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Abstract: In this study, an innovative method is introduced for the early identification of Oral Squamous Cell Carcinoma (OSCC) by 

employing deep learning techniques to analyze histopathological samples. Four prominent neural network architectures, ResNet-18, 

AlexNet, DenseNet-169, and DenseNet-201, are utilized to scrutinize biopsy specimens for cancerous anomalies. The approach 

incorporates Cyclic Learning Rate (CLR) for dynamic adaptation of learning rates during the model's training. ResNet-18 benefits from 

skip connections to enhance gradient flow, while AlexNet and DenseNet architectures significantly contribute to precise image 

categorization. DenseNet's distinctive feature reuse mechanism effectively mitigates the vanishing gradient issue. The research underscores 

the potential of deep learning in enhancing early OSCC detection, offering a promising avenue for more efficient cancer screening and 

treatment. 
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1. Introduction  

Oral Squamous Cell Carcinoma, commonly abbreviated as 

OSCC, is a form of cancer that initiates in the squamous 

cells—a type of flat, thin cells that line the oral cavity. This 

includes the lips, tongue, gums, inside of the cheeks, floor 

of the mouth, and the hard palate, which is the roof of the 

mouth. Notably, squamous cell carcinoma ranks as the most 

prevalent type of cancer within the oral cavity, accounting 

for a significant portion of all oral cancer cases [1]. 

Importance of Oral Squamous Cell Carcinoma as Oral 

Cancer: 

• High Prevalence and Impact: OSCC holds 

paramount significance in the domain of oral cancer 

due to its widespread occurrence. It plays a substantial 

role in the overall burden of oral cancer on a global 

scale [1]. 

• Health Ramifications: Oral cancer, including OSCC, 

carries profound health consequences for individuals. 

It can lead to physical pain and significantly impair 

essential functions such as speaking, eating, and 

swallowing, often presenting life-threatening risks. 

• Early Detection and Prognosis: The timely 

identification of OSCC is of critical importance. Early 

diagnosis paves the way for more effective treatment 

options and markedly improves the chances of a 

positive patient outcome. Conversely, late-stage 

diagnosis results in advanced disease, higher mortality 

rates, and complex, less successful treatments [1]. 

• Functional Impairments: OSCC frequently impairs 

crucial functions of the oral cavity, including speech, 

swallowing, and chewing. These functional 

impairments can significantly diminish an individual's 

quality of life. 

• Psychological and Aesthetic Impact: The 

disfigurement that may arise from OSCC surgery or 

treatment can have profound psychological and 

aesthetic repercussions, affecting an individual's self-

esteem and emotional well-being [1]. 

Problem Gravity in India: 

• Elevated Prevalence in India: India experiences one 

of the highest rates of OSCC on a global scale. This is 

primarily attributed to prevalent habits such as tobacco 

and betel nut consumption, coupled with suboptimal 

oral hygiene practices [2]. 

• Late-Stage Diagnosis: In India, OSCC is frequently 

diagnosed at an advanced stage, which is a significant 

concern. Late diagnosis leads to less favorable 

treatment outcomes, increased suffering, and a 

heightened risk of mortality. 

• Pervasive Risk Factors: Well-established risk factors 

in India encompass the use of tobacco in both smoking 

and smokeless forms, as well as excessive alcohol 

consumption. Additionally, the common practice of 

chewing areca nut, often wrapped in betel quid, 

amplifies the risk of OSCC [2]. 
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• Limited Healthcare Access: Rural and underserved 

regions in India often lack adequate access to early 

screening and quality healthcare services, 

compounding the OSCC problem. 

• Socioeconomic Impact: Treating OSCC can pose 

significant financial burdens for affected individuals 

and their families. In a country where a substantial 

portion of the population lacks sufficient health 

insurance coverage, the socioeconomic impact of 

OSCC is notable. 

Overview of Causes: 

• Tobacco Usage: Both smoking, as seen with cigarettes 

and bidis, and the use of smokeless tobacco products 

contribute significantly to OSCC. These products 

contain carcinogens capable of inducing oral cancer 

[3]. 

• Alcohol Consumption: Prolonged and heavy alcohol 

consumption, particularly when combined with 

tobacco use, stands as a prominent risk factor for 

OSCC. Alcohol can potentiate the carcinogenic effects 

of other risk factors. 

• Areca Nut and Betel Quid: Chewing areca nut, 

frequently paired with betel quid, is a widespread 

practice in India and is linked to an increased risk of 

OSCC. These substances carry carcinogenic potential 

[3]. 

• Poor Oral Hygiene: Neglecting oral hygiene and 

enduring chronic irritation, often arising from ill-fitting 

dentures or dental abnormalities, can contribute to the 

development of OSCC. Inflammation and irritation 

within the oral cavity elevate the risk. 

• Human Papillomavirus (HPV): In certain instances, 

infection with specific HPV strains can heighten the 

risk of OSCC, especially in the oropharyngeal region. 

HPV is a sexually transmitted virus [3]. 

• Dietary Factors: A diet deficient in fruits and 

vegetables and lacking essential nutrients can increase 

the risk of OSCC. Such dietary factors may fail to 

provide the necessary protective antioxidants and 

nutrients to prevent the development of cancer. 

Addressing the OSCC problem in India necessitates a strong 

emphasis on prevention and early detection. Public health 

campaigns, awareness initiatives, and improved access to 

healthcare services play pivotal roles in reducing the 

prevalence and impact of this cancer [3]. 

2. Cancer and Histopathology 

Diagnosing and managing oral cancer, especially oral 

squamous cell carcinoma (OSCC), holds utmost significance 

in India due to its widespread prevalence and severe health 

consequences. OSCC accounts for a significant proportion of 

all cancer cases in the country, primarily attributed to habits 

like tobacco and betel nut consumption. Unfortunately, many 

instances go unnoticed until they have progressed to 

advanced stages, resulting in low survival rates. To enhance 

diagnosis and mitigate observer bias, computerized systems 

have been explored to aid pathologists in the detection and 

assessment of malignancies. Early identification and accurate 

staging of oral cancer are imperative for effective treatment 

and better outcomes, as the disease's severity and progression 

vary based on factors such as tumor location, size etc.. [4]. 

 

Fig 1. Squamous cell Caricoma types [Mentel, S. et al. 

2021] 

In clinical practice, the examination of afflicted human tissue 

necessitates the acquisition of patient tissue samples 

(biopsies), which are then forwarded to pathology labs for 

analysis. Typically, these samples are stained with 

Hematoxylin and Eosin (H&E) staining to emphasize tissue 

structures, and pathologists scrutinize the stained tissue 

under a microscope. Oral cancer, particularly oral squamous 

cell carcinoma, poses a substantial healthcare challenge in 

India, primarily due to the prevalence of tobacco use, leading 

to a high incidence rate and late-stage diagnosis. Computer-

assisted techniques offer a promising solution to enhance the 

precision and efficiency of diagnosis, enabling pathologists 

to focus on critical cases and potentially improving the 

outcomes of this prevalent and intricate health concern [5]. 

3. Literature Survey 

In a study by Warin et al. (2022), DenseNet-169 emerged as 

a standout performer, achieving impressive AUC scores of 

1.00 for OSCC and 0.98 for OPMDs. This suggests the 

potential for CNN models to significantly enhance the early 

detection of oral cancer, outperforming general practitioners 

[6]. 

Mentel et al. (2021) delved into the use of breath analysis 

for OSCC detection. By analyzing volatile organic 

compounds in breath samples from OSCC patients, they 
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identified unique compound signatures distinct from those 

of healthy individuals. Employing machine learning 

techniques, they achieved an average accuracy of 86-90% in 

distinguishing breath samples between healthy individuals 

and patients. While this study underscores the promise of 

combining breath analysis and machine learning for OSCC 

identification, it emphasizes the need for further evaluation 

and optimization of this approach [7]. 

Alabi et al. (2021) explored the application of deep machine 

learning for early OSCC detection. Their work showcased 

advancements in medical imaging analysis for early oral 

cancer detection, covering various deep learning 

applications, including detection, classification, 

segmentation, and synthesis, particularly within oral 

squamous cell carcinoma. This research underscores the 

critical role of deep learning in advancing precision 

medicine for OSCC [8]. 

In their study, Musulin et al. (2021) focused on the use of 

artificial intelligence-assisted technologies to analyze 

histopathology images of OSCC. They compared various 

deep learning methods to develop an AI-based model for the 

multiclass grading of OSCC. The goal was to achieve more 

objective and accurate results by harnessing AI's capabilities 

in analyzing the intricate textures and structures of oral 

cancer tissues [9]. 

Jubair et al. (2022) studied model based on a small CNN 

with EfficientNet-B0 as a lightweight transfer learning 

model, achieved an accuracy of 85.0%, specificity of 

“84.5%, sensitivity of 86.7%, and an AUC of 0.928”. This 

research highlights the potential of deep CNNs for 

affordable embedded vision devices in oral cancer 

diagnosis, particularly in resource-constrained settings, 

demonstrating the pivotal role of AI in enhancing screening 

quality and accessibility for early detection [10]. 

In another study by Rahman et al. (2022), the seriousness of 

oral cancer was addressed as a widespread and life-

threatening disease with a high mortality rate, being the most 

common cancer globally and causing over 300,335 deaths 

annually. The tumor can develop in various areas, including 

the neck, oral glands, face, and mouth. While biopsy is a 

common method for oral cancer detection, the microscopic 

examination of tissue samples often falls short in accurately 

identifying cancerous cells, leading to human errors and 

mistakes [11].  

4. Proposed Methodology 

“Proposed work methodolgy can be expreseed in the 

mentioned steps,  

Step 1: Select a Pre-trained Model: 

• Create a list of pre-trained models suitable for your task 

(e.g., “VGG-16, VGG-19, Inception V3, Xception, 

ResNet-50”). In CNN we are using these applied 

model. 

• Choose the pre-trained model that closely matches your 

task and dataset. 

Step 2: Create the Base Model: 

• Instantiate the selected pre-trained model as the base 

model. 

• Download the network weights if available or initialize 

the network architecture from scratch. 

• If the final output layer of the base model doesn't match 

your use case, remove it and modify it accordingly. 

Step 3: Freeze Layers: 

• Freeze the initial layers of the base model to preserve 

the learned basic features. 

• By freezing these layers, you avoid retraining them and 

save time and resources. 

Step 4: Add Trainable Layers: 

• Add additional layers on top of the base model's feature 

extraction layers. 

• These additional layers will be responsible for 

predicting the specialized tasks of your model. 

• Typically, these layers will constitute the final output 

layers of your model. 

Step 5: Train the New Layers with Cyclic Learning: 

• Define a cyclic learning rate schedule. 

• During each training iteration, adjust the learning rate 

according to the cyclic pattern. 

• You can use techniques like triangular learning rate 

policy, where the learning rate cyclically varies 

between a minimum and maximum value. 

Step 6: Fine-tune the Model with Cyclic Learning: 

• Unfreeze some part of the base model. 

• Use a cyclic learning rate schedule during fine-tuning 

as well. 

• This helps to find a good balance between exploring the 

fine-tuning space and avoiding overfitting. 

Cyclic learning allows the learning rate to periodically 

increase and decrease, potentially helping the model escape 

from local minima and converge faster. It can enhance the 

model's performance by effectively exploring the training 

landscape. 

The following algorithm can be depicted in the following 

flow diagram mentioned in the Figure. 2” 
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Fig 2. Proposed Approach Flow Diagram 

5. Result Analysis 

5.1 DenseNet-169 Model  

To put our methodology into action, we kick things off with 

the DenseNet-169 architecture. This particular flavor of the 

DenseNet Convolutional Neural Network (CNN) is custom-

tailored for image classification tasks. The standout 

characteristics of DenseNet-169 encompass dense blocks 

that facilitate efficient feature sharing, transition blocks for 

downsizing and regulating model dimensions, bottleneck 

layers to minimize computational demands, a growth rate 

parameter that influences model intricacy, and a concluding 

classification phase involving global average pooling and a 

fully connected layer with softmax activation. 

DenseNet-169 stands as a potent CNN model renowned for 

its dense connectivity, bottleneck layers, and growth rate, 

which render it highly adept at feature propagation and 

robust feature representation. It strikes a harmonious 

balance between model complexity and performance when 

compared to the original DenseNet-121. DenseNet-169 has 

proven its effectiveness across diverse domains, 

encompassing applications like medical image 

classification, natural scene analysis, and object recognition. 

First the default model is used with result as follows,  

Table 1. Results of Default Model 

Epoch Train_loss Accuracy Time 

0 1.463684 #na# 03:01 

1 1.419227 #na# 02:56 

2 1.391226 #na# 03:01 

3 1.380256 #na# 03:05 

4 1.363470 #na# 03:06 

5 1.280348 #na# 02:58 

6 1.190164 #na# 02:50 

7 1.108968 #na# 02:50 

8 1.107700 #na# 02:56 

9 1.181183 #na# 02:58 

10 2.879933 #na# 02:53 

 

The accuracy attained at this level is 25%, and we see that 

sudden jerk is observed, after point le-01. 

 

Fig 3. Graph of Default Model [Implementation Results] 

Now, taken up the slice of normal curvature till (le-2) and 

use the cyclic learning approach to improve the accuracy. 

Table 2. Accuracy Table for First Slice  

Epoch Train_Loss Valid_Loss Accuracy Time 

0 1.227097 0.727943 0.611511 03:41 

1 1.055499 0.645386 0.762590 03:35 

2 0.931398 0.861221 0.697842 03:39 

3 0.817239 0.615819 0.755396 03:39 

4 0.710759 0.387958 0.827338 03:38 

5 0.631542 0.422259 0.827338 03:38 

6 0.573260 0.384882 0.841727 03:33 

7 0.521692 0.398839 0.805755 03:38 

8 0.479076 0.307538 0.877698 03:39 

9 0.444367 0.422220 0.870504 03:38 

10 0.401705 0.288178 0.920863 03:38 

11 0.361546 0.291618 0.906475 03:36 

Oral Cancer Data 
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Layer 
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12 0.329101 0.288896 0.899281 03:36 

13 0.302176 0.335489 0.877698 03:40 

14 0.287593 0.343659 0.877698 03:32 

Unfreeze some part of the base model and use a cyclic 

learning rate schedule during fine-tuning as well 

 

Fig 4. Graph of First Slice [Implementation Results] 

After repeating this process for various slices, we get the 

following curvature graphs 

 

Fig 5. Curvature Graphs [Implementation Results] 

Now , will apply the confusion matrix. Transfer learning 

involves utilizing pre-trained representations and 

knowledge from a source task (typically a large, diverse 

dataset) to enhance the performance. 

The matrix, serving as a table, facilitates the evaluation of 

the model's predictive precision and its capability to 

accurately classify instances across different classes. It 

assists in comprehending the model's mistakes, 

encompassing “false positives, false negatives, true 

positives, and true negatives”. In transfer learning, the 

confusion matrix assists in measuring the model's 

generalization to the target task by leveraging knowledge 

transferred from the source task. 

The following insights are provided by the confusion matrix 

in the context of transfer learning: 

• Evaluation of Classification Performance: “Metrics 

like accuracy, precision, recall (sensitivity), 

specificity, and F1-score are calculated using the 

confusion matrix to evaluate the model's 

performance on the target task”. 

• Detection of Overfitting or Underfitting: Through 

an examination of the confusion matrix, analysts 

can pinpoint whether the model is experiencing 

overfitting (memorizing the source data but 

struggling to generalize) or underfitting 

(ineffectively capturing data patterns) with respect 

to the target task. 

• Identification of Class Imbalance: The confusion 

matrix helps detect if the model is biased towards 

majority classes and neglecting minority classes, 

which is common in real-world datasets. 

• Adjustment of Decision Threshold: In certain 

cases, adjusting the decision threshold based on the 

confusion matrix can be important, especially 

when balancing precision and recall in the target 

task. 

Analyzing the confusion matrix allows researchers and 

practitioners to gain valuable insights into the model's 

performance and make necessary adjustments to improve its 

effectiveness on the target task. This understanding of 

strengths and weaknesses in the transfer learning approach 

guides the fine-tuning process, leading to better results in 

practical applications. 

 

Fig 6. Confusion Matrix [Implementation Results] 

After the maximum accuracy that can be achieved is shown 

via table and graphs, 

Table 3. After Confusion Matrix 

Epoch Train_loss Accuracy Time 

0 0.036718 #na# 03:21 

1 0.028944 #na# 03:27 

2 0.029874 #na# 03:21 

3 0.028408 #na# 03:26 

4 0.025509 #na# 03:21 

5 0.026491 #na# 03:27 
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Fig 7. Final Graph [Implementation Results] 

Table 4. FINAL RESULTS 

Metric Value 

Accuracy 95% 

Sensitivity 96% 

Specificity 92% 

True Positives (TP) 98 

False Positives (FP) 3 

False Negatives 

(FN) 

4 

Precision 97.98% 

F1 Score 0.97 

 

• “Accuracy: Overall correctness of predictions. 

Accuracy = 
(TP + TN) 

(TP + TN + FP + FN)
 

• Sensitivity (True Positive Rate): Correct 

identification of actual positive cases. 

True Positive Rate = 
TP

(TP + FN)
 

• Specificity (True Negative Rate): Correct 

identification of actual negative cases. 

True Negative Rate = 
TN

(TN + FP)
 

• Precision: Proportion of true positive predictions 

among positive predictions. 

Precision = 
TP

(TP + FP)
 

• F1 Score: Harmonic mean of precision and 

sensitivity. 

F1 Score = 
2 ∗ TP 

(2 ∗ TP + FP + FN)
” 

“True Positives (TP) are correct positive predictions, False 

Positives (FP) are incorrect positive predictions, and False 

Negatives (FN) are incorrect negative predictions”. These 

metrics collectively assess the model's performance in 

binary classification tasks. 

Based on the provided information and the calculated 

values, your deep learning model appears to have a good 

balance between precision and sensitivity, as indicated by 

the high F1 score of 0.97. The accuracy, sensitivity, and 

specificity values also show that the model is performing 

well overall. However, the context in which these metrics 

are used is important – factors like class distribution and the 

specific problem being tackled can influence the 

interpretation of these results. 

5.2 AlexNet Model  

AlexNet stands as a significant deep convolutional neural 

network (CNN) model that played a pivotal role in 

advancing the fields of deep learning and image 

classification. Developed by Alex Krizhevsky, Ilya 

Sutskever, and Geoffrey Hinton, this model achieved a 

remarkable victory in the 2012 ImageNet Large Scale Visual 

Recognition Challenge, surpassing traditional computer 

vision methods of that era. 

Regarding the data used with AlexNet, it's important to note 

that this deep learning architecture is designed for image 

processing and classification. The datasets utilized for 

training and evaluating the model are typically prepared 

separately. Researchers and developers undertake the task of 

selecting and curating datasets tailored to their specific 

image classification objectives, which could encompass 

tasks related to oral cancer detection, such as the 

identification of Oral Squamous Cell Carcinoma (OSCC). 

In the context of oral cancer classification, researchers and 

healthcare professionals would assemble or gather a dataset 

comprising a diverse range of images featuring healthy oral 

tissues, potentially malignant oral disorders, and tissues 

afflicted with OSCC. These images are then employed to 

train and assess the performance of the AlexNet model in 

the precise task of classifying and detecting OSCC. The 

selection, quality, and quantity of images within the dataset 

are pivotal factors influencing the model's overall 

effectiveness. Researchers commonly utilize publicly 

available medical image datasets or generate their own data 

through medical imaging procedures to create a dataset 

suitable for training deep learning models like AlexNet, 

particularly for tasks related to oral cancer. 
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Fig 8: Confusion Matrix for AlexNet Model 

• True Positives (TP): In our confusion matrix, there are 

94 true positives. 

• True Negatives (TN): In our confusion matrix, there 

are 27 true negatives. 

• False Positives (FP): In our confusion matrix, there are 

10 false positives. 

• False Negatives (FN): In our confusion matrix, there 

are 8 false negatives. 

So, our confusion matrix can be broken down as follows: 

True Positives (TP): 94 

True Negatives (TN): 27 

False Positives (FP): 10 

False Negatives (FN): 8 

In our case: 

Accuracy = (94 + 27) / (94 + 27 + 10 + 8) = 121 / 139 ≈ 

0.8705. 

 

 

Fig 9. Final Graph AlexNet Model [Implementation 

Results] 

5.3 DenseNet 201 Model  

DenseNet-201, an extension of the original DenseNet 

architecture detailed in the paper "Densely Connected 

Convolutional Networks" by Huang et al., is a deep neural 

network design tailored for image classification tasks. This 

network is characterized by its impressive 201 layers, from 

which it derives its name, "201." 

Key Features and Concepts of DenseNet-201: 

• Densely Connected Layers: Unlike traditional 

Convolutional Neural Networks (CNNs), where each 

layer primarily relies on the preceding layer's output, 

DenseNet leverages dense connectivity. In this 

approach, every layer receives input from all previous 

layers. This fosters feature information sharing across 

the network, mitigates the vanishing gradient problem, 

and encourages efficient feature reuse. 

• Bottleneck Layers: DenseNet-201 incorporates 

bottleneck layers, employing 1x1 convolutions to 

reduce feature map dimensionality before applying 

3x3 convolutions. This design optimizes memory 

usage and computational requirements while 

sustaining or enhancing performance. 

• Growth Rate: The concept of a "growth rate" is 

introduced in DenseNet, determining the number of 

feature maps each layer contributes to subsequent 

layers. This enables the management of the trade-off 

between model capacity and computational efficiency. 

• Transition Layers: To downsample feature maps and 

reduce spatial dimensions, DenseNet employs 

transition layers, comprising a combination of 1x1 

convolutions and average pooling. These layers 

streamline computation without sacrificing network 

effectiveness. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 689–699 |  696 

• Batch Normalization: Like many contemporary neural 

network architectures, DenseNet-201 utilizes batch 

normalization to expedite training and enhance model 

generalization. 

• High Efficiency: DenseNet architectures are renowned 

for their efficient parameter usage, achieving 

competitive accuracy with significantly fewer 

parameters than traditional networks. 

Its densely connected structure and bottleneck layers equip 

it to tackle complex visual patterns and large-scale datasets 

effectively. The result achieved are as follows ,  

• True Positives (TP): 0.935252 (the accuracy for epoch 

94) 

• True Negatives (TN): 0.935252 (the accuracy for 

epoch 94) 

• False Positives (FP): 1.0 - 0.935252 = 0.064748 (1 - 

the accuracy for epoch 94) 

• False Negatives (FN): 1.0 - 0.935252 = 0.064748 (1 - 

the accuracy for epoch 94) 

Now, we can calculate the accuracy: 

• Accuracy = (TP + TN) / (TP + TN + FP + FN) 

• Accuracy = (0.935252 + 0.935252) / (0.935252 + 

0.935252 + 0.064748 + 0.064748) 

• Accuracy = 1.870504 / 1.999 (rounded to three decimal 

places) 

• Accuracy ≈ 0.935 

 

Fig 10. Final Graph DenseNet 201 Model 

[Implementation Results] 

5.4 ResNet Model  

ResNet, short for "Residual Network," is a widely utilized 

architecture for tasks such as image classification and other 

computer vision applications. Among the ResNet family, 

ResNet-18 is a notable variant. Here's a succinct overview 

of ResNet-18: 

ResNet-18 Design: 

• Convolutional Layers: The ResNet-18 architecture 

initiates with a sole convolutional layer followed 

by a max-pooling layer, responsible for feature 

extraction from the input image. 

• Residual Blocks: The core component of ResNet is 

the residual block, and ResNet-18 incorporates 

several of these blocks stacked consecutively. Each 

residual block comprises two or more 

convolutional layers. 

• Skip Connections: A fundamental innovation in 

ResNet is the use of skip or shortcut connections, 

which bypass one or more layers.  

• Global Average Pooling (GAP): Instead of 

employing fully connected layers at the network's 

conclusion, ResNet-18 utilizes global average 

pooling.  

• Output Layer: The final layer in ResNet-18 is a 

fully connected layer with neurons matching the 

number of output classes. It generates class 

probabilities for image classification. 

ResNet-18 is renowned for its effectiveness in training deep 

neural networks and has delivered outstanding performance 

in diverse image classification benchmarks, including 

ImageNet. 

It's essential to acknowledge that ResNet-18 is merely one 

of the ResNet variations. Larger versions like ResNet-34, 

ResNet-50, ResNet-101, and ResNet-152 exist, featuring 

additional layers. The numerical identifier in the model 

name (e.g., "18" in ResNet-18) denotes the network's layer 

count. These models are widely adopted in the realm of deep 

learning for various computer vision tasks. 

 

Fig 11. Final Graph RenseNet Model [Implementation 

Results] 

To determine the accuracy from the given data, simply 

access the "accuracy" column directly, as it provides 

accuracy values for each epoch within the dataset. Here's a 

breakdown of the accuracy for each epoch: 

1. Epoch 0: Accuracy = 0.690647 (69.06%) 
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2. Epoch 1: Accuracy = 0.647482 (64.75%) 

3. Epoch 2: Accuracy = 0.820144 (82.01%) 

4. Epoch 3: Accuracy = 0.697842 (69.78%) 

5. Epoch 4: Accuracy = 0.791367 (79.14%) 

6. Epoch 5: Accuracy = 0.755396 (75.54%) 

7. Epoch 6: Accuracy = 0.784173 (78.42%) 

8. Epoch 7: Accuracy = 0.784173 (78.42%) 

9. Epoch 8: Accuracy = 0.877698 (87.77%) 

10. Epoch 9: Accuracy = 0.877698 (87.77%) 

These values represent the model's accuracy at each training 

epoch, indicating the proportion of correct predictions. 

To compute the overall accuracy using the provided training 

statistics, we can approximate it by considering the weighted 

average of accuracy across all epochs. Follow these steps to 

calculate it: 

1. Calculate the sum of the products of each epoch's 

accuracy and the time taken for that epoch. 

2. Calculate the total time across all epochs. 

3. Divide the result from step 1 by the result from step 

2. 

Overall Accuracy≈0.759426 

Table 5. Models Comparison 

Modal Name Accuracy 

AlexNet 87.05 

DenseNet 169 95 

DenseNet 201 93.5 

ResNet 75.94 

 

 

Fig 12. Model Comparison Graph [Implementation 

Results] 

6. Conclusion and Future Work 

A. Conclusion  

In this research, we presented a novel method to improve the 

early detection of Oral Squamous Cell Carcinoma (OSCC) 

by utilizing deep learning techniques for the analysis of 

histopathological samples. We employed four robust neural 

network architectures—ResNet-18, AlexNet, DenseNet-

169, and DenseNet-201—to meticulously examine biopsy 

specimens for signs of cancerous anomalies. We selected 

these architectures for their proficiency in image 

classification tasks and their potential to improve the 

accuracy of OSCC diagnosis. The introduction of the Cyclic 

Learning Rate (CLR) optimization strategy enabled 

dynamic adjustment of learning rates during model training. 

This technique played a crucial role in refining the models' 

convergence and, consequently, their diagnostic 

performance. Importantly, it allowed us to determine 

optimal learning rate boundaries, significantly enhancing 

the training efficiency of deep learning models. Our results 

underscore the distinct advantages of each architecture. 

AlexNet demonstrated an impressive accuracy of 87.05%, 

showcasing its effectiveness in image classification tasks. 

DenseNet-169 and DenseNet-201 outperformed AlexNet, 

achieving remarkable accuracies of 95% and 93.5%, 

respectively. The dense connectivity and feature reuse 

mechanisms inherent in DenseNet architectures effectively 

mitigated the vanishing gradient problem, highlighting their 

potential for robust diagnostic applications. However, while 

ResNet-18 yielded promising results, it achieved an 

accuracy of 75.94%. This research emphasizes the 

promising potential of deep learning in early OSCC 

detection, paving the way for more efficient and accurate 

cancer screening and treatment. The use of advanced neural 

network architectures and CLR optimization techniques 

enhances our ability to identify subtle cancerous anomalies 

in histopathological samples, enabling earlier interventions 

and improved patient outcomes. Moving forward, it is 

crucial to further refine these models, expand the dataset, 

and validate their clinical applicability through collaboration 

with medical experts. The integration of deep learning into 

OSCC diagnosis represents a significant advancement in 

healthcare and contributes to our understanding of cancer 

pathology. We anticipate that future developments in deep 

learning techniques and computational resources will 

continue to drive progress in the early detection of OSCC 

and other medical conditions, ultimately leading to more 

effective and timely healthcare interventions. 

Some Limitations of our Proposed approach are as follows: 

• Dataset Bias & Mismatch: Transfer learning depends 

on the similarity between the source and target 

domains, which can result in reduced performance 

when there is a mismatch between the datasets. 

• Overfitting & Generalization: Adapting a model 

through transfer learning can make it prone to 

overfitting in the new domain, making it difficult to 

find the right balance between learned features and 

source domain characteristics. 
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• Catastrophic Forgetting: Retraining models for new 

tasks in transfer learning can sometimes cause them to 

lose proficiency in their original tasks due to 

catastrophic forgetting. This requires finding a balance 

between preserving existing knowledge and acquiring 

new skills. 

• Ethical & Privacy Concerns: Transfer learning has 

raised ethical concerns about the origin of source data 

and fairness, potentially leading to biases or privacy 

breaches. This underscores the importance of ethical 

training and privacy compliance. 

B. Future Work 

The research on utilizing deep learning techniques for early 

Oral Squamous Cell Carcinoma (OSCC) identification 

presents numerous exciting opportunities and avenues for 

future exploration. Collaborating with healthcare 

institutions and professionals is vital to seamlessly integrate 

these deep learning solutions into clinical workflows. 

Ensuring adherence to healthcare standards and regulations 

is imperative for real-world applications. Combining 

histopathological analysis with other medical imaging 

modalities, such as radiological and molecular data, can 

offer a more comprehensive understanding of OSCC. Multi-

modal deep learning approaches could enhance diagnostic 

accuracy. The future of deep learning in OSCC diagnosis is 

undeniably promising, with the potential to revolutionize the 

field of oral cancer management. As technology advances 

and more data becomes available, the application of deep 

learning will play an increasingly pivotal role in early 

detection, ultimately improving patient outcomes and 

healthcare practices. 
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