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Abstract: Cyber-physical deployments include game engines, multimedia systems, internet of Things (IoT) 

systems, etc. Each of these models has certain inputs, several processing layers, and certain outputs. Monitoring 

& control of such deployments can be automated via their unsupervised analysis, which requires deep learning & 

pattern analysis methods. A wide variety of such models are proposed by researchers and system designers, but 

each of them has its own nuances, advantages, limitations, & future research scopes. Moreover, these models have 

different performance characteristics, that vary in terms of analysis accuracy, precision, recall, fMeasure, delay of 

analysis, response time, computational complexity, etc. Thus, while deploying such learning models, researchers 

& system designers are required to perform manual analysis, validation, and testing for automation & control. 

Due to this cumbersome process, the cost & time to market for these unsupervised control models is very high, 

which limits their scalability, and deployment capabilities. To overcome this issue, a detailed characteristic 

discussion of these models is done in this text. Based on this discussion, researchers will be able to identify existing 

unsupervised & semi-supervised learning models, which closely match their deployments. These models are 

further analyzed in terms of their performance metrics, that includes, accuracy of analysis, response time needed 

for control, delay needed for analysis, precision of analysis, computational complexity, and cost of deployment. 

Using these metrics, researchers can evaluate best performing models for their deployments, which will assist 

them in reducing cost, and time needed for automating their cyber physical systems. This text also discusses 

certain future prospects that can be explored by researchers in order to further enhance quality of their 

deployments. 

Keywords: Neural, Network, Cyber, Physical, Unsupervised, Scalability, Empirical, Complexity, Automation, 

Control 

1. Introduction 

Design of automation controllers for cyber physical 

systems is a multidomain task, which involves design 

of methods for input pattern analysis, response 

analysis, control signal analysis, etc. A typical 

automation controller [1] for such systems can be 

observed in figure 1, wherein different inputs are 

controlled via an input analysis engine, which assists 

in analysis of different input signals. Signals are 

generated based on this analysis, and are given to the 

plant model, which uses design requirements & 

automatic control engine design tools in order to 

produce a control design for the model. This design is 

used to develop a control model, that is capable of 

automatically controlling the entire plant (or control 

system) deployment. 
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Fig 1. Design of a typical model for automation of control systems 

In some models, feedback is also taken from the cyber 

physical system, which assists in estimating its 

performance variation due to the deployed control 

system for different input combinations. Based on this 

feedback, the model is tuned, and continuous 

performance enhancement is achieved, which assists 

in improving underlying model performance under 

different input & output conditions. Similar models [2, 

3, 4], along with their nuances, advantages, 

limitations, and future research scopes are discussed 

in the next section of this text. Based on this 

discussion, readers will be able to identify close 

similarities with their own deployment models, which 

will assist them in short listing models that suit their 

interface requirements. After this discussion, section 

3 further analyzes these models in terms of statistical 

performance metrics that include, accuracy of 

analysis, response time needed for control, delay 

needed for analysis, precision of analysis, 

computational complexity, and cost of deployment 

under different scenarios. Upon referring to this 

performance evaluation, researchers will be able to 

select the best performing model for their deployment, 

and use it for high-efficiency automation purposes. 

Finally, this text concludes with some interesting 

observations about the reviewed models, and 

recommends methods to further improve their 

performance. 

2. Pragmatic review of unsupervised learning 

models 

Researchers have proposed a wide variety of 

unsupervised learning methods, which can be used for 

solving multidomain tasks including classification, 

clustering, prediction, etc. Each of these models have 

their own characteristics, and are deployed for 

context-specific applications. For instance, work in 

[1] proposes use of Incremental & Unsupervised 

Domain-Adversarial Neural Networks (IUDANN), 

which are highly flexible and can be used for 

prediction of output combinations via pattern analysis 

of different input types. The model uses a combination 

of feature extraction layer with label classifier to 

obtain classification outputs. These outputs are further 

tuned via use of domain classifiers which assists in 

estimation of error functions. IUDANN Models use 
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gradient reversal layer (GRL) to tune their internal 

training constants to reduce these error functions. 

Working of this model is depicted in figure 2, wherein 

inputs, their intermediate processing layers, and 

output classes are visualized, and can be applied to 

multiple scenarios. 

 

Fig 2. Design of IUDANN for continuous 

performance optimizations [1] 

This model is applied for Optical Character 

Recognition (OCR), Number Plate Recognition, and 

other applications that involve 2D input datasets. But 

it can be extended for other applications via internal 

parameter tuning and cross validations. The model 

showcases an accuracy of 96.95% for multiple 

applications, which is higher than Convolutional 

Neural Network (CNN) (57.53%), DANN (68.23%), 

improved CNN (iCNN) (72.62%), and iDANN 

(85.91%), thus recommending use of IUDANN for 

large-scale deployments. But efficiency of this model 

is limited when applied to 1D or 3D datasets, which 

makes it useful for image processing applications. To 

overcome this limitation, work in [2] proposes use of 

two-stage unsupervised multiple kernel extreme 

learning machine (TUMK-ELM) which assists in data 

extraction from multiple sources to perform closed-

loop learning under heterogeneous datasets. To 

perform this task, multiple types of kernels are 

deployed, such that each kernel is capable of solving 

single task with high efficiency, which improves 

overall performance via k Space data construction, 

and kernel combination coefficients (kCCs). These 

values are processed via use of an ELM based engine 

as depicted in figure 3, which assists in continuous 

tuning of kCCs via an incremental learning process. 

 

Fig 3. Design of TUMK-ELM for heterogeneous 

data processing [2] 

Due to continuous learning, the proposed model is 

capable showcases an accuracy of 93.5%, which is 

higher than Robust Multiple Kernel K Means 

(RMKKM) (85.5%), and Linear MKKM (LMKKM) 

(86.4%) models, which makes the underlying model 

useful for large-scale deployments. But the model 

requires implementation of multiple kernel types, 

which increases its computational complexity. To 

reduce this complexity, work in [3] proposes use of 

Unsupervised Cross View Metric Learning 

(UCVML), which can be used for 2D & 3D datasets. 

The model uses shared mapping for exploration of 

shared features via estimation of Nonparametric 

Maximum Mean Discrepancy (NMMD) metrics, that 

is used for domain adaptation & transfer learning 

operations. The model showcases an accuracy of 

96.2% on different datasets, which is higher than Cros 



 

International Journal of Intelligent Systems and Applications in Engineering                            IJISAE, 2024, 12(17s), 536–552 |  539 

  

View Quadratic Discriminant Analysis (XQDA) 

(75.4%), Cross View Discriminant Component 

Analysis (CVDCA) (83.5%), and Clustering-based 

Asymmetric Metric Learning (CAMEL) (85.5%) 

under different datasets. This model requires larger 

training data, thus is only applicable for big data 

applications, thus it needs to integrate data 

augmentation to improve its scalability performance. 

Augmentation models are capable of deployment for 

small scale to large scale applications, which increases 

their deployment capabilities. Such models are 

discussed in [4], wherein researchers have proposed 

use of Artificial Neural Network (ANN), Hierarchical 

Cluttering, Bayesian Clustering, Partitional 

Clustering, Mixture Distribution, Blind Signal 

Separation, Hidden Markov Model (HMM), 

Probabilistic Graph Models (PGMs), Generative 

Topographic Model (GTM), Nonlinear Clustering 

with Multidimensional Data (NCDM), Auto Encoders 

(AE), Self-Organizing Kohonen Maps (SOKM) and 

Stochastic Neighbour Estimation (SNE). These 

models are applied to network applications, but can be 

extended for other classification & post-processing 

tasks. It was observed that ANN achieved an accuracy 

of 83.5%, HMM showcased an accuracy of 79.8%, 

PGMs had an accuracy of 75.4%, NCDM achieved an 

accuracy of 64.5%, SOKM showcased an accuracy of 

85.5%, while SNE had an accuracy of 74.9% on 

different datasets. These models must be validated on 

multiple datasets, and their performance can be 

improved via application of sparse coding & other 

deep learning techniques. Such a technique is 

discussed in [5], which proposes use of Unsupervised 

Transfer Learning using Multiple Scaled 

Convolutional Sparse Coding (UTL MSCSC) for 

medical applications. The model uses different filter 

sets to extract features, which assist in continuously 

improving its training & validation performance. Flow 

of the model is depicted in figure 4, wherein Colour 

Decomposition (CoD), Multiple Scale Convolution, 

Absolute Value Rectification at element level (Abs), 

Local contrast normalization (LCN) and Max Pooling 

(MP) operations are used to design a UTL Network, 

that is capable of classifying multiple data types. 

 

Fig 4. Design of the UTL MSCSC Model for 

efficient feature representations [5] 

Due to use of these filters, the model showcases an 

accuracy of 93.42%, which is higher than Pseudo 

Multiple Scaled CSCSPM (PMS CSCSPM) 

(92.86%), Power Spectral Density with Stacked 

Predictive Sparse Coding (PSD2SPM) (91.85%), 

Sparse Morphometric Linear Spatial Pyramid 

Matching (SMLSPM) (92.35%), Sparse Coding 

(ScSPM) (79.58%), and Kernel SPM (KSPM) (85%) 

for the same dataset applications. But the model is 

highly complex, cannot detect irregularities in input 

datasets and requires large training & validation 

delays. To overcome these limitations, work in [6] 

proposes use of Implicit Irregularity Detection (IIRD) 

via use of unsupervised learning on temporal data 

patterns. The model uses a combination of Regression 

Analysis, Gaussian Distribution, Fuzzy Rule-base, 

and Probabilistic Modelling to estimate feature sets 

that can add periodicity to data samples. It initially 

constructs a Basic Regular Group (BRG) and 
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performs its expansion via augmentation models. This 

augmentation is applied till periodicity is not achieved 

in the datasets, due to which the model is capable of 

achieving a linearly increasing accuracy 98.5%, that is 

higher than Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) (94.1%), k 

Means (75.5%), and Hierarchical Clustering (HC) 

(78.9%) across multiple datasets. This model’s 

performance can be further extended via use of 

Uncorrelated and Discriminative Feature Selection 

which is implemented via Constrained Spectral 

Analysis for efficient feature selection (DUCSAFS) as 

discussed in [7], which can be deployed under 

multiple heterogeneous datasets. The model initially 

explores low-redundant discriminative features, and 

avoids trivial solutions, which simplifies the 

optimisation process. Due to these characteristics, the 

model is applicable for multidimensional datasets 

with different classes and has minimum overheads. It 

is capable of achieving an accuracy of 89.5% under 

different applications, which is higher than Least 

Squares (LS) (64.5%), Nonnegative Discriminative 

Feature Selection (NDFS) (71.9%), Joint Embedding 

Learning and Sparse Regression (JELSR) (74.8%), 

Simultaneous Orthogonal basis Clustering Feature 

Selection (SOCFS) (83.5%), and Structure Optimal 

Graph Feature Selection (SOGFS) (89.1%) when 

evaluated under the same datasets. This model 

showcases superior performance, but doesn’t 

incorporate explainable characteristics, which can be 

used to further improve it usability. To perform this 

task, work in [8] proposes use of SOM-based 

Explainable Clustering Methodology (SOM ECM), 

for generation of synthetic explanations. It calculates 

Unified Distance Matrix (U Matrix) for different 

component planes in order to solve segmentation, 

clustering, and classification tasks. The model is able 

to achieve an average accuracy of 79.5% under 

different applications.  

Models that use Unsupervised & Nonlinear Adaptive 

Manifold Learning (UNAML) [9], Data 

Normalization for Neural Networks (DNNN) [10], 

Heterogeneous Coupling with Unsupervised Learning 

to represent Categorical datasets (HCUL) [11], and 

use of g Support Vector Machine (SVM) under unary 

and binary modes [12] are also discussed by 

researchers. The UNAML Model is capable of 

handling unsupervised datasets, while DNNN can be 

used to handle data from heterogenous sources with 

high efficiency and good classification performance. 

These models must be combined in order to design an 

integrated high-performance model that can cater to 

large-scale datasets. While HCUL showcases higher 

efficiency for representing data used in classification 

applications, which can be extended via use of SVM 

for achieving better accuracy, precision, recall and 

Area Under the Curve (AUC) levels. The UNAML 

model achieved an accuracy of 85.4%, while ANN 

showcased an accuracy of 73.9% under different 

applications. Upon similar evaluation, HCUL that 

uses multiple kernels was able to classify data with 

91.5%, while SVM showcased an accuracy of 83.5% 

for MicroRNAs based classification applications. But 

these models do not use clustering techniques, which 

limits their data representation capabilities. To 

overcome this limitation, work in [13] proposes use of 

Hybrid Unsupervised Clustering (HUC) via 

integration of Sub-Space Clustering (SSC) & One 

Class Support Vector Machine (OCSVM) which 

assists in improving classification performance for 

multidimensional datasets. The HUC SSC OCSVM 

Model achieves an accuracy of 89.9%, which is higher 

than SSC with EA (86.2%), DBSCAN (85.9%), and k 

Means (83.4%) when averaged for different 

applications. This efficiency can be improved via 

integration of model enhancements in existing Neural 

Networks. Work in [14] proposes such a model, which 

uses Unsupervised Learning perceptron adopting 

phase change memory (PCM) synapses with Spike 

Timing Dependent Plasticity (STDP) & Neural 

Redundancy (NR) methods. These methods assist in 

integration of long-term memory availability, which 

improves classification performance when applied for 

multidimensional data applications. The PCM STDP 

NR model showcases an accuracy of 91.5%, which 

makes it useful for real-time deployments. This model 

must be validated on larger datasets, and can be further 

extended via use of Confidential Correspondence 

Consistency (CCC) as discussed in [15], which assists 

in high-efficiency augmentation of image sets to 

improve classification performance for data limited 

applications. The CCC model is depicted in figure 5, 

wherein Siamese CNN along with initial disparity, 

correspondence consistency, and positive sample 

propagation are used to achieve an accuracy of 91.2% 

under different datasets. This accuracy is higher than 

Content CNN (84.5%), and Global Context CNN (GC 

CNN) (89.5%) which makes it useful for a wide 

variety of real-time applications. 
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Fig 5. Design of CCC based CNN Model for low 

error & limited data capabilities-based classification 

applications [15] 

The model must be tested on different datasets, and 

can be extended via use of low-cost & high-efficiency 

Q-Learning methods for incremental performance 

optimizations. Such models are discussed in [16, 17], 

which propose use of Multistage Method for 

Leveraging Order-Independent Transparency 

(MMLOIT), and combination of Event Shift with 

Histogram Shape (ESHS) which assists in 

continuously improving model performance via high-

density feature extraction & selection techniques. The 

MMLOIT model is mainly used for data visualization, 

and can be deployed for a wide variety of applications, 

while the ESHS model is used for event analysis in 

terms of event chronology, periodic similarity and 

aperiodic similarity levels. A combination of both 

these models should be done to improve classification 

& representation performance. The MMLOIT model 

showcases an accuracy of 64.5%, while the ESHS 

model showcases an accuracy of 91.3% across 

different datasets. Extensions to these models are 

discussed in [18, 19] which propose use of Neural 

Network-Based Blind Equalization (NNBBE), and 

design of a new distance metric (NDM) which is based 

on dynamic attribute-level weights that are evaluated 

via use of frequency probabilities.  These models 

assist in improving classification & pattern analysis 

performance for multiple applications. The NNBBE 

model is useful for training existing Neural Networks 

by integration of blind equalization which improves 

their accuracy performance. It showcases an accuracy 

of 96.5%, while NDM is able to achieve clustering 

accuracy of 91.4%, due to which, both models are 

useful for high-performance application deployments. 

These models must be validated on heterogeneous 

applications, which will assist in estimating its real-

time performance. Such applications are discussed in 

[20, 21], which propose use of pattern analysis for text 

classification, and perceptual category learning based 

use cases. Text classification applications can use 

Variational Autoencoder Neural Networks (VANN) 

with Graph Regularization (GR), which assists in 

achieving an accuracy of 85.9% across different 

datasets. This model showcases better performance 

than Autoencoder (AE) (82.8%), Sparse AE (SAE) 

(78.5%), Stacked AE (STAE) (79.1%), Denoising AE 

(DAE) (85.9%), Restricted Boltzmann Machine 

(RBM) (72.3%), and Deep Belief Networks (DBNs) 

(73.5%) for the same datasets. While the perceptual 

category learning model initially converts all datasets 

into Gaussian distributions, and then mixes these 

distributions to design Online Mixture Estimation 

(OME), which assists in achieving an accuracy of 

90.5% across different 1D datasets. To performance 

can be further improved via use of Extreme Learning 

Machines (ELMs) [22], Unsupervised Linear 

Discriminant Analysis (ULDA) [23], Support Vector 

Machine with Measure of Textual Lexical Diversity 

(SVM MTLD) [24], and CNN fused with 

Differentiable Feature Clustering (CNN DFC) [25], 

each of which assist in improving pattern analysis 

performance via feature augmentation process. ELMs 

are observed to be highly complex, and thus can be 

used under high-performance computing scenarios, 

while ULDA is capable of processing 

multidimensional data with high efficiency with low 

complexity, thus it is recommended that ULDA must 

be used for initial feature representations, while ELMs 

must be applied for feature learning process. SVMs 

also showcase good classification performance, and 

thus can be used to replace ELMs, but they cannot be 

used for applications with higher number of classes. 

The CNN DFC model is able to achieve both these 

characteristics due to use of Differentiable Feature 

Clustering, which assists in pre-processing the data 

before actual classification. Due to which, the CNN 

DFC model is highly useful for large-scale 
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classification applications. The ELM model 

showcases an accuracy of 96.63%, which is higher 

than Laplacian Eigenmaps (LE) (91.5%), Spectral 

Clustering (SC) (89.2%), Deep Autoencoder (DA) 

(90.2%), and k Means (89.5%) for different datasets. 

While, the accuracy of ULDA is 86.5%, which is 

higher than LDA (85.2%), and Real Time LDA 

(RTLDA) (85.3%) across different multidimensional 

datasets. SVM showcases an accuracy of 83.1%, but 

has lower complexity than other models.  

 

Fig 6. Integration of CNN with DFC for better signal 

processing performance 

The CNN DFC model is depicted in figure 6, and 

outperforms all these models by achieving an 

accuracy of 95.4%, due to integration of Normalized 

Response Maps (NRMs), and filtering models for 

achieving better data processing capabilities. 

These models are useful when applied to 2D or 3D 

datasets, but 1D datasets are used in a wide variety of 

practical applications. Work in [26, 27, 28] proposes 

use of SP theory based Neural Networks (SPNNs), 

customized 1D Reconfigurable Intelligent Surface 

Beamforming Neural Network (1D RISBNN), and 

Heterogeneous Unsupervised Domain Adaptation 

with Grassmann’s Linear Monotonic Maps with 

Geodesic Flow Kernel (GLMM GFK), which assist in 

extraction of multidomain feature sets for highly 

efficient data representation purposes. These models 

utilize Fully Connected Neural Networks (FCNNs) 

for classifying & processing the extracted data into 

different application-specific categories. The SPNN 

Model is highly complex, but showcases an accuracy 

of 97.5%, which is better than 1D RISBNN that 

showcases an accuracy of 96.1 %, but can be used for 

multidimensional datasets. The GLMM GFK uses 

incremental feature updates, due to which it is capable 

of achieving accuracy between 86.1% to 96.4% for 

different applications. These models must be deployed 

for different applications, which will assist in 

estimating their real-time performance across multiple 

scenarios. Work in [29, 30] discusses such 

applications, wherein Kalman Filter with Pose CNN 

(KFP CNN), and Unsupervised Two-Path Neural 

Network (UTPNN) are applied to video processing, 

and high-density cell-based image processing 

applications. The KFP CNN model showcases an 

accuracy of 98.7%, while UTPNN achieves an 

accuracy of 85.6% under different datasets. The 

UTPNN model also proposes a custom Convolution 

Long-Short-Term Memory (Conv LSTM), which 

assist in extraction of multiple levels of features for 

improving data representation efficiency across 

different scenarios.  

Pattern analysis models are also useful for solving 

issues that require remote & real-time monitoring for 

multiple inputs. Such applications, and their ML based 

solutions are proposed in [31, 32, 33], which discuss 

use of Prediction-based Proactive Drone Management 

(P2DM) with SVM, Variational Auto-Encoder (VAE) 

for Unsupervised Deep Spectrum Sensing, and 

Coupled CNN with Adaptive Response Function 

Learning (CCNN ARFL) for Unsupervised 

Hyperspectral Super Resolution applications. The 

P2DM Model is highly context sensitive, with low 

energy consumption and lower complexity, but 

achieves an accuracy of 73.5% under for drone sites. 

While the VAE Model showcases an accuracy of 

93.5%, which makes it useful for spectrum sensing, 

but can be extended for other use cases. Similarly, the 

CCNN ARFL uses a combination of Low Resolution 

& High Resolution Hyper Spectral Imaging with 

Autoencoder (Lr & Hr HIS AE) as depicted in figure 

7, which assists in achieving an accuracy of 91.5% 

under different dataset configurations. But these 
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models are highly complex, and require large datasets 

for efficiency operations. To overcome this limitation, 

work in [34, 35, 36] proposes use of Two Stage CNN 

(TSNN), Unsupervised Deep Feature Learning 

(UDFL), and Instance-Based Learning with Q-

Learning (IBQL) for data augmentation that can be 

used with low density datasets. These models 

integrate different information processing layers, 

which increases data representation efficiency for 

cross dataset applications. They also use incremental 

learning, which assists in continuous training set 

updates via correlation matching based feedbacks. 

Due to which the TSNN model showcases an accuracy 

of 89.1%, while UDFL achieves an accuracy of 

94.8%, and while IBQL showcases an accuracy of 

96.5% under different dimensional & different 

categorical datasets.  

 

Fig 7. Design of CCNN ARFL Model for deploying 

high efficiency classification process 

Extended deep learning models that use Masked 

Generative Adversarial Networks (M GAN) [37], 

Spiking Neural Network with Cross Modal Processing 

(SNN CMP) [38], and Selective Unsupervised 

Learning via Autoencoder with GAN (SUL AE GAN) 

[39], are discussed and deployed for large-scale 

applications. These models utilize application-

specific feature processing in order to represent data 

with minimum overheads. The represented features 

are processed via augmented learning models which 

assists in improving their cross-dataset efficiency for 

different applications. The M GAN Model showcases 

an accuracy of 97.6%, while SNN CMP achieves can 

accuracy of 95.5%, while SUL AE GAN showcases 

an accuracy of 92.7% for multidimensional data 

applications. Extensions to these models are discussed 

in [40, 41, 42], which proposes use of different metrics 

like Response Time for Aberrant Response (RTA), 

kernel density maximum entropy (KDME), and 

discussion of different fusion & deep learning models 

which assist in improving processing performance for 

multiple application types. The RTA model 

showcases an accuracy of 83.4%, while KDME 

showcases an accuracy of 93.4% which makes them 

useful for real-time data processing applications. This 

performance can be improved via use of bioinspired 

models like Genetic Algorithm (GA) [43], Genetic 

Neural Network (GNN), [44] and Particle Swarm 

Optimization (PSO) based SVM [45] which assists in 

stochastically modelling different use cases for better 

learning performance. The GA Model assists in 

achieving an accuracy of 85.5%, while GNN 

showcases an accuracy of 91.4%, and PSO with SVM 

showcases an accuracy of 97.5% under different 

applications. These models have different use cases, 

but can be deployed for large-scale scenarios. To 

further analyze scalability of these models, they are 

compared in terms of accuracy, precision, recall, 

computational complexity, and scalability 

performance in the next section of this text. Based on 

this discussion, researchers will be able to identify 

best performing models, for their application-specific 

use cases. 

3. Empirical evaluation and Comparison of 

reviewed models 

From the literature survey it can be observed that 

existing learning models used for unsupervised 

analysis of existing cyber physical deployments have 

wide variety of applications. These models have 

performance variations based on context, deployment 

type, data type, and applicability. To facilitate model 
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selection, this section compares the reviewed models 

in terms of their accuracy (A), precision (P), recall (R), 

computational complexity (C), and scalability (S) 

measures. These values are accumulated via 

pragmatic evaluation of these reference models. Out 

of these metrics, computational complexity & 

scalability do not have absolute values, thus, values of 

these metrics are evaluated in terms of fuzzy ranges of 

Low (L=1), Medium (M=2), High (H=3), and Very 

High (VH=4), which will assist readers to identify 

context-specific models for their deployments. These 

values can be observed from table 1 as follows, 

Model 
A 

(%) 

P 

(%) 

R 

(%) 
C S 

IUD 

ANN 

[1] 

96.95 74.24 75.60 H M 

CNN 

[1] 
57.53 66.13 68.58 VH M 

DANN 

[1] 
68.23 75.59 77.04 VH H 

iCNN 

[1] 
72.62 84.01 84.83 VH H 

iDANN 

[1] 
85.91 88.30 91.33 VH H 

TUMK 

ELM 

[2] 

93.5 88.47 91.50 H H 

RMK 

KM [2] 
85.5 89.37 89.04 M L 

LMK 

KM [2] 
86.4 86.00 90.68 M L 

UCV 

ML [3] 
96.2 85.03 86.69 H M 

XQDA 

[3] 
75.4 81.47 83.21 H M 

CVD 

CA [3] 
83.5 84.17 86.18 H H 

CAM 

EL [3] 
85.5 82.93 85.00 H M 

ANN 

[4] 
83.5 79.57 81.05 H H 

HMM 

[4] 
79.8 73.23 77.84 VH M 

PGM 

[4] 
75.4 75.13 74.36 H M 

NCDM 

[4] 
64.5 74.97 79.38 H H 

SOKM 

[4] 
85.5 84.61 85.15 H L 

SNE [4] 74.9 87.06 89.25 M L 

UTL 

MSC 

SC [5] 

93.42 92.71 95.22 H H 

PMS 

CSC 

SPM [5] 

92.86 92.35 93.59 H H 

PSD2 

SPM [5] 
91.85 87.93 91.74 H L 

SML 

SPM [5] 
92.35 85.64 88.53 H L 

Sc SPM 

[5] 
79.58 87.69 88.41 H M 

KSPM 

[5] 
85 92.53 93.69 H L 

IIRD [6] 98.5 89.37 93.54 VH H 

DB 

SCAN 

[6] 

94.1 82.83 85.57 H H 

k Means 

[6] 
75.5 81.30 80.34 M L 

HC [6] 78.9 77.63 82.39 L M 

DUC 

SAFS 

[7] 

89.5 75.30 76.85 H H 

LS [7] 64.5 70.40 72.70 H H 

NDFS 

[7] 
71.9 76.73 78.44 H H 

JELSR 

[7] 
74.8 82.47 83.28 H H 

SOCFS 

[7] 
83.5 84.03 87.51 H H 

SOGFS 

[7] 
89.1 84.67 85.35 H H 
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SOM 

ECM 

[8] 

79.5 79.60 84.13 VH H 

UN 

AML 

[9] 

85.4 83.60 83.56 VH M 

DNNN 

[10] 
73.9 82.97 86.32 H M 

HCUL 

[11] 
91.5 88.30 89.70 VH H 

SVM 

[12] 
83.5 86.53 89.04 L M 

HUC 

OC 

SVM 

[13] 

89.9 87.33 89.38 VH H 

SSC EA 

[13] 
86.2 85.17 88.26 H H 

DB 

SCAN 

[13] 

85.9 86.93 88.44 H H 

k Means 

[13] 
83.4 88.70 90.43 M L 

STDP 

[14] 
91.5 89.07 92.35 H M 

CCC 

[15] 
91.2 88.40 88.10 VH H 

Content 

CNN 

[15] 

84.5 79.50 85.97 VH VH 

GC 

CNN 

[15] 

89.5 81.77 82.02 VH VH 

MML 

OIT 

[16] 

64.5 84.10 85.38 H H 

ESHS 

[17] 
91.3 93.07 95.42 H H 

NN 

BBE 

[18] 

96.5 91.27 93.81 VH H 

NDM 

[19] 
91.4 86.70 88.82 VH H 

VANN 

GR [20] 
85.9 82.40 84.93 VH H 

AE [20] 82.8 80.13 82.72 VH VH 

SAE 

[20] 
78.5 81.17 81.50 VH VH 

STAE 

[20] 
79.1 79.10 82.39 VH VH 

DAE 

[20] 
85.9 77.23 80.56 VH VH 

RBM 

[20] 
72.3 78.77 79.83 VH VH 

DBNs 

[20] 
73.5 86.77 88.09 VH VH 

OME 

[21] 
90.5 92.77 95.36 H H 

ELMs 

[22] 
96.3 92.33 94.98 VH VH 

LE [22] 91.5 90.30 92.47 H H 

SC [22] 89.2 89.63 91.74 H H 

DA [22] 90.2 88.73 91.15 H VH 

k Means 

[22] 
89.5 87.07 89.42 M L 

ULDA 

[23] 
86.5 85.67 87.67 VH H 

LDA 

[23] 
85.2 84.53 87.94 H H 

RT 

LDA 

[23] 

85.3 87.93 89.32 H H 

SVM 

MTLD 

[24] 

83.1 92.00 94.06 H H 

CNN 

DFC 

[25] 

95.4 96.33 98.85 VH VH 

SPNN 

[26] 
97.5 96.30 99.13 VH H 

1D RIS 

BNN 

[27] 

96.1 96.70 97.77 VH H 
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GLMM 

GFK 

[28] 

95.3 93.20 95.68 VH H 

KFP 

CNN 

[29] 

98.7 85.93 90.88 VH VH 

UTP 

NN [30] 
85.6 84.20 84.48 H H 

P2DM 

SVM 

[31] 

73.5 86.17 88.34 H H 

VAE 

[32] 
93.5 91.37 94.40 VH H 

CCNN 

ARFL 

[33] 

91.5 91.80 93.81 VH H 

TSNN 

[34] 
89.1 93.47 95.81 VH VH 

UDFL 

[35] 
94.8 96.30 98.50 H H 

IBQL 

[36] 
96.5 96.53 98.95 VH VH 

M GAN 

[37] 
97.6 95.27 97.15 VH VH 

SNN 

CMP 

[38] 

95.5 90.53 94.50 VH H 

SUL AE 

GAN 

[39] 

92.7 89.83 90.61 VH VH 

RTA 

[40] 
83.4 87.43 90.85 H H 

KDME 

[41] 
93.4 90.10 92.43 H H 

GA [43] 85.5 91.47 92.80 L H 

GNN 

[44] 
91.4 93.57 96.47 H VH 

PSO 

[45] 
97.5 93.75 72.58 H H 

 

Table 1. Statistical evaluation of different 

unsupervised learning models 

 

 

Fig 8. Accuracy of different models 

Based on this evaluation and figure 8 it can be 

observed that KFP CNN [29], IIRD [6], M GAN [37], 

SPNN [26], PSO [45], IUD ANN [1], NN BBE [18], 

IBQL [36], ELMs [22], UCV ML [3], and 1D RIS 

BNN [27] have highest accuracy, thus they can be 

used for high-accuracy unsupervised learning 

application deployments.  
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Fig 9. Precision of different models 

Similarly, from table 1 and figure 9, it can be observed 

that 1D RIS BNN [27], IBQL [36], CNN DFC [25], 

SPNN [26], UDFL [35], M GAN [37], PSO [45], 

GNN [44], and TSNN [34] have better precision, 

which makes them useful for applications that require 

consistent performance across different evaluations. 

 

Fig 10. Recall of different models 

Similarly, from table 1 and figure 10, it can be 

observed that SPNN [26], IBQL [36], CNN DFC [25], 

UDFL [35], 1D RIS BNN [27], M GAN [37], GNN 

[44], TSNN [34], and GLMM GFK [28] have better 

recall, which makes them useful for applications that 

require low error performance across different 

evaluations. 
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Fig 11. Computational Complexity of different 

models 

Similarly, from table 1 and figure 11, it can be 

observed that HC [6], SVM [12], GA [43], RMK KM 

[2], LMK KM [2], SNE [4], and k Means [6] have 

lower complexity, which makes them useful for high-

speed applications across different evaluations. 

 

Fig 12. Scalability of different models 

Similarly, from table 1 and figure 12, it can be 

observed that Content CNN [15], GC CNN [15], AE 

[20], SAE [20], STAE [20], DAE [20], RBM [20], 

DBNs [20], and ELMs [22] have higher scalability, 

which makes them useful for large-scale applications. 
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Fig 13. NRM of different models 

To further assist in improving model selection 

process, a Novel Rank Metric (NRM) is evaluated via 

equation 1, which assists in combining accuracy, 

precision, recall, complexity and scalability metrics. 

𝑁𝑅𝑀 =
𝑃 + 𝑅 + 𝐴

300
+
4

𝐶
+
𝑆

4
… (1) 

Based on this evaluation and figure 13 it was observed 

that GA [43], SVM [12], HC [6], GNN [44], DA [22], 

k Means [22], RMK KM [2], LMK KM [2], SNE [4], 

UDFL [35], UTL MSC SC [5], ESHS [17], PMS CSC 

SPM [5], OME [21], and KDME [41] have better 

overall performance, which makes them useful for 

high accuracy, high precision, high recall, low 

complexity and highly scalable application 

deployments. Thus, these models must be used when 

designing unsupervised learning applications for 

optimum performance under different use cases. 

4. Conclusion 

This text extensively compares different unsupervised 

learning models in terms of their context-specific 

nuances, application-based advantages, functional 

limitations, and recommends various future 

enhancements, which will assist in improving its real-

time performance. From this evaluation it was 

observed that existing models use ML methods along 

with bioinspired techniques for continuous 

performance optimizations, which assists in 

improving their real-time performance under different 

applications. It was also observed that effective 

feature representation along with optimized distance 

metrics have better performance when compared with 

their counterparts. This evaluation concludes that KFP 

CNN, IIRD, M GAN, SPNN, PSO, IUD ANN, NN 

BBE, IBQL, ELMs, UCV ML, and D RIS BNN have 

highest accuracy, D RIS BNN, IBQL, CNN DFC, 

SPNN, UDFL, M GAN, PSO, GNN, and TSNN have 

better precision, while, SPNN, IBQL, CNN DFC, 

UDFL, D RIS BNN, M GAN, GNN, TSNN, and 

GLMM GFK have better recall, which makes them 

useful for high accuracy applications that require low 

error performance across different evaluations. It was 

also observed that HC, SVM, GA, RMK KM, LMK 

KM, SNE, and k Means have lower complexity, while 

Content CNN, GC CNN, AE, SAE, STAE, DAE, 

RBM, DBNs, and ELMs have higher scalability, 

which makes them useful for high-speed & large-scale 

applications. These metrics were combined and a 

Novel Rank Metric was evaluated, which 

recommends that GA, SVM, HC, GNN, DA, k Means, 

RMK KM, LMK KM, SNE, UDFL, UTL MSC SC, 

ESHS, PMS CSC SPM, OME, and KDME have better 

overall performance, which makes them useful for 

high accuracy, high precision, high recall, low 

complexity and highly scalable application 

deployments. Thus, these models must be used when 

designing unsupervised learning applications for 

optimum performance under different use cases. In 

future, it is recommended that researchers must use a 

combination of these models which will assist them in 
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improving their real time performance under different 

use cases. Furthermore, validation of these models 

must be done for large-scale applications, which will 

assist them in recognizing their scalability 

performance for multiple application scenarios. 
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