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Abstract: Several migration techniques are available for migrating Virtual machine (VM) from one host to another. But they fail to 

consider the migration cost while determining the energy consumption during migration. The migration cost includes the migration time 

and distance.  Hence the objective of this work is to design an optimized VM migration technique which simultaneously reduces the 

energy consumption and cost while avoiding (QoS) degradation. For this, Adaptive Red Deer Optimization algorithm for energy efficient 

VM migration (ARDO-EEM) in cloud computing is proposed. In ARDO-EEM, the overloading probability of each host is determined 

based on the total resource utilization of the host. Then the overloaded hosts are categorized into heavy, medium and light depending on 

two threshold values. VMs to be migrated are selected from the heavy and medium overloaded hosts with energy consumption higher 

than the available energy. The target VMs are selected using the ARDO algorithm based on the migration energy and resource 

utilization. Then each VM in the migration list is relocated to the selected target VM.   Experimental results show that the proposed 

ARDO-EEM attains increased resource utilization with lesser power consumption and response delay. 
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1. Introduction 

Cloud computing, such as the use of gas, electricity, 

water, and telephone utilities, is made possible by cloud 

computing's "pay-as-you-go" model for computing 

services. It can be known as the fifth utility. Three well-

known cloud computing services are platform as a 

service (PaaS), infrastructure as a service (IaaS), and 

software as a service (SaaS). Different deployment 

models are used to deploy these services. Public, private, 

commodity, and hybrid are the four main deployment 

methods for clouds, depending on the needs. Users can 

reduce infrastructure and maintenance costs with the use 

of cloud computing. Cloud computing services offer 

scalability, dependability, and mobile accessible features 

to users. Various businesses neglect the low-level 

hardware and software infrastructure configuration in 

favour of innovation and delivering economic value. All 

computing services are being moved in the process [1]. 

Virtual machines can be moved from one physical device 

to another through virtual machine migration. It is a 

component of the software that controls hardware 

virtualization. The different types of VM migration 

include cold migration, which stops the VM on the 

source machine and restarts it on the destination, warm 

migration, which suspends the VM on machine 1, copies 

the RAM and CPU registers, and then restarts it on 

machine 2 (a few seconds later), and live migration, 

which transfers the VM's execution environment and 

stops it on the origin machine before restarting it on the 

destination machine without completely replacing the 

memory pages. This method's drawback is that 

iteratively resending updated pages causes inefficiency 

by using more network capacity [2]. 

Modern large-scale computer systems, like data centres, 

face three major challenges: a reduction in energy usage, 

run faster and cooler, and occupy less space. Multicore 

processor technology is addressing these issues 

simultaneously. High-performing computing 

infrastructures have emerged as a key issue in the new 

global economy in order to meet the need for 

contemporary resource-intensive businesses and research 

applications. Due to the current massive electrical power 

consumption in large-scale computer data centres, the 

issue has gained in prominence. However, because of the 

world's high energy usage, these quick changes are 

seriously affecting the environment. Both the size of data 

centres and their operating costs are expanding. As of 

20142, the estimated cost of energy usage will be 75% of 

the overall expenditure. There will be a demand for 

performance- and energy-efficient VM migration 

techniques [3]. 

2. Related Works 

A reassessment of the dynamic VM consolidation 

problem and the best online deterministic migration 

techniques in an experimental setting. By simulating the 
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current energy-efficient techniques, Akhter et al. [4] 

have discovered new information. We might utilise some 

additional statistical techniques, according to the 

reevaluation, to reduce the amount of energy used in 

cloud-based data centres. Environmental issues are 

becoming more and more important to cloud users. A 

significant source of CO2 emissions, the energy 

consumption of data centres is expanding quickly and 

has led to increasing energy consumption throughout the 

economy. Energy regulations are a major concern for 

many nations worldwide in an effort to cut greenhouse 

gas emissions. 

In order to address crucial elements that have an impact 

on the datacenter servers while moving VMs, Alshayeji 

et al. [5] have introduced the Energy Efficient Virtual 

Machine Migration (EVM) technique. In order to choose 

the victim and target servers, the EVM approach uses 

Energy Based Server Selection (ESS). Comparative 

results demonstrate that EVM outperforms existing 

techniques like Arbitrary Server Selection (ASS) and 

First Fit Strategy by reducing the amount of server state 

changes, VM migration, and oscillations (FFS). 

By developing a discrete-time Markov chain (DTMC) 

model to forecast future resource utilisation, 

Sayadnavard et al [6] have overcome the issue. The 

reliability model of PMs is used in conjunction with the 

DTMC model to classify PMs more accurately based on 

their condition. Then, using the e-dominance-based 

multi-objective artificial bee colony (e-MOABC) 

algorithm, a multi-objective VM placement approach is 

proposed to achieve the optimal VMs to PMs mapping. 

This algorithm is capable of effectively balancing the 

overall energy consumption, resource waste, and system 

reliability to meet SLA and QoS requirements. By using 

the CloudSim toolbox to conduct a performance 

evaluation study, we have confirmed the efficacy of our 

suggested strategy. While avoiding the ineffective VM 

migrations, energy consumption is greatly improved. 

The resource allocation and live migration of virtual 

machines have been studied by Dad et al [7]. It suggests 

a Double Threshold Migration (DTM) technique that 

takes both an upper and a lower threshold of CPU 

utilization into account. One can choose a number of 

VMs to perform the transfer using these Thresholds. The 

live transfer of the VMs lowers the high server 

utilization and turns off the idle physical machines 

(PMs). The approach employs a variation of the Best Fit 

Decreasing (MBFD) method to address the issue of VM 

placement. The results of the experiments demonstrate 

that the suggested strategy increases resource utilisation, 

decreases energy consumption, and maintains SLA 

(Service Level Agreement) violations while under an 

energy limitation.  

An effective and economical VM consolidation strategy 

termed EQ-VMC, put out by Li et al. [8], aims to 

maximize service quality and energy efficiency. To find 

the overall ideal solution for VM placement, a discrete 

differential evolution algorithm is created. EQ-VMC 

effectively lowers energy usage and enhances quality of 

service by combining this solution with a series of 

algorithms proposed for efficient host overload 

detection, VM selection, and under-loaded host 

identification). 

Thiam and Thiam [9] have researched the issue of the 

best VM migration and allocation strategy to reduce 

energy usage in a data centre while maintaining QoS. A 

cloud environment is created using the CloudSim 

simulator. It offers the user interface for interacting with 

both virtual and physical machines. In order to identify 

the method that optimizes VM placement and migration, 

we evaluate and contrast the algorithms corresponding to 

various techniques. The simulation's outcome 

demonstrates how virtual machine placement and 

migration strategies reduce energy use, migrations, and 

overall simulation duration. 

According to the needs of the clients, Shahapurea and 

Jayarekha [10] have presented a new paradigm for 

virtual machine migration. A customer asks for a quicker 

response time. A technique based Virtual Machine 

Migration Approach based on Distance and Traffic is 

created in order to do this. The methodology is based on 

the data centres' physical locations and traffic patterns. 

The programme is conducted on a regular basis to 

monitor network traffic. The distance between the data 

centres from which the client request must be sent is also 

checked. The nearest data centre with less traffic 

receives the request. This decreases the round trip time, 

which enhances performance. Since there is less traffic, 

the resources are used more efficiently. By offering 

clients speedier services, the reduced round trip time and 

preserving the round trip time with little variation even 

in the event of a physical machine failure contribute to 

performance improvement. 

The modified best fit decreasing (MBFD) method and 

the load aware three-gear threshold (LATHR) algorithm 

have both been suggested by Vaneet and Balkrishan [11] 

for reducing overall energy usage while enhancing SLA-

related quality of service. Under dynamic workload 

conditions and a range of VMs (1-290) distributed to 

each host, it shows encouraging results. SLA, energy 

use, instruction energy ratio (IER), and the number of 

migrations against the various numbers of VMs are used 

to evaluate the effectiveness of the proposed effort. In 

comparison to median absolute deviation (MAD), 

interquartile range (IQR), and double threshold (THR) 

overload detection strategies, the proposed technique 

decreased SLA violations and energy consumption. 
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By focusing on system structure analyses, Dhaya et al. 

[12] have developed a paradigm for the distribution of 

resources in private cloud data centres that is energy-

efficient. On the other side, we wish to give private cloud 

service providers with the most up-to-date design and 

performance analysis for resource allocation that is 

energy-efficient. The methodology should be flexible 

enough to handle a variety of computing platforms, as 

well as approaches for delivering extensive and on-

demand resources, scheduling cloud environments, and 

bridging the gap between private cloud users and a full 

picture of offers. 

A virtual machine migration technique based on the 

three-way decision (VMM-3WD) has been proposed by 

Jiang and Shi [13] to reduce the energy consumption of 

cloud hosts while taking network correlation between 

virtual machines into account. According to their load 

state, the initial step of the method is to categorize hosts 

into overloaded, ordinary load, and underloaded hosts. 

Following that, various migration procedures are 

designed specifically for these three categories of cloud 

hosts. The method specifically migrates virtual machines 

from under-loaded servers to typical load hosts. The 

strategy then produces two thresholds to classify 

different levels of host overload into massively 

overloaded, moderately overloaded, and lightly 

overloaded hosts. The choice to migrate VMs is made 

with the intention of lowering network energy usage 

throughout the migration process. 

An energy-efficient and QoS-aware VM consolidation 

strategy has been put forth by Wang et al [14]. To detect 

host state, a mixed prediction model based on grey 

model and ARIMA is used. A new technique is offered, 

using a VM selection strategy known as AUMT to 

choose VMs with low average CPU utilization and short 

migration times, and a VM placement policy based on 

resource use and variable energy consumption to choose 

the best host. When compared to benchmark approaches, 

this approach enables the reduction of energy 

consumption, the number of migrations, SLAV, and ESV 

objectives. The AUMT can also reduce energy 

consumption, the number of migrations, and ESV. 

In our previous works [16][17], swarm intelligence based 

task scheduling algorithm and optimal server selection 

model for task allocation were proposed. Apart from 

these works, a Neuro-Fuzzy Inference QoS aware 

genetic algorithm [18] is proposed for cloud resource 

optimization. 

2.1 Research gaps 

Nowadays more attention focuses on VM management 

strategies in a variety of scenarios. The problem of 

virtual machine placement and migration is an 

optimization problem aiming for multiple goals. The 

efficiency of a data center, therefore, depends a lot on 

how virtual machines are provisioned and where they are 

located. An efficient VM allocation policy will improve 

energy efficiency while limiting the degradation of the 

QoS and alleviate hotspots, but will also reduce the 

operating costs of the data center. Migrating VMs into a 

fewer number of Physical Machines (PMs) can 

maximize the utilization of Cloud servers and reduce the 

energy consumption of the Cloud data center. 

3. Proposed Methodology 

3.1 Overview 

In this paper, ARDO-EEM algorithm is proposed. In this 

work, the overloading probability of each host is 

determined based on the total resource utilization of the 

host. Then the overloaded hosts are categorized into 

heavy, medium and light depending on two threshold 

values. VMs to be migrated are selected from the heavy 

and medium overloaded hosts with energy consumption 

higher than the available energy. The target VMs are 

selected using the ARDO algorithm based on the 

migration energy and resource utilization. Then each VM 

in the migration list is relocated to the selected target 

VM.    

3.2 Energy Consumption for VM migration 

The utilization rate Ri of the CPU in physical host i is 

defined as below: 

𝑅𝑖 =
𝑤𝑖
𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑤𝑖
𝑚𝑎𝑥     (1) 

where wi
workload is the overall workload on i and wi

max is 

the CPU capacity of full workload. 

Then, the energy consumption Ei of host i is represented 

by: 

𝐸𝑖 = 𝐸𝑖𝑑𝑙𝑒 + (𝐸𝑚𝑎𝑥 − 𝐸𝑖𝑑𝑙𝑒)𝑅𝑖(𝑡)  (2) 

where Eidle and Emax are the power consumption of the 

physical host in idle and full workloads, respectively. 

The value of Ri ranges between 0 and 1. 

The energy that physical host j consumes in period [t0, 

t1] is defined as below: 

𝐸𝐸𝑖 = ∫ 𝐸𝑖(𝑅𝑖(𝑡))𝑑𝑡
𝑡1
𝑡0

   

 (3) 

The energy consumption of VM migration is calculated 

using the physical host's and communications' energy 

consumptions. 

Let l(k) represent the volume of data that will be moved 

during the VM migration over communication k. The 

formula below can be used to determine how much 

energy is used to transport l(k) units of data. 

𝐸(𝑘) = 𝑒𝑘 ∙ 𝑙(𝑘)    (4) 
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where ek is explained as the amount of energy used for a 

unit of data transfer when using various communication 

methods during VM migration.  

Calculations for the total energy used by VM migration 

are shown below.  

𝐸𝑀 = ∑ 𝐸𝐸𝑖 +∑ 𝐸(𝑘)𝑘∈𝐾Γ𝐸𝑖∈𝐸Π
  (5) 

where EΠ indicates the group of physical hosts in the VM 

migration; KΓ indicates the group of different 

communications. 

3.3 Overloading Probability   

Let RP = {BW, MeM, CPU} be the resource pool on 

each host hj, where BW, MEM and CPU corresponds to 

the available bandwidth, memory and CPU capacities. 

Let CPj denote the resource capacity of hj , for each 

resource res  RP. Then the resource utilization of VMi 

on hj  is computed as 

jiij CPAURU /=     (6) 

where AUi indicates the actual resource utilization of 

VMi in hj. 

Then the total resource utilization of the host hj is 

computed as 




=
Vvm

jij

i

CPAURU /     (7) 

where V denotes the group of VMs installed on hj, . 

When the total resource utilization of a host becomes 

higher than its resource capacity, then the chances of 

overloading will be higher for that host.  The overloading 

probability of hj  , denoted as OPrj  is derived as 

OPrj =  Prres (RUj > CPj) , res RP  

    (8) 

where Prres is the probability distribution function of the 

utilization of various resources on a host. 

3.4 Threshold determination  

Let Thup and Thdown be the two thresholds for the upper 

and lower bounds of the overload probability, 

respectively. The hosts can be categorized as shown in 

Table 1, depending on these two thresholds: 

====================================================== 

 Category  Definition   Condition 

 ====================================================== 

 HO  Heavy  overloaded      OPrj > Thup 

 MO  Medium overloaded     Thdown   OPrj < Thup 

 LO  Lightly overloaded    OPrj < Thdown 

 ======================================================= 

   Table 1 Overloading Category of Hosts 

The classification of hosts as overloaded, usually loaded, 

and underloaded hosts occurs during the first stage of 

threshold determination in VM migration, which is 

covered in more detail in this section.  

3.5 Selection of Target VMs for Migration 

3.4.1 Deriving the fitness function 

A Fitness function is derived to select the target VMs for 

migration, based on the total VM migration energy 

consumption EM and the actual resource utilization AU. 

 F(VMi) = 1 / (w1.EMi + w2.AUi)  

   (9) 

Where w1,w2 and w3 are weighting constants in the range 

of (0,1). 

The objective is to select the VMs having maximum 

fitness function. For achieving this solution, we apply 

ARDO algorithm, as described in the following section. 

3.4.2 ARDO Algorithm 

Like other optimization algorithms, the Red Deer 

Optimization (RDO) [15] algorithm begins with initial 

populations RD. The best RD is the male RD and 

remaining ones are known as hinds. Based on the roaring 

mechanism, the RD is classified as leader and stags. The 

mathematical formulation of the ARDO is explained 

below: 

a. Initialization   

The process begins with popM  (population) and the 

best RD to maleM and remaining are hM . maleM and

hM are used for managing intensification and 

diversification characteristics.  

Roaring characteristics of male RDs: In this stage, male 

RDs tries to enhance the grace using roar. Based on the 
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solution space, neighbors of the male RD’s are identified 

and when the solution of neighbors are better than male 

RD, the previous solution is replaced. Each male RD 

vary the position and it is given as: 





+−−

+−+
=

5.0)))((

5.0)))((

321

321

bwhenLLbLLULbmale

bwhenLLbLLULbmale
male

o

o

n

        

(10) 

where nmale
 

and omale
 

are the updated and present 

positions of male RD. 
1b , 

2b and 3b  are the random 

numbers, UL and LL are the upper and lower limits of 

the search space. 

b. Selecting   percentage of the best male RD  

The male RD’s are divided into leaders and stags. Total 

of male leaders is represented as: 

 malelead MroundM = 
  

(11) 

where  is the initial value and the total of stags are 

computed by: 

leadmalestag MMM −=
  

(12) 

c. Collision between the leader and stags  

Let the leader and stags collide randomly. The fitness 

solution of collision process is given as: 

)))((
2

1 21 LLbLLULb
stagleader

N +−+
+

=

(13) 

)))((
2

2 21 LLbLLULb
stagleader

N +−−
+

=

(14) 

where 1N and 2N  are the new solution obtained 

during the collision. 

d. Generation of harems 

To generate the harems, the hinds between the leaders 

are divided and it is given as: 

)max( mmm uuU −=
    

   
(15) 

where mu is the energy of the 
thm leader and mU is a 

normalization power of the leader. 

Mate leader of harem: RD mate with each other and it is 

performed by the leader and  percentage of hinds in 

the harem is given as: 

)(. m

mate

m haremMroundharemM =    (16) 

where mharemM  is the total hinds of the 
thm  harem. 

Mate leader of harem: In the harem, total of hinds that 

mate with the leader is given as: 

)(. k

mate

k haremMroundharemM =     (17) 

where
mate

kharemM. is the hinds in the 
thk  harem. 

e. Mating of stag and nearby hind  

Here, every stag mate with the nearby one. For finding 

the nearby hind, the distance of stage and hinds in the 
thl  dimension is given as: 

( )( ) 2/12j

lll hindStagD −=            (18) 

where lD is the distance of stage and hinds in the 
thl  

dimension. 

The standard RDO has seven input parameters like a 

number of iterations, population, male, hind,  ,   

and  . These parameters make the tuning process as 

complex. To tune these parameters, a number of leaders 

must be set. Every leader makes a harem. The following 

expression is used for updating the percentage of leaders 

between the males. 









+=

iter

iter

max_
9.01.0          (19) 









+=

iter

iter

max_
5.05.0       (20) 

 −= 1               (21) 

In ADRO, only the parameters number of iteration, 

population, and male are considered. The pseudocode of 

ADRO is given in Algorithm 1. 

Algorithm 1: Pseudocode of ADRO  

Initialized the population of RD 

Initialize the parameters number of iteration, population, and male 

Compute fitness using Equation (2) 
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1=iter  

while )max_( iteriter   

for every male RD 

Position is updated when the obtained solution is better than the previous one 

end for 

Arrange the male and leader as   percent of every males and   is updated by Equation (12) 

for every male leader 

Collision among the leader and stag 

Update the leader and stag position 

end for 

Create harems 

for every male leader 

Randomly choose harem k  

if the fitness is less than harem k  

Male leader mate with the chosen hinds using Equation (13) of the harem 

Male leader mate with the chosen hinds using Equation (14) of the harem 

else 

Male leader mate with the chosen hinds using Equation (14) of the harem 

Male leader mate with the chosen hinds using Equation (13) of the harem 

end if 

end for 

for every stag 

Compute the distance of stage and hinds and choose the nearby hind 

end for 

Update the better solution is obtained  

1+= iteriter  

end while 

Return optimal solution 

 

3.6 VM Migration Algorithm 

The steps involved in ADRO based VM migration are summarized in the below algorithm. 

_______________________________________________________________ 

Notations   Definition 

========   ======== 

NoVMs   List of VMs to be migrated. 

ht    Target host 

EMj    total energy consumption of host hj. 
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AEj    Available battery energy of hj 

MEmax    Maximum threshold for migration energy 

bestVM   best VM returned from ARDO 

_____________________________________________________________ 

Algorithm-2: ADRO-EEVM 

_____________________________________________________________ 

Let NoVMs = NULL 

For each host hj 

 Estimate VMj using Eq.(5) 

 Estimate OPrj using Eq.(7) 

 If EMj > AEj or (hj = HO or hj=MO), then  

 For each vmi of hj 

  If (Ei(k)r)  < MEmax, then 

   Add vmi to {NoVMs} 

  Else 

                                       Skip vmi  

  End if 

 End for 

If (NoVMs > 0) 

           For each vmi of {NoVMs}   

  Select target host ht 

For each vmr of ht  

   Return bestVM using ARDO()  

   If vmr == bestVM, then 

    Relocate vmi to vmr 

   End if  

End For 

End For 

End if 

End For 

_______________________________________________________________________ 

In this algorithm, the total energy consumption and 

overload priority of each host are determined. If the host 

falls in the HO or MO category or the energy 

consumption becomes greater than its available battery 

energy, then it will be added in the list of migration 

VMs. If the migration energy of the added VM is more 

than the maximum level MEmax, then it will be removed 

from the list.  If multiple VMs are selected from the host, 

then the target VMs are selected from the target host ht, 

based on the best returned VM from ARDO algorithm. 

Then each VM in the migration list is relocated to the 

selected target VM. 

4. Experimental Results 

The proposed ADRO-EEVM algorithm is implemented 

in Cloudsim and compared with the Energy-aware 

dynamic VM consolidation (DVMC) [3] and Energy-

efficient and Quality-aware VM Consolidation (EQ-

VMC) [8] techniques. The NASA workload has been 

used as the emulator of Web users requests to the Access 
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Point (AP). This workload represents realistic load 

deviations over a period time. It comprises 100960 user 

requests sent to the Web servers during a day. 

 

4.1 Results  

In each experiment, the number of tasks is varied from 

10 to 60 and the performance is evaluated in terms of 

power consumption, number of VM migrations, CPU 

utilization (%) and response delay. 

 

No of 

Tasks 

ADRO-

EEVM 

(KW/h) 

DVMC 

(KW/h) 

EQ-

VMC 

(KW/h) 

10 0.75 0.81 0.84 

20 0.72 0.77 0.81 

30 0.7 0.75 0.8 

40 0.67 0.73 0.78 

50 0.65 0.7 0.75 

60 0.64 0.68 0.73 

Table 2: Results of Power Consumption 

 

 
Fig 1 Number of tasks Vs Power Consumption 

Table 2 and Figure 1 show the results of power 

consumption for varied tasks. From figure 1, we can 

observe that the power consumption of our proposed 

ADRO-EEVM is 7% lesser than DVMC and 12% lesser 

than EQ-VMC. 

 

No of 

Tasks 

ADRO-

EEVM 

DVMC EQ-

VMC 

10 2400 3345 3785 

20 2210 3181 3554 

30 1980 2810 3241 

40 1750 2630 2921 

50 1630 2475 2752 

60 1450 2350 2545 

Table 3: Results of Number of VM Migrations 
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  Fig 2: Number of Tasks Vs VM Migration 

Table 3 and Figure 2 show the results of number of VM 

migrations for varied tasks. From figure 2, we can 

observe that the number of VM Migration of our 

proposed ADRO-EEVM is 32% lesser than DVMC and 

40% lesser than EQ-VMC. 

 

No of 

Tasks 

ADRO-

EEVM 

(%) 

DVMC 

9%) 

EQ-

VMC 

(%) 

10 86.55 82.28 75.65 

20 88.33 83.73 77.48 

30 92.52 85.36 81.98 

40 93.11 87.66 83.65 

50 95.50 90.11 86.84 

60 97.00 92.25 88.76 

  Table 4: Results of CPU Utilization 

 

 
  Fig 3: Number of Tasks Vs CPU Utilization 

Table 4 and Figure 3 show the results of CPU utilization for varied tasks. From figure 3, we can observe that the CPU 

Utilization of our proposed ADRO-EEVM is 6% lesser than DVMC and 11% lesser than EQ-VMC. 
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No of 

Tasks 

ADRO-

EEVM 

(sec) 

DVMC 

(sec) 

EQ-

VMC 

(sec) 

10 1.25 2.58 3.12 

20 1.78 2.94 3.45 

30 2.25 3.65 4.12 

40 2.66 4.15 4.95 

50 4.34 5.25 5.01 

60 4.92 5.82 5.52 

Table 5: Results of Response Delay 

 

 
  Fig 4: Number of Tasks Vs Response Delay 

Table 5 and Figure 4 show the results of response delay 

for varied tasks. From figure 4, we can observe that the 

response delay of our proposed ADRO-EEVM is 33% 

lesser than DVMC and 37% lesser than EQ-VMC. 

5. Conclusion 

In this paper, ARDO-EEM technique for cloud 

computing is proposed. In this work, the overloading 

probability of each host is determined based on the total 

resource utilization of the host. Then the overloaded 

hosts are categorized into heavy, medium and light 

depending on two threshold values. VMs to be migrated 

are selected from the heavy and medium overloaded 

hosts with energy consumption higher than the available 

energy. The target VMs are selected using the ARDO 

algorithm based on the migration energy and resource 

utilization. Then each VM in the migration list is 

relocated to the selected target VM.   Experimental 

results show that the proposed ARDO-EEM attains 

increased resource utilization with lesser power 

consumption and response delay. 
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