPipe 

     MediaPipe, an open-source framework developed by 

Google, offers a comprehensive suite of pre-built solutions 

and tools for creating applications with perception features, 

encompassing face detection, hand tracking, pose 

estimation, and more. This framework streamlines the 

development of applications involving computer vision and 

machine learning tasks by providing user-friendly APIs and 

ready-made models. In our proposed work, we employ 

MediaPipe for skeleton images. MediaPipe features a pre-

trained pose estimation model designed for real-time 

estimation of the human body's pose. This model adeptly 

detects and tracks key body landmarks, including key points 

on the head, torso, arms, and legs. The pose model in 

MediaPipe identifies 33 key points in total. The ready-to-use 

pre-trained pose estimation model from MediaPipe is easily 

integrated into applications. Trained on a diverse range of 

human poses, the model is optimized for real-time 

performance. Typically, the pose estimation model is 

utilized within the broader MediaPipe Pose solution, 

incorporating components for landmark detection, pose 

tracking, and rendering of the estimated poses. Fitness 

applications leverage pose estimation for tracking users' 

body movements during exercises, providing valuable 

feedback on form and posture. In retail, pose estimation 

facilitates virtual try-on experiences, enabling users to 

visualize how clothing items fit on their bodies. In the 

gaming domain, pose estimation creates interactive 

experiences by translating users' body movements into in-

game actions. Pose models also contribute to accessibility 

features, offering gesture-based control options for 

individuals with mobility challenges. Figure 2 illustrates 

pose models, as depicted by Google Developers [41]. Figure 

2 shows the pose model of MediaPipe and Figure 3 shows 

the workflow of the proposed work. 
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Fig 2. Pose Model of MediaPipe 

Fig 3. Workflow of Proposed Work 

Algorithm : Human Motion Detection during Self and Partial 

Occlusion 

Input    : Input: Best Frames It 

Output : Human motion Detection 

It            : Video Frame  

t             : index of the current frame being processed 

n            : total number of frames in the video 

𝑀𝑡
𝑖          : Segmented masks 

i             : Individual instances 

IoU       : Intersection over Union 

IoUt           : IoU threshold Coordinates of two centroids 

(𝑥𝑡
𝑖 , 𝑦𝑡

𝑖), (𝑥𝑡−1
𝑖 , 𝑦𝑡−1

𝑖 )  

Di                 : Euclidean Distance 

Dt                 : Euclidean Distance Threshold 

Mm             : Motion Magnitude 
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Mem           : Mean Motion 

Sm               : Standard motion 

ST         : Statistical Threshold 

H           : Hypotheses 

MHT    : Multiple Hypothesis Tracking 

H_i        : For each hypothesis 

P_h        : Hypothesis based on observed data 

HPT      : Hypothesis Probability Threshold  

KP         : Detected Keypoints on the human body 

Begin 

(1) Initialize IoUt, Dt ,ST, HPT 

(2) for  t=2 to n do : 

(a) Preprocess frame It 

(b) Apply Mask R-CNN to each It to obtain  𝑀𝑡
𝑖 for i 

(c) For each instance I in {1,2,..,k} do: 

                (i)  Calculate 𝐼𝑜𝑈(𝑀𝑡
𝑖 , 𝑀𝑡−1

𝑖 ) = 
|𝑀𝑡

𝑖 ∩𝑀𝑡−1
𝑖 |

|𝑀𝑡
𝑖 ∪𝑀𝑡−1

𝑖 |
  

              (ii) if 𝐼𝑜𝑈(𝑀𝑡
𝑖 , 𝑀𝑡−1

𝑖 ) > 𝐼𝑜𝑈𝑡 then consider i as the same 

object across the frames 

             (iii) Calculate Di= √(𝑥𝑡
𝑖−𝑥𝑡−1

𝑖 )
2

+ (𝑦𝑡
𝑖 − 𝑦𝑡−1

𝑖 )
2

  

             (iv) if Di > Dt then Mark instance i as in motion 

             (v) Calculate Mm for i 

             (vi) Calculate Z-score for I based on Mm, Mem, Sm 

            (vii) if |Z-score_i|>ST then 

a. Extract KP from segmented mask 𝑀𝑡
𝑖 

b. Feed KP into the WOA-RDA RNN for classification  

c. generate H using MHT 

            (viii) for each H in H_i calculate P_h  

(a)   if P_h > HPT then mark h as a valid motion 

instance 

(3) Output Visualization 

End 
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4. Experiments 

4.1 Dataset 

The datasets employed in this research encompass a diverse 

range of sources, namely WEIZMANN, UCF101, VIRAT, 

HMDB51, KTH, and the HumanEva Dataset. Table 1 

provides an overview of the resolutions associated with the 

different datasets, while Table 2 outlines few tracking 

challenges inherent in specific activities within these 

datasets. Of note, HMDB51 encompasses 51 distinct human 

motions.  

The WEIZMANN dataset is composed of ten distinct human 

motions [32], comprising a total of 93 videos with a 

resolution of 180 × 144. UCF101, on the other hand, features 

101 diverse human motions and boasts an extensive 

collection of 13,320 videos sourced from YouTube. These 

videos maintain a frame rate of 25 frames per second, and 

the resolution of the UCF101 dataset stands at 320 × 240 

[31]. 

The VIRAT dataset, known as the Video Image Retrieval 

and Analysis Tool (VIRAT), captures recordings from 

elevated vantage points with a resolution of 640 × 480 This 

dataset encompasses multifaceted challenges, encompassing 

climate variation and the presence of numerous moving 

objects.  

The Human Motion Database (HMDB51) encompasses 51 

different human motions [33], spanning across 101 videos. 

Schuldt’s KTH dataset incorporates a comprehensive 

compilation of 2391 video sequences, featuring 25 actors 

engaged in the demonstration of six distinct actions. Each 

action is performed within four distinct scenarios, including 

outdoors with varying attire, indoor settings, and different 

outdoor environments. The HumanEva dataset constitutes 

an amalgamation of six distinct motions, encompassing 

activities such as walking, gestures, and jogging [34,35]. 

These motions are executed by four individual subjects and 

captured through a network of seven cameras, which 

includes three RGB cameras and four grayscale cameras. 

Video Diver Dataset (VDD-C): The datasets employed in 

this research encompass more than 100,000 carefully 

annotated underwater images featuring divers in a variety of 

settings, sourced from both pool environments and the 

Caribbean region, with a specific focus on the waters off the 

coast of Barbados. These images have been extracted from 

video sources and are made freely accessible for use [36]. 

 

 

 

 

 

 

 

Table 1. Resolution of Various Dataset 

 

 

 

 

 

 

 

 

Table 2. Tracking Challenges in Various Dataset 

4.2 Result 

We illustrate sample frames from various datasets in Figure 

4. Specifically, Figure 4a showcases a sample frame from 

the VDD-C dataset, Figure 4b from the Virat dataset, Figure 

4c from the KTH dataset, Figure 4d and 4e from the UCF101 

dataset, and Figures 4f, 4g, and 4h from the Weizmann 

dataset 

  
 

 

    

Fig 4a. Frame From VDD-C Dataset, Fig 4b. Frame 

Selected from Virat Dataset, Fig 3c. Frame Selected 

From KTH Dataset ,Fig 4d, 4e. Frame Selected from 

UCF101 dataset, Fig 4f, 3g, 3h. Frame Selected from 

Weizmann dataset. 

The keypoints extracted from the segmented mask  𝑀𝑡
𝑖  are 

illustrated in the subsequent Figure 5a to 5h. Figure 5a, 

showcasing keypoint detection from the VDD-C dataset. In 

Figure 5b, keypoint detection from the Virat dataset is 

presented, followed by Figure 5c, depicting keypoint 

Dataset Resolution 

Weizmann 180 × 144 

HMDB51 340× 256 

UCF101 320× 240 

Virat 640 × 480 

KTH 160 × 120 

Activity Detected Tracking Challenges 

Biking 

Occlusion, Low Resolution, Scale 

Variation 

Side Jump Occlusion, Background clutters  

Skipping Low Resolution, Rotation 

Diving 

Deformation, Occlusion,  Background 

Clutters 
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detection from the KTH dataset. Figures 4d and 5e feature 

keypoint detection from the UCF101 dataset. Figures 5f, 5g, 

and 5h exhibit keypoint detection from the Weizmann 

dataset. 

Table 3.  Correctly and Wrongly Predicted Frames 

Activity Total Correct Wrong 

Biking 132 131 1 

Side Jump 95 93 2 

Skipping 102 100 2 

Diving 151 149 2 

Balancing Beam 123 122 1 

 

    

    

Fig 5a. Keypoint detection result from VDD-C 

Dataset, Fig 5b: Keypoint detection result from Virat 

Dataset, Fig 5c: Keypoint detection result from KTH 

Dataset , Fig 5d, 5e: Keypoint detection result from 

UCF101 dataset, Figure 5f, 5g, 5h: Keypoint 

detection result from Weizmann dataset. 

 

  
 

 

    

 

  

 

Fig 6a,6b,6c,6d,6e,6f,6g,6h,6i,6j,6k, and 6l: 

Keypoint detection results from KTH Dataset during 

sit-to-stand exercise. 

 

Figures 6a to 6l showcase keypoint detections during sit-to-

stand exercises, highlighting the efficacy of our proposed 

approach in the KTH dataset, specifically addressing 

challenges such as self-occlusion and partial-occlusion in 

Human Motion Detection. 

The representation of human motion, both with and without 

occlusion, is illustrated in Figures 7a through 7h. 

Specifically, Figure 7a displays human motion detection 

from the VDD-C dataset, Figure 7b depicts detection from 

the Virat dataset, and Figure 7c exhibits detection from the 

KTH dataset. Additionally, Figures 7d and 7e showcase 

human motion detection from the UCF101 dataset, while 

Figures 7f, 7g, and 7h portray detection from the Weizmann 

dataset. 

    

    

Fig 7a. Human Motion Detection on VDD-C 

Dataset, Fig 7b. Human Motion Detection on Virat 

Dataset, Fig 7c. Human Motion Detection on KTH 

Dataset , Fig 7d, 7e. Human Motion Detection on 

UCF101 dataset, Fig 7f, 7g, 7h: Human Motion 

Detection on Weizmann dataset. 

4.3. Metrics 

In the context of assessing human motion detection 

algorithms, it is imperative to comprehend key 
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terminologies integral to various evaluation metrics. The 

following terms, TP (True Positive), FP (False Positive), TN 

(True Negative), and FN (False Negative), play a pivotal role 

in quantifying the system's performance in detecting 

instances of human motion. True Postive (TP)denotes the 

number of correctly detected instances of human motion. 

o True Positive (TP) signifies the instances accurately 

identified as human motion. 

o False Positive (FP) denotes instances where the system 

erroneously detects human motion in the absence of actual 

motion. 

o True Negative (TN) represents instances where the system 

correctly identifies the absence of human motion. 

o False Negative (FN) refers to instances where the system 

fails to detect human motion when it is indeed present.  

Recall (Sensitivity): 

Also known as sensitivity. Table 4 shows the recall of the 

proposed work along with other methods [37,38,39],. This 

metric gauges the system's ability to accurately detect human 

motion and is computed as: 

Recall= 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (20) (20) 

Precision: 

Table 4 presents the precision values for the proposed 

methodology in comparison to other methods [37,38,39]. 

This metric assess the accuracy of positive detections, 

precision is calculated as: 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   (21) (21) 

F1 Score: 

Table 4 presents the F1 score values for the proposed 

methodology in comparison to other methods [37,38,39]. 

The F1 score, a harmonic mean of precision and recall, 

balances the two metrics and is calculated as: 

Fig Metric=
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (22) (22) 

Accuracy: 

Table 4 presents the accuracy rates for the proposed 

methodology in comparison to other methods [37,38,39]. 

Accuracy express the ratio of correctly classified instances 

to the total instances, accuracy is calculated as: 

   Accuracy =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

 (23) (23) 

 

Percentage of Correct Keypoints: 

This metric evaluates the accuracy of a keypoint detection or 

matching algorithm in locating keypoints relative to ground 

truth or reference keypoints.  Figure 8c shows the Percentage 

of Correct key of the proposed work along with other 

methods. Table 3 shows correctly and wrong predicted 

frames.  The formula is: 

PCK = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠
 *100    (24) 

Recognition Rate: 

The Recognition rate within the context of human motion 

detection pertains to the precision or accomplishment level 

of accurately recognizing and categorizing diverse human 

motion activities. This metric quantifies the ratio of correctly 

identified activities in relation to the overall count of 

activities observed.  Figure 8d illustrates the comparison of 

average recognition rates among various models using 

different datasets. . The formula utilized to compute the 

recognition rate in the domain of human motion detection is 

articulated as follows: 

         Recognition Rate = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠
 *100 (25) 

Average Overlap Rate (AOR):- 

In the realm of human motion detection, the term "Average 

Overlap Rate" characterizes a widely utilized metric for 

assessing the accuracy of motion detection and tracking 

algorithms across a sequence of frames. It gauges the 

alignment between detected human positions and the true 

human positions within these frames. Figure 8b presents a 

comparison of the average overlap rates achieved by various 

methods. 

                 AOR = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
 *100  (26) 

Average Center Error (ACR):- 

In the landscape of computer vision, aided by advanced 

motion tracking algorithms, the achievement of precise 

Center estimation for human motion has become a tangible 

goal. Figure 8a illustrates the comparison of average center 

errors among various models. In this dynamic exploration, 

the formula employed to calculate the error for a single pair 

of points (x, y) and (x', y') retains its essence: 

ACR = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2    (27) 
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Method Accuracy Recall Precision Fig 

Metric 

Proposed Work 97% 98% 98% 98% 

Long Short 

Term Memory 

96% 97% 97% 97% 

Dynamic Spatio 

Temporal Slice 

95% 96% 93% 94% 

Hybrid 

Approach 

94% 95% 92% 93% 

Deep Keyframe 

Extraction 

93% 95% 92% 93% 

Spatio 

Temporal Slice 

67% 69% 65% 67% 

5. Conclusion 

In conclusion, our research tackles a critical challenge in 

Human Motion Detection (HMD) – the impact of occlusion 

on accurate motion identification, particularly focusing on 

self-occlusion and partial occlusion scenarios. We proposed 

a sophisticated approach that integrates state-of-the-art 

technologies, including Mask R-CNN for precise motion 

segmentation, Recurrent Neural Network (RNN) for object 

 
 

  

Fig 8a. Comparison of Average Center Error with various models, Fig 8b. Comparison of Average Overlap 

Rate with various methods, Fig 8c. Comparison of Percentage of Correct Key-Points with various methods, Fig 

8d. Comparison of Average Recognition Rate of various models with different datasets 

Table 4.  Recall and Precision Metrics compared with various Methods 
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classification trained on 2D representations of 3D skeletal 

motion by utilizing the novel hybrid WOA-RDA optimized 

RNN topology with rapid convergence speed, and Multiple 

Hypothesis Tracking (MHT) for robust motion tracking 

during occlusion. Through meticulous experimentation on 

diverse datasets featuring both occluded and unoccluded 

scenarios, our approach demonstrated exceptional efficacy 

in identifying human motion. The results highlight the 

resilience of our method in handling self-occlusion and 

partial occlusion, showcasing its suitability for real-world 

applications such as gesture retrieval, healthcare fall 

detection, sports analytics, and surveillance. This research 

significantly contributes to the field by presenting a holistic 

solution to the challenging problem of occlusion in HMD. 

The amalgamation of advanced neural network models and 

tracking algorithms enhances the accuracy and reliability of 

motion detection, especially in scenarios characterized by 

occlusion complexities. The outcomes of our experiments 

substantiate the effectiveness of the proposed approach, 

providing a foundation for the development of more 

sophisticated systems capable of understanding human 

actions in diverse and challenging environments. Looking 

ahead, future research endeavors could explore 

optimizations for broader datasets and extend the application 

of our methodology to real-world settings. The presented 

approach opens avenues for advancements in HMD, 

addressing a crucial aspect that significantly influences the 

accuracy and applicability of motion detection systems. In 

future research, we plan to employ machine learning 

algorithms to automatically learn and optimize thresholds or 

make dynamic adjustments based on training data. This 

approach aims to enhance adaptability and performance, 

improving the efficiency and accuracy of the system in real-

world scenarios. Sudden changes in lighting conditions can 

affect the performance of segmentation algorithms, leading 

to errors in mask extraction. Using adaptive thresholding or 

background modeling techniques that can adapt to changes 

in lighting conditions may enhance the robustness of the 

algorithm. 
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