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Abstract: Unlike natural image quality assessment approaches, satellite stereo images have various quality criteria in different application 

contexts, making it difficult to develop an appropriate objective evaluation model. The area of perceptual quality evaluation has evolved 

significantly and continues to expand. In the low-level computer vision field, no reference image quality assessment (NRIQA) is critical. 

Deep neural networks are gaining popularity for NRIQA applications. Existing deep learning-based systems are generally supervised and 

depend on an unrealistically huge number of labelled training data. Model-based techniques are unsupervised and flexible, but they depend 

on handmade priors. The majority of extant No reference image quality assessment (NR-IQA) models were designed for synthetically 

distorted images, however they perform badly on in-the-wild images, which are frequently used in a variety of practical applications. Blind 

Image Quality Evaluation Metric for Multi-spectral and Multi-modal Image Fusion Techniques is developed in this research. This No 

reference quality measure is examined and compared to numerous well-known cutting-edge methods and mean opinion score. The proposed 

quality evaluation regression models successfully predict quality score. When compared to the MOS score, archives score with 96% 

similarity. The suggested approach has a Pearson correlation value of 0.96 and a Spearman's rank correlation coefficient of 0.83.To use the 

abundant self-supervisory information and decrease the model's uncertainty, we impose self-consistency between the outputs of our quality 

assessment model for each image and its sparse code book. Our results demonstrate that our suggested technique outperforms other methods 

on Fused image datasets with distorted images. 
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1. Introduction 

In recent years, remote sensing satellite technology has been 

extensively applied in a variety of industries, including land 

resources, marine resources, agriculture, forestry, water 

conservation, seismic monitoring, and the environment, 

resulting in huge economic and social advantages.  Unlike 

natural image quality assessment approaches, satellite stereo 

images have various quality criteria in different application 

contexts, making it difficult to develop an appropriate 

objective evaluation model. To be able to accurately and 

reliably predict the perceived image quality without having 

access to the reference image is an essential capability for a 

number of computer vision applications, as well as for the 

social media and streaming media industries. Image Quality 

Assessment (IQA) is concerned with the difficulty of 

measuring and forecasting human judgements of image 

quality. IQA was developed by experts in the field. 

Determining the quality of damaged images without having 

any knowledge of pristine reference images or the kind of 

aberrations that are present is the focus of the No-Reference 

(NR) or blind International Quality Assurance (IQA) 

technique. In order to generate robust and trustworthy 

quality forecasts that align well with subjective evaluations, 

NR-IQA models are tailored to meet the requirements of the 

design. Full reference (FR) [1]-[3], reduced reference (RR) 

[4]-[6], and no reference (NR)/blind [7]-[9] are the three 

categories that are used to classify international quality 

assurance (IQA) systems. These categories are determined 

by the availability of fused images. It is possible to employ 

FR-IQA methods in order to directly compare the distorted 

image to its fused image when fused images are available. 

For the purpose of calculating the visual quality score, just 

a piece of the fused image has to be calculated when using 

RR-IQA techniques. When it comes to practical 

applications, fused images are often unavailable; thus, NR-

IQA measurements should be used instead. NR-IQA 

procedures do not always perform as well as FR measures. 

This is due to the fact that the visual quality score is assessed 

only via the use of distorted images, without the utilisation 

of reference images. The BIQA technique, on the other 

hand, may be used for a wider range of applications, 

including but not limited to image and video retargeting, 

streaming media, and computer graphics. The requirements 

for computation are often rather low since there is no need 

to manage references. The consequence of this is that a 

growing number of scholars are working on creating NR-
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IQA methods. 

No Reference Quality Assessment (NRQA) is difficult in 

satellite imaging for various reasons: 

a. Absence of Ground Truth: Unlike other image 

domains, it is sometimes hard to get a high-quality, 

ground-truth image of the scene taken by the satellite. 

This makes direct comparisons for determining 

quality impractical. Imagine attempting to analyse 

the quality of a satellite image of a distant forest 

without ever having been there! 

b. Subjectivity and Context Dependence: Perception of 

image quality is extremely subjective and 

application- and user-specific. What defines a "good" 

quality image for land cover categorization may vary 

dramatically from what is required for urban change 

detection. NRQA approaches fail to capture these 

distinctions without considering user intent. 

c. Diverse Image. Satellite images have a wide variety 

of features, including spectral resolution, spatial 

resolution, sensor-specific artefacts, and atmospheric 

influences. Designing a single NRQA measure that 

successfully accounts for all of these variances is a 

substantial problem. 

d. Limited Training Data: Developing good NRQA 

models requires a substantial quantity of labelled 

data, which may be difficult and costly to get in the 

satellite images domain. This scarcity reduces the 

accuracy and generalizability of these models. 

e. Computational Complexity: Some NRQA 

techniques, such as those based on deep learning, are 

computationally costly, rendering them unsuitable 

for real-time applications or resource-constrained 

contexts. 

Despite these obstacles, researchers are working to create 

improved NRQA approaches for satellite images. These 

techniques examine a variety of tactics, including: 

i. Leveraging past knowledge entails incorporating 

prior knowledge about common image qualities 

and degradation kinds. 

ii. Using image statistics: Analysing statistical 

aspects of the image to determine quality. 

iii. Exploring task-specific information: Adapting the 

NRQA approach to the unique application or user 

requirements. 

iv. Learning from Limited Data: Developing effective 

approaches for training NRQA models on smaller 

datasets. 

v. While flawless NRQA in satellite imagery remains 

a research goal, these developments pave the path 

for more robust and dependable quality assessment 

in this increasingly important sector. 

In regard to fact, the majority of the currently available NR-

IQA algorithms disregard the intrinsic uncertainty that is 

present in datasets. Due to the fact that NR-IQA datasets are 

produced in a subjective manner, there is observational 

noise that introduces a level of corruption into the target 

values. Thus, there does not exist an accurate mapping 

𝑦~𝐹(𝑥) between label 𝑦 and data 𝑥. 

Revised mapping form can be interpreted as, 𝑦 = 𝐹(𝑥) +

𝑛𝑜𝑖𝑠𝑒(𝑥). 

When all of these factors are taken into account, it is 

necessary to do a statistical modelling of the observational 

noise (x). In order to do this, we include uncertainty learning 

into the NR-IQA model and propose the Sparse approximate 

variational autoencoder (SA-VAE) regression model. 

Attempting to quantify the noise that is already present in a 

model or dataset is the primary emphasis of the study of 

uncertainty. The epistemic uncertainty and the 

heteroscedastic aleatoric uncertainty are the two main 

uncertainties that should be of concern to you. The 

epistemic uncertainty is caused by the noise that is present 

in the model parameters or the model outputs. Aleatoric 

uncertainty is inherently present within the dataset itself. A 

significant number of people make an effort to include 

uncertainty into models in the hope of achieving better 

results. [10] and [11]. In order to examine uncertainty, some 

people are considering the possibility of building a generic 

learning paradigm. In their work [12, 13], Geng and 

colleagues make an effort to represent an instance by using 

a particular distribution rather than one or more labels. The 

authors Pate et al. [21] use a risk level technique to evaluate 

the amount of uncertainty. In recent times, there has been a 

significant amount of focus placed on uncertainty analysis 

on neural networks [14-18]. Increasing the robustness and 

effectiveness of models is accomplished by the use of 

uncertainty analysis in a variety of tasks, including semantic 

segmentation [17], face recognition [18], and item 

identification [19]-[20].The primary objective of VAEs is to 

acquire the knowledge necessary to learn a mapping 

between high-dimensional observations and a 

representation space with fewer dimensions. This mapping 

should be such that the original observations may be 

approximated using the representation with reduced 

dimensions. 

Sparse coding-based variational autoencoder (SA-VAE) is 

an acronym for sparse approximation variational 

autoencoder, which is the name of the model that has been 

proposed. The SA-VAE has a number of advantages over 

the work that came before it. To begin, it is possible to teach 

it from beginning to finish, and it does not have any 

problems with posterior or codebook collapse. In the second 

place, it makes it possible for us to generate a mapping of 
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the input image and quality index that is more precise. In 

conclusion, the latent sparse codes make it possible for us to 

do regression value via the use of image patch grouping. 

The following is a summary of the contributions that this 

work has made: 

1. The strategy that has been suggested IF distortions or 

artefacts should be analysed, and parametric and 

non-parametric characteristics should be constructed 

depending on the identified distortion. 

2. Our company offers a deep learning approach that 

covers the whole process, from beginning to finish, 

for quality assessment regression models that predict 

quality score. 

3. We have proposed a variational autoencoder that is 

based on a Sparse Approximated Code for the 

purpose of quality prediction, which will then be 

followed by a Quality Assessment Regression 

Model. During the training process, we make 

advantage of the rich self-supervisory information by 

using self-consistency between the output for each 

image and its sparse codebook. This allows us to 

reduce the network's sensitivity. 

4. Extensive testing on fused image datasets (for 

distortions) demonstrates that our proposed 

technique yields positive results across a wide range 

of datasets. 

2. Literature Survey 

Existing IQA algorithms that are based on deep learning are 

mostly dependent on subjective human evaluations 

(MOS/DMOS), and they portray the quality prediction issue 

as a job that involves either regression or classification. As 

a consequence of this, the models are unable to make direct 

use of the relative arrangements of the images. The limited 

availability of large labelled IQA datasets is one of the 

challenges that must be overcome in order to construct 

CNN-based IQA models. The process of annotating IQA 

datasets is one that is both time-consuming and expensive. 

A self-supervised collaborative autoencoder is developed by 

Z. Zhou and colleagues [21] in order to represent the 

information regarding the content and the distortion in a 

separate manner. Subsequently, a self-adaptive weighting-

based quality predictor is developed in order to achieve a 

balance between the individual representations of the 

content and the distortions through the process of image 

quality prediction.  Attention processes are often used in the 

activities that are associated with computer vision [22–24]. 

An end-to-end saliency-guided architecture that 

incorporates spatial and transposed attention was introduced 

by Yang et al. [25] in the context of NR-IQA. According to 

X. Ma et al. [26], For the purpose of marking the distorted 

image, a large number of FR-IQA measures were used as an 

alternative to subjective quality annotation. Because there is 

no clear image, a deep neural network is trained to make 

predictions about numerous FR-IQA scores without any 

information being provided. The final quality predicting 

score is obtained by combining the predictions of a number 

of different FR-IQA scores. This is accomplished via a self-

supervised FR-IQA score aggregator that is based on an 

adversarial auto-encoder score.  Using deconstructed large-

kernel convolutions, L. Yu et al. [27] presented a 

lightweight attention technique that extracts multiscale 

features. Additionally, they presented a one-of-a-kind 

feature improvement module that predicts No-Reference 

Image Quality Assessment. Both of these approaches are 

described in the article.A hierarchical no-reference 

Stereoscopic Image Quality Assessment approach was 

given by J. Si et al. [18]. This method takes into 

consideration binocular interaction and binocular fusion, 

and it also incorporates automatic weight learning.  Y. Zhu 

and colleagues [29] proposed a model that includes a self-

supervised feature learning approach that is needed in order 

to relieve the shortage of data and learn complete feature 

representations. Additionally, the model includes a self-

attention-based feature fusion module in order to include a 

self-attention mechanism. Through the use of stacked 

autoencoders, J. Yang et al. [30] presented a blind quality 

evaluation measure that was both effective and novel. This 

measure was based on graphical and textual regions. The 

characteristics that have been created from these two 

domains, in addition to their subjective evaluations, are 

input into two regressors for the purpose of training. It is 

only possible for each regressor to deliver a single projected 

score. In conclusion, a weighted model is used in order to 

provide the ultimate perceptual quality score of a test SCI. 

This score is derived from the two expected values 

provided.  The No-reference image quality model is 

developed by K. Ding and colleagues [31], who also include 

a set tolerance for texture resampling. Using a convolutional 

neural network, we construct an injective and differentiable 

function that is capable of converting images into multi-

scale over complete representations. Full-reference image 

quality assessment measures are provided by Varga, D. et 

al. [32]. These measures characterise the global changes that 

occur in an image as a result of Grunwald-Letnikov 

derivatives and the local changes that occur as a result of 

image gradients. Additionally, visual saliency is used for the 

purpose of weighing changes in images and highlighting 

areas of the image that are significant to the human visual 

system. K. Lamichhane and colleagues [33] proposed an 

objective quality metric that involves the use of deep neural 

networks. The human visual system is taken into account by 

the measure, which does so by calculating the saliency map 

and natural scene statistical features of the image that is 

being examined. The convolutional layers and the 

regression units are the two components that make up the 

neural network. A two-stream CNN-based no-reference LF 
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image quality assessment (LF-IQA) technique is presented 

by S. Alamgeer and colleagues under the reference number 

34. Rich distortion-related spatial and angular binocular 

characteristics are extracted using the two-stream CNN in 

order to achieve the purpose of evaluating the quality of the 

LF contents. 

3. Methodology 

The Encoder layer is responsible for compressing the input 

image into a representation of the same latent space. The 

input fused image is converted into a compressed 

representation that has a decreased dimension using this 

process. The size of the code, also known as the bottleneck, 

is the most critical hyperparameter to consider when 

customising the autoencoder. The amount of data that has to 

be compressed is determined by it. In addition to that, it may 

be used as a regularisation term. When making adjustments 

to autoencoders, it is important to bear in mind that the 

number of layers is an important factor. The complexity of 

the model rises with increasing depth, whereas with 

decreasing depth, the analysis process is sped up. It is often 

a challenging endeavour to choose nodes for each layer of 

their structure. The number of nodes in the autoencoder 

reduces with each consecutive layer because the input to 

each layer becomes less as it progresses through the levels. 

In order to manage sparse autoencoders, the number of 

nodes that are present in each hidden layer is used. Because 

it is challenging to build a neural network with a variable 

number of nodes in its hidden layers, sparse autoencoders 

operate by penalising the activation of certain neurons in the 

hidden levels. This is done in order to accommodate the 

difficulty of the construction process. In other words, it 

suggests that the loss function is subjected to a penalty that 

is precisely proportional to the number of neurons that are 

activated. 

For the purpose of regularising the neural network, the 

sparsity function prevents extra neurons from being 

involved in the process. Regularizers may be broken down 

into two categories: 

1. Increasing the size of the model is possible by the use 

of the L1 Loss approach, which is a general 

regularizer to utilise.  

2. In contrast to the L1 Loss methodology, the KL-

divergence method analyses activations across 

several samples simultaneously, as opposed to just 

adding up all of the activations. It is our intention to 

restrict the average activity of each neuron 

throughout this collection. 

Variational autoencoders, often known as VAEs, are models 

that use autoencoders that are more conventional in order to 

address a specific problem. An autoencoder is taught to 

learn to represent the input solely in a compressed form that 

is referred to as the latent space or the bottleneck. This is 

accomplished via the training process. On the other hand, 

the latent space that is generated as a result of training is not 

necessarily continuous, and as a consequence, it may be 

challenging to interpolate. Variational autoencoders are 

concerned with this specific problem and express their latent 

characteristics as a probability distribution, resulting in a 

continuous latent space that can be sampled and interpolated 

easily. An strategy that is well-known for learning sparse 

codes, which involves iterating the recursive equation that 

is shown below until it converges. The l1-norm regularised 

least square problem of sparse codebook is addressed by this 

research via the use of an iterative sparse approximation that 

incorporates a one-of-a-kind pre-conditioner system.  

Sparse approximation may be used to generate image 

quality indices, which has various benefits over 

conventional techniques. This methodology would generate 

Sparsed code  𝓍 ∈ ℝη from its noisy measurements. 

General sparse approximation can be estimated as, 

𝔟 = 𝒜𝓍 + 𝓃

∈ ℝ𝑀                                                                             (1) 

Where 𝒜 ∈ ℝMxNand   𝓃 ∈ ℝM  is the environmental noise. 

The traditional Least Squares (LS) approach necessitates a 

large number of observations.  

ℳ ≥ 𝒩and 𝒜 has full rank 𝒩 to recover𝓍̇ =

(𝒜𝒯𝒜)−1𝒜𝒯𝔟. Current Compressed Sensing (CS) 

techniques could recreate 𝓍 from a much smaller number of 

observations ℳ ≤ 𝒩  .As long as the input image appears 

sparse, the aforementioned basis pursuits speech denoising 

dilemma can be solved: 

𝑚𝑖𝑛
𝑥𝑒ℝ𝑁

1

2
‖𝐴𝑥 − 𝑏‖2 + 𝜏‖𝑥‖1 (2) 

Where 𝜏 > 0 is a specified normalization coefficient, ‖𝑥‖ =

 √∑ 𝑥𝑖
2𝑁

𝑖=1  and ‖𝑥‖1 =  √∑ |𝑥𝑖|𝑁
𝑖=1 denote the𝑙2and the 

𝑙1norms of 𝑥, respectively, 

Including the constraint clearly defines the solution key 

space in (6) the pseudo recovery, proposed methodology 

would use a simple optimization strategy to get them out. 

𝑥̂ = [𝑥+; 𝑥−] ∈ ℝ2𝑁 ≥ 0 and 𝐴̂ = [𝐴, −𝐴] ∈ ℝ𝑀𝑥2𝑁                  

(3) 

where, 𝑥𝑖
+ = max (𝑥𝑖 , 0)and𝑥𝑖

− = max (−𝑥𝑖 , 0) , the 𝐴𝑥 =

𝐴̂𝑥̂ and, ‖𝑥‖1=‖𝑥̂‖1and hence Eq.) can be solved with 

respect to 𝐴̂ and. 𝑥̂ ≥ 0.  

As a result, proposed method just need to acknowledge the 

version of Eq. shown below for 𝑥 ≥ 0 

𝑚𝑖𝑛
𝑥𝑒ℝ𝑁

1

2
‖𝐴𝑥 − 𝑏‖2 + 𝜏𝑒𝜏𝑥   (4) 

𝑠𝑡𝑥 ≥ 0 
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Since in Eq.(4) an optimization  problem is convex with 

nothing but linear constraints that fulfills Slater's condition, 

then this can discover optimized solution by addressing its 

Karush-Kuhn-Tucker (KKT) system: 

𝐴𝜏𝐴𝑥 − 𝑠 − 𝐴𝜏𝑏 +  𝜏𝑒 = 0    

 (5a) 

𝑋. 𝑆𝑒 = 0   (5b) 

(𝑥, 𝑠) ≥ 0   (5c) 

Where  

𝑋 = 𝐷𝑖𝑎𝑔(𝑥)𝑎𝑛𝑑𝑆 = 𝐷𝑖𝑎𝑔(𝑠) 

The above equation indicates diagonal matrices consist of 

primal coefficient 𝑥 and dual coefficient value 𝑥 and dual 

coefficient s, respectively, and 0 and e indicate an entirely 

zero or all one array whose size should be apparent from 

reference, respectively. In the multi-dimensional manner, 

the modules cooperatively increase the interaction among 

different regions of images globally and locally. The Inverse 

Sparse Approximation (ISA) addresses a transformed 

Karush-Kuhn-Tucker method by merely substituting Eq. 

(5b) for Eq. (5b) in the basic Karush-Kuhn-Tucker 

framework. 

𝑋𝑠𝑒 = 𝜎𝜇𝑒   (6) 

Where 𝜇 = 𝑥𝜏𝑠/𝑁goes to 0, Whenever it converges, it 

returns to zero and 𝜎 ∈ [0,1]is a centeredness element.  A 𝜎 

closer to 1will prompt search results further towards the 

interior (𝓍, 𝑠) > 0. Moving from a specific point (𝓍, 𝑠), the 

novel Karush-Kuhn-Tucker system's orientation could be 

calculated as 

𝐴𝜏𝐴∆𝑥 − ∆𝑠 = 𝑟𝑑  (7a) 

𝑆∆𝑥 + 𝑋∆𝑠 = 𝑟𝑒  (7b) 

Where 𝑟𝑑 indicated the stationary residual and 

complementary slackness residual 𝑟𝑒  can be expressed by 

𝑟𝑑 = 𝑠 − 𝛻ℎ(𝑥)  (8a) 

𝑟𝑒 =  𝜎𝜇𝑒 − 𝑋𝑆𝑒    (8b) 

Here, 𝛻ℎ(𝑥) = 𝐴𝜏𝐴𝑥 − 𝐴𝜏𝑏 + 𝜏𝑒  is the gradient of the 

objective function. 

 ℎ(𝑥):
1

2
‖𝐴𝑥 − 𝑏2‖ + 𝜏𝑒𝜏𝑥  

 (9) 

 

Fig.1. Proposed  SAC based NR-IQ Estimation 

In Algorithm 1, the proposed method represents Sparse 

Approximated Code (SAC) with predictor-corrector steps, 

which employs the SAC framework. It can be widely 

regarded as one of the most effective of the different sparse 

approximation. To ensure quicker convergence, the 

proposed SAC uses different initializations, which have 

simplified but appropriate coefficients, a new pre-

conditioner, and adaptive tolerance. Although Eq. (5a) must 

be fulfilled at all times, the proposed SAC allows quite 

versatile 𝑥, 𝑠 that violate Eq. (5a) during initial setup and 

subsequent iterations, that only need Eq. (5a) to be fulfilled 

at convergence. 

Encoded feature vector is used as a input of the SAC 

network:  𝑋 = [𝑥1, 𝑥2, … 𝑥𝑘]  where k is the number of the 

encoded coefficient per computation. In order to accelerate 

the convergence of the framework, the Min-Max 

Normalization is suggested, through which the variables for 

each data dimension are sequentially reshaped and 

normalised to [0, 1] range: 

 𝑥 = [
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
] Min is the minimum at each column, and 

max is the maximum at each column. Then data by 

restructuring 1 by 1024 deep attributes into 32 by 2 matrix 

form before convolution is generated. The output of the jth 

feature map on the ith unit of the l convolution layer is: 

𝑥𝑖
𝑙,𝑗

= 𝜎[𝑏𝑗 + ∑ 𝑤𝑎
𝑗𝑚

𝑎=1 𝑥𝑖+𝑎−1
𝑙−1,𝑗

]   (10) 

bj is the bias term for jth feature map, m is the kernel size, j 

a w is the weight of jth feature map and ath filter index andσ 

is the activation function. 

3.1. Training of VAE: 

Initially, satellite-fused images are obtained. The whole 

dataset is preprocessed and cleaned adequately for the 

quality estimate job. The data is then divided into three sets: 

training, validation, and test. The training set trains the 

VAE, the validation set monitors training progress and 

adjusts hyperparameters, and the test set evaluates the final 

model's performance. The VAE's encoder converts the input 

data to a lower-dimensional latent space representation. The 

encoder is made up of many neural network layers that 

extract characteristics from the data. The proposed model 

included a probabilistic aspect by expressing the latent 

space as a distribution rather than a single point. This is 
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commonly accomplished by employing a normal 

distribution with the Sparse Approximated Code anticipated 

by the encoder. Reconstruction loss is usually assessed 

using a mean squared error or similar distance metric. KL 

divergence loss pushes the latent space distribution to 

resemble a standard normal distribution. This helps to keep 

the model consistent and prevents overfitting. A VAE's 

performance may be influenced by a variety of 

hyperparameters, including the learning rate, the number of 

encoder and decoder layers, and the latent space 

dimensions. 

Algorithm: 1 Sparse Approximated Code (SAC) 

Framework 

 

𝐈𝐧𝐩𝐮𝐭𝐬: 𝜖 ∶  𝐶ℎ𝑜𝑜𝑠𝑒 (𝑥0, 𝑠0) > 0 𝑠𝑡𝑜𝑝 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦   

𝜖 (e. g. 1e − 6),  

Total Epochs is  𝑘𝑚𝑎𝑥. 

𝑓𝑜𝑟 𝑘 = 1,2, … . . , 𝑘𝑚𝑎𝑥   𝑑𝑜 

 Perform Prediction Step ∶  set 𝜎 ← 0.001   

 (𝑥𝑘 , 𝑠𝑘 , 𝛼𝑝, 𝛼𝑑) = 𝑈𝑃𝐷𝐴𝑇𝐸(𝑥𝑘−1, 𝑠𝑘−1, 𝜎) 

 𝑖𝑓 𝜇𝑘 ≤ 𝜖ℎ(𝑥𝑘) 𝑎𝑛𝑑  ‖𝑟𝑑
𝑘‖ then  

  e Break  

 

𝐎𝐮𝐭𝐩𝐮𝐭𝐬: 𝒙𝒌 

 

 

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏: 𝑈𝑃𝐷𝐴𝑇𝐸(𝑥𝑘−1, 𝑠𝑘−1, 𝜎) 

 Compute ∆𝑥, ∆𝑠    with 𝜎 , 𝑥𝑘−1, 𝑠𝑘−1 

 Compute 𝛼𝑝, 𝛼𝑑   with 𝑥𝑘−1, 𝑠𝑘−1, ∆𝑥, ∆𝑠  

 

𝑈𝑝𝑑𝑎𝑡𝑒 (𝑥𝑘, 𝑠𝑘) ← (𝑥𝑘−1 + 𝛼𝑝∆𝑥𝑠𝑘−1 + 𝛼𝑑  ∆𝑠) 

𝑅𝑒𝑡𝑢𝑟𝑛 (𝑥𝑘, 𝑠𝑘 , 𝛼𝑝, 𝛼𝑑  ) 

 

Overall, Sparse Approximated Code (SAC) Framework is a 

promising strategy for assessing image quality since it is 

flexible, adaptable, and has the potential for quick 

evaluation. 

• Captures perceptual aspects: Considers how 

effectively the image may be portrayed in 

accordance with human perception. 

• Handles various distortions: Adaptable to a variety 

of distortions, including compression artefacts, 

noise, and blur. 

• Potentially reduced complexity: Depending on the 

vocabulary and metrics used, this may be 

computationally efficient. 

4. Experiment & Results 

We carried out the subjective experiment for subjective 

quality score. All the pansharpened images were displayed 

on a 55 inch MI TV. We adapted double stimulus 

continuous quality scale test methodology in the 

experiment, in which the reference and test images are 

simultaneously presented (displayed side-by-side) on the 

screen. Based on the properties of fused images, grading 

criteria in our subjective study depend on two factors: 

distortions or artifacts. 

4.1. Time Complexity: 

The cumulative amount of time required by the proposed 

system across all convolution layers  

𝑂(∑ 𝑛𝑙−1. 𝑠1
2𝑑

𝑙=1 . 𝑛1. 𝑚1
2)    (11) 

The convolutional layer index is set to 1, and the total 

number of convolutional layers is denoted by the letter d. 

The total number of filters that are used in the lth layer is 

denoted by the letter n, which is also referred to as the 

number of input channels in the lth layer. Despite the fact 

that the filter has a spatial size of s, the feature map that is 

produced has a spatial size of m. However, the time cost 

associated with completely connected layers and pooling 

layers is always between 5 and 10 percent of the total 

computational time, which is not included in the 

composition that was described before. An example of the 

training performance of the recommended model is 

provided below in the form of a figure. At first, the 

performance of the model improves with each epoch, but 

later it remains same. 

 

Fig. 2. Training Accuracy of proposed model vs epochs 

Unlike regular autoencoders, which are simply concerned 

with reconstruction, VAEs additionally aim for a latent 

space distribution that is near to the standard normal. This 

creates complexity, which may have varying effects on 

training accuracy. Depending on the setting, "training 
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accuracy" is refer to a weighted mix of reconstruction and 

KL divergence. For the purpose of illustrating the influence 

that many measurements have on selecting the most optimal 

fusion results, we provide an example. 

Table 1. Compassion of Proposed method NR-IQA 

Fused Image MOS Proposed 

IR-IQA 

Self-Adaptive 

Weighting based 

VAE [21] 

CNN 

[34] 

 

9 0.987858 0.83023 

 

0.829046 

 

 

9 0.987321 0.826752 

 

0.828684 

 

 

10 1.00 0.826977 0.82854 

 

 

10 0.96918 

 

0.826258 

 

0.831533 

 

 

9 0.939202 

 

0.837491 

 

0.833493 

 

 

9 0.977617 

 

0.830724 

 

0.826063 

 

 

 

8 0.785954 

 

0.632175 

 

0.632891 

 

 

5 0.433124 

 

0.22857 

 

0.333841 

 

 

7 0.662485 

 

0.432456 

 

0.528965 

 

 

In order to conduct an objective evaluation of the 

performance of our strategy, we compare it to the two ways 

that we selected. Taking into consideration the findings, one 

might reach the following conclusions:  

1) Current comparable measures have relatively poor 

assessment performances when compared to MOS metrics. 

This is due to the fact that spectrum distortion is not 

reflected into conventional metrics, which results in an 

inaccurate portrayal of the distortions. 

2) When compared to three training-based M1 measures, 

our method performs better than any of them combined. As 

a result of the fact that these measurements are very 

dependent on the characteristics and training samples that 

were used in their training, our method is more robust than 

the training-based metrics that are currently in use. The 

strategy that we choose is the most efficient. The possible 

reason for this may be that the methods of feature extraction 

that are used in these measurements are not suitable for the 

circumstances that we are now facing. All things 

considered, our approach takes into consideration the effects 

of spectrum distortion, spatial distortion, and affects on 

information indexes, which ultimately leads to a distribution 

that is congruent with subjective results. Developing a 

universal image quality matrix is difficult owing to the 

subjective and application-specific nature of quality 

perception. However, VAEs may be excellent tools for 

providing significant insights and features for developing 

successful image quality evaluation systems. 

 

Fig. 3. Correlation of Proposed Method with Existing 

Figure 3 shows correlation graph of proposed method with 

existing Method. Proposed method have better close to 

MOS score than VAE and CNN 

Table 2. MoS Correlation Score 
 

Proposed  VAE CNN 

Pearsons 0.964 0.957 0.96 

Spearmans 0.835 0.646 0.779 
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Fig. 4. Correlation of MoS Score 

It is a statistical correlation coefficient that examines the 

linear connection between Mos and Predicted Score. The 

Pearson coefficient of correlation is a common example of 

such a coefficient. For all intents and purposes, it is only a 

normalised measurement of covariance, with the result 

always falling somewhere between 0. The product of the 

covariances of two variables and the standard deviations of 

those variables is what it is called. In terms of Pearson 

Correlation, the suggested method performs better than both 

the VAE and CNN-based Quality ratings. The correlation 

coefficient of Spearman's rank is an example of a statistic. 

Pearson's correlation analyses linear relationships, while 

Spearman's correlation investigates monotonic connections, 

regardless of whether or not they are linear. The Quality 

Score that has been suggested correlates linearly with the 

Quality Score that is based on MoS. 

5. Conclusion 

The results of this research provide a method for evaluating 

the quality of fused images that does not need references. 

For the purpose of evaluating distortions, we use a 

variational autoencoder that is based on a Sparse 

Approximated Code, which is then followed by a Quality 

Assessment Regression Model. Through the extraction of 

quality-aware characteristics from both the spatial domain 

and the spatial-temporal domain, the proposed model is able 

to evaluate levels of distortion. In order for the proposed 

model to be able to completely leverage the distortions and 

texturing that are available in the current database, we train 

the spatial feature extractor from the very beginning to the 

very finishing.In spite of the fact that our approach is 

successful, there is always room for improvement. Some of 

the distortion is not as irritating as others. As a consequence 

of this, it is essential for future development to recognise 

certain types of distortion, such as appealing unreal texture, 

unpleasing unreal texture, and so on. 
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