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Abstract: In clinical research and decision-making, medical image retrieval is essential. In this article, we provide a brand-new framework 

for retrieving content-based medical images that is based on deep learning. The framework is designed to retrieve relevant medical images 

from five distinct categories: 'Breast Cancer', 'Tuberculosis', 'Alzheimer's Disease', 'Brain Tumor', and 'COVID-19'.  We employ the Gray 

Levels Co-occurrence Matrix (GLCM) & concentrate on six distinct aspects: "dissimilarity," "correlation," "homogeneity," "contrast," 

"ASM" (Angular Second Moment), & "energy" in order to extract significant information from the medical images.  These features provide 

important insights into the texture and structure of the images, enabling effective discrimination between different medical conditions. For 

training the retrieval framework, we employ two models: Artificial Neural Network (ANN) and the Convolutional Long Short-Term 

Memory (CLSTM) hybrid deep learning model. The ANN model achieves an accuracy of 91% in classifying the medical images, while 

the CLSTM model outperforms it with an accuracy of 99.01%. Our test results show how well the suggested framework works at quickly 

retrieving pertinent medical photos. The integration of deep learning techniques enhances the accuracy of image classification and 

improves the retrieval performance. The framework has potential applications in medical research, diagnosis, and treatment planning by 

enabling quick and accurate access to relevant medical images for specific conditions. 

Keywords Medical image retrieval, deep learning, content-based retrieval, GLCM, ANN, CLSTM, breast cancer, tuberculosis, Alzheimer's 

disease, brain tumor, COVID-19. 

1. Introduction 

The utilization of extensive image databases has 

witnessed a significant surge in recent years, the 

development of multimedia technologies. Image retrieval 

has become a crucial technique for image processing 

applications in this environment, with the widespread 

usage of Content-Based Images Retrieval (CBIR) in 

numerous domains. However, relying solely on a single 

image feature often yields unsatisfactory outcomes. 

Consequently, the integration of multiple image features 

has become a common strategy to achieve enhanced 

results. Nevertheless, the efficient and swift retrieval of 

relevant images from such databases presents a 

formidable challenge in previous iterations of this system 

[1]. CBIR has used an integrated feature extraction 

method that incorporates local energy, rotation-invariant 

universal local binary patterns (RULBP), & color auto-

correlogram. 

The effective retrieval of images from large databases 

that are pertinent to a given Query Image (QI) is made 

possible by Content-Based Images Retrieval (CBIR) 

systems. Current CBIR systems exhibit limitations by 

extracting only a limited set of features. This study 

presents a novel approach that involves extracting 

comprehensive and robust features from an image 

database, storing them as feature vectors in a repository. 

These encompass color signatures, shape attributes, and 

texture characteristics. The process involves extracting 

features from a specific QI and subsequently employing a 

novel similarity evaluation comparing QI attributes with 

those of databases photos utilizing a metaheuristic 

approach (genetic algorithm plus simulated annealing). 

By leveraging distance metrics, the system facilitates the 

search for related images when a QI is introduced from 

the database. This framework advances the core concept 

of CBIR, enabling enhanced retrieval performance [2]. 

In order to get photographs matching the user's query 

within the database, it is necessary to require significant 

computer resources due to the multimedia material 

provided by devices & image processing techniques. The 

traditional annotation-based technique for image retrieval 

lacks coherence due to its pixel-wise image matching, 

leading to notable disparities in patterns, storage, and 

angles. 

In these situations, Content-Based Images Retrieval 

(CBIR) emerges becoming a more popular alternative. 

CBIR effectively gauges the resemblance between 

database and query images. This method entails gathering 

images resembling the query image from an extensive 

database and extracting more informative attributes from 

the query image [3]. Subsequently, it establishes 

relationships and matches these attributes with those of 
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database images, ultimately retrieving and presenting 

images with similar features. This approach offers a more 

efficient means of image retrieval, aligning with the 

underlying principles of CBIR. 

Surveillance videos find widespread application for 

security purposes globally. Within these videos, object 

detection has gained paramount importance, yet 

comprehensively analyzing such videos and extracting 

pertinent information is arduous [4]. In the realm of 

agriculture, managing potato diseases is pivotal due to 

potential crop yield losses. Timely recognition and 

classification of these diseases are essential to mitigate 

losses, though the process is time-intensive and reliant on 

human intervention. Therefore, a precise automated 

method is imperative to promptly detect and classify 

these diseases [5]. 

In the context of burgeoning video content, video 

summarization is pivotal. It seeks to distill the essential 

events from lengthy videos into concise highlights. 

Given the time-consuming nature of storing, browsing, 

and sharing videos, this task is increasingly challenging. 

In this work, SumVClip, a flexible method that creates 

generic video summary clips, is introduced. To create 

these video, key frames are chosen using deep learning 

classification employing methods such as AlexNet [6]. 

The proposed approach addresses the demand for 

efficient video summarization in the face of expanding 

video content. 

2. Literature Review 

To improve image representation, a variety of image 

retrieval techniques utilizing low-level descriptors of 

features have been developed. Both global & local 

feature representations can be generally used to 

categorize these techniques. Color [7], edge [8], texture 

[9], and GIST Centrist are examples of global features. 

Local feature representations include models like the bag 

of words [10] and descriptors such SWIFT [11], SURT 

[12], GLCM [1]. 

Tunga et al. unveiled a strategy to picture retrieval that 

makes use of machine learning algorithms, treating 

image categories as semantic concepts [13]. Their 

approach computes similarity solely based on images 

falling into the exact same class as the query image, 

rather than matching the query picture with every image 

in the database. This approach reduces the computational 

burden and improves retrieval efficiency. Another 

significant contribution is the mapping learning scheme 

proposed by Singh [14], which facilitates efficient 

retrieval in large-scale image applications. Singh's 

method maps while maintaining semantic similarity, 

convert highly dimensional information into binary 

codes. This approach enables effective image retrieval 

with reduced memory requirements and computational 

costs. 

The content-based retrieval of images (CBIR) system was 

introduced by Kumar et al. [15] and integrates SIFT, 

ORB, K-Means grouping, & LPP dimensionality 

reduction techniques. By employing these techniques, 

their system achieves improved retrieval performance by 

effectively capturing and representing the underlying 

visual features of the images. Liu et al. a two-layer 

codebook features-based picture retrieval technique was 

presented [16]. Their method combines high-level data 

obtained from the GoogLeNet deep convolutional 

network with low-level characteristics produced by Dot-

Diffused Block Truncation is Coding (DDBTC), such as 

texture and color. By integrating these complementary 

feature representations, their method enhances the 

discrimination and retrieval accuracy of the system. 

A deep belief network (DBN) is used by Saritha et al. to 

offer a content-based image retrieval framework that 

effectively learns feature representations [17]. By 

combining characteristics such as color histogram, edge, 

edge directions, & other features, their method takes a 

multi-feature approach. These characteristics are retrieved 

and saved as compact signature files, making it possible 

to compare and retrieve related photos quickly using their 

signatures. The similarity metric takes into account the 

separations between various features, which have been 

normalized using suitable weights. Wan et al. presented a 

deep learning framework for CBIR tasks, specifically 

using convolutional neural networks (CNNs) [18]. Three 

schemes make up their strategy. The first method uses 

CNNs' fully connected layers to directly represent 

features. By treating relationships between instances 

belonging to a single class as important & those belonging 

to separate classes as irrelevant, the second scheme 

improves similarity learning. The third technique, which 

improves the model's performance in certain retrieval 

tasks, refines it by retraining a network that was 

previously trained on a new dataset. 

Wang et al. conducted a comprehensive examination of 

feature representations taken from several CNN layers in 

their CBIR model [19]. Using the IMAGENET 2012 

dataset and the pretrained AlexNet model, they assessed 

their study. They discovered that the characteristics taken 

out of completely connected layers, specifically fc4096a 

and fc4096b, performed exceptionally well. These layers, 

which directly follow the stack of convolutional and 

pooling layers, demonstrated superior generalization 

ability for datasets with unseen categories. The authors 

further trained the network on a new dataset to fine-tune 

its performance. Additionally, they found that cosine 

similarity outperformed Euclidean similarity in their 

experiments. In order to develop compact binary 

algorithms for effective picture retrieval for large-scale 

datasets, Liu et al. suggested a unique Deep Supervision 
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Hashing (DSH) method utilizing convolutional neural 

networks [20]. By employing a supervised learning 

framework, DSH effectively preserves the semantic 

similarity between images while reducing the storage 

requirements and computational complexity associated 

with large-scale image retrieval. 

Researchers have developed various image retrieval 

methods [21] focusing on low-level feature descriptors. 

These methods employ different techniques, including 

machine learning algorithms, deep learning architectures, 

and feature fusion, to increase the retrieval efficiency and 

accuracy. The adoption of these methods aids in the 

development of content-based picture retrieval and has 

potential applications in fields such as medical research, 

diagnostics, and treatment planning. 

The research gap lies in the development of a system for 

retrieving medical images using deep learning that 

addresses the unique challenges of medical image 

analysis, incorporates advanced feature fusion 

techniques, utilizes large-scale medical image datasets, 

and focuses on specific medical image categories. Such a 

framework would significantly contribute to clinical 

decision-making, research, and healthcare applications 

by improving the retrieval of medical images' precision 

and effectiveness. 

3. Proposed Work 

In this article, we provide a brand-new framework for 

retrieving content-based medical images that is based on 

deep learning. The framework is designed to retrieve 

relevant medical images from five distinct categories: 

'Breast Cancer', 'Tuberculosis', 'Alzheimer's Disease', 

'Brain Tumor', and 'COVID-19' of 4525 Medical images 

data used in this work. To extract meaningful features, 

The Gray Level Co-occurrence Matrix (GLCM) is used, 

and we concentrate on properties like "dissimilarity," 

"correlation," "homogeneity," "contrast," "ASM," and 

"energy." Convolutional Long Short-Term Memory 

(CLSTM) and Artificial Neural Network (ANN) are two 

models that were used are employed for training. 

Experimental results demonstrate the framework's 

effectiveness in retrieving relevant medical images and 

improving retrieval performance. The proposed system 

has potential applications in medical research, diagnosis, 

and treatment planning. 

3.1 GLCM-Based Feature Extraction 

The GLCM algorithm 1 is employed in this study to 

perform feature extraction operations on a specified 

dataset. This algorithm effectively extracts highly 

informative features, particularly texture features, which 

are crucial for image analysis and provide valuable 

regions of interest. GLCM is a vital approach for feature 

extraction and is widely used in a variety of texture 

analysis applications. For tasks such as retrieval and 

indexing, GLCM captures the visual contents of an image. 

To solve computational problems in many applications, 

the collected GLCM data is used. For a CBIR (Content-

Based Image Retrieval) system, an effective feature 

extraction method that includes both text-based data like 

annotations and keywords as well as visual elements like 

shape, texture, and color is crucial. Features of the texture 

that are independent of the intensity or appearance of one 

color indicate the homogeneity attributes. Effective use of 

color characteristics allows for the recognition of 

important visual features. Color is a crucial visual 

component of CBIR and is processed in a straightforward 

and effective manner. The rows & columns in a matrix are 

determined by the GLCM image matrix, which also 

specifies the number of gray levels (G). two isolated 

pixels separated by a pixel distance (x, y), and having a 

same relative frequency The matrix element P(i, j | x, y) 

defines the intensities 'i' and 'j'. The second-order statistics 

probabilities for variations among gray levels 'i' and 'j' at 

a particular angle () and displacement distance (d) are 

represented by the matrix's element P(i, j | d, ). The use of 

high-intensity values (G) denotes the storing of a 

significant amount of temporary data, denoting a G G 

matrix for each fusion of (x, y) or (d,). The size of the 

texture sample significantly impacts GLCM due to its 

high dimensionality, leading to a reduction in the count of 

gray levels. The relationship between a reference pixel (i) 

and a neighboring pixel (j) is represented using GLCM.

Algorithm 1: Steps in GLCM for Feature Extraction 

1. Input as query image and dataset of medicalimages 

2. Separate R, G, B images planes. 

3. Steps 3 to 5 are repeated. 

4. Compute GLCM Matrices using Eq. (1) 

5. Using Eq (2) to (7) Statistical features are computed for every GLCM matrix  

in four dissimilar angles. 

6. The variance and mean values of all parameters are utilized to calculate the feature vector. 

7. Mine the more texture instructive features from the images
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The well-known statistical tool GLCM is used to extract 

second-order texture data from photographs. The rate of 

occurrence of a horizontally adjacent pair of pixels with 

values of i and j is represented by each element (i, j) in 

the GLCM. Typically, a pixel with value j shows 

horizontally next to a picture with a gray-level (gray-

scale potency) measurement of i. To calculating texture 

feature calculations, the GLCM's contents are used to 

measure intensity fluctuations at particular pixel 

positions. Two factors are used to calculate the co-

occurrence matrix: the relative orientation & the relative 

separation, expressed in pixel units, among the pixel 

pairings. Generally, these parameters are quantized in four 

directions (0°, 45°, 90°, and 135°), although alternative 

quantization directions are also possible. There are 

fourteen features in the GLCM, the most valuable of 

which are the angular second moment (ASM), 

correlation’s informational measure, sums the entropy 

inverse differential moment, and correlation. In terms of  

texture analysis, these traits are very promising. 

The normalized probability density, denoted as 𝑃𝛿(i, j), is 

defined for co-occurrence matrices as follows in Equation 

(1):

𝑃𝛿(𝑖, 𝑗) =
#{|(𝑥,𝑦),(𝑥+𝑑,𝑦+𝑑)|𝜖𝑆∣𝑓(𝑥,𝑦)=𝑖,𝑓(𝑥+𝑑,𝑦+𝑑)=𝑗}

#𝑆
      (1) 

 

In the context of the defined parameters: 

● The coordinates of the pixel are denoted by x and y, 

ranging from 0 to N−1. 

● The gray levels are represented by i and j, ranging from 

0 to L−1. 

● S stands for the collection of pixel pairs in the image 

that have certain relationships. 

● #S denotes how many elements there are in S. 

● The likelihood that the initial pixel is given the intensity 

value i and the subsequent pixel is given the brightness 

value j, spaced by a specified distance, is denoted by the 

symbol P(i, j). 

The Energy (E) value is employed to measure the extent 

of repetition of pixel pairs, serving as a measure of image 

uniformity. High similarity pixels are indicated by high 

energy values in the pixels. The computation looks like 

this Equation (2):

𝐸 = ∑𝑖,𝑗=0
𝑁−1  𝑝𝑖,𝑗

2     (2) 

In GLCM, the count of gray-level co-occurrence matrices 

is represented as p. 

The textured surface of the input image is described using 

the entropy Equation (3), an arbitrary measure of 

randomness. 

Entropy = −∑∑𝑝(𝑖, 𝑗)log 𝑝(𝑖, 𝑗)    (3) 

By calculating the intensity difference between a pixel & 

its neighboring pixel over the course of the entire image, 

difference in GLCM detects local fluctuations. The 

contrast value for an unchanging image is 0 Equation (4). 

Contrast = ∑∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)  (4) 

The pixel at location (i, j) is represented as p (i, j). 

The probability that two specific pixel pairings will occur 

together is measured by correlation Equation (5). 

Correlation =
∑𝑖=0
𝐺−1  ∑𝑗=0

𝐺−1  (𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗
   (5) 

The degree of element distribution homogeneity 

Equation (6) along the GLCM diagonal is quantified. 

Homogeneity = ∑𝑖,𝑗  
𝑃(𝑖,𝑗)

1+|𝑖−𝑗|
   (6) 

 Dissimilarity = ∑  𝑁−1
𝑖,𝑗=0 𝑃𝑖 , 𝑗|𝑖 − 𝑗| (7) 

The first element in Equation (7) denotes the vertical 

coordinate, and the second element denotes the 

horizontal coordinate. 

All of these traits have a strong ability to discriminate 

between different types of images. In this study, second-

order texture GLCM is used to extract statistical texture 

features. Six second-order features are specifically 

computed: contrast, dissimilarity, homogeneity, 

correlation, entropy, & energy. Contrast value gauges 

local level differences, while energy value measures 

image smoothness. High contrast images yield higher 

values, whereas low contrast images yield lower values. 

Homogeneity, measured within the GLCM, indicates the 

closeness of element distribution and ranges from 0 to 1, 

with a value of 1 for diagonal GLCM. Entropy serves as a 

measure of randomness. Dissimilarity effectively captures 

the differences between further information about the 

kinds of cancer or classes they most likely belong to is 

provided by picture features. Therefore, more useful 

characteristics can be retrieved from the provided weed 

database using the GLCM approach and the energy, 

homogeneity, entropy, correlation, dissimilarity, & 

contrast texture features. 

3.2. Artificial Neural Network (ANN) 

A computational model called an Artificial Neural 

Network (ANN), commonly referred to as a neural 

network, and is one that is motivated by the composition 

and operation of the human brain. It is an effective 

machine learning method utilized for many different 

tasks, including recognizing patterns, regression analysis, 
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classification, & data production. Artificial neurons or 

nodes, which are interconnected processing units, make 

up an ANN. Fig 1 shows the Workflow model of ANN.

 

 

Fig 1: Workflow Model of ANN  

 

Fig 2: Artificial Neural Network Architecture 

Fig 2 depicts the Layers used to organize these nodes, 

with a layer for input, one or more layers that are hidden, 

as well as an output layer being usual. Weights—learned 

throughout the training process—represent the links 

between the nodes. The basic building block of an 

artificial neuron is the perceptron, which takes a set of 

inputs, applies weights to each input, sums them up, and 

runs an activation function on the total. The activation 

function adds non-linearity to the model, allowing it to 

pick up on intricate patterns and connections. An ANN is 

trained using a two-step technique called back 

propagation and forward propagation. The input data is 

supplied into the network during forward propagation, 

and the activations are computed layer after layer until 

the result layer is reached. An error signal is then 

calculated by comparing the output to the desired output. 

Backpropagation is the procedure used to update the 

network's weights in order to reduce error. The weights 

are changed based on the changing slope of the 

measurement error with respect to those weights as the 

error signal travels backward through the network. This 

iterative process continues until the network learns to 

make accurate predictions or achieves a desired level of 

performance. 

3.2. Convolutional Long Short-Term Memory 

(CLSTM)  

Convolutional Long Short-Term Memory (CLSTM), a 

variation on the Long Short-Term Memory (LSTM) 

structure that adds Convolutional processes, goes by the 

name of CLSTM. Convolutional neural networks (CNNs) 

can extract spatial features from input, while LSTMs can 

capture long-term dependencies. These two capabilities 

are combined to create CLSTM. The Fig 3 Shows the 

workflow model of proposed CLSTM.
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Fig 3: Workflow Model of Proposed CLSTM  

* 

Fig 4: Convolutional Long Short-Term Memory (CLSTM) Architecture 

In a standard LSTM, the input is treated as a sequence, 

and the recurrent connections allow the network to 

capture dependencies between elements in the sequence. 

However, LSTMs do not explicitly consider the spatial 

structure of the data. CLSTM addresses this limitation by 

incorporating Convolutional operations into the LSTM 

framework.The main idea behind CLSTM is to replace 

the matrix multiplication operations in standard LSTMs 

with Convolutional operations. This allows the model to 

capture spatial patterns and dependencies in the input 

data. By using convolutions, the CLSTM can effectively 

process grid-like data such as images or spatio-temporal 

data. 

The CLSTM unit consists of three main components as 

shown in Fig 4: 

Convolutional Operations: The input sequence is 

convolved with filters, similar to a Convolutional layer in 

a CNN. This step enables the CLSTM to capture spatial 

features and patterns from the input data. 

LSTM Memory Cell: The convolved features are then 

passed through an LSTM memory cell. The memory cell 

has a similar structure to a standard LSTMincludes the 

input gate, output gate, and forget gate. It retains the 

ability to capture long-term dependencies and process 

sequential information. 

Output: The output of the CLSTM unit is obtained by 

passing the LSTM's output through a fully connected 

layer or another appropriate operation, depending on the 

specific task.

 

Algorithm 2: CLSTM Classification Process 

1. Prepare the data for CLSTM model:  `X_train, X_test, y_train, y_test = split_data(F)` 

2. Define the CLSTM model architecture:  `CLSTM_model = define_CLSTM_model()` 

3. Train the CLSTM model:  `CLSTM_model.train(X_train, y_train)` 

4. Evaluate the model on the test data: `accuracy = CLSTM_model.evaluate(X_test, y_test)` 

5. Get the predicted class:  `predicted_class = CLSTM_model.predict(F)` 

6. Output the predicted class: `print("Predicted class:", predicted_class)` 

The Algorithm 2 depicts the different steps in proposed CLSTM classification process. The CLSTM classification 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 52–64 |  58 

process begins with data preparation, where the extracted 

GLCM features are split into training and testing 

datasets, namely X_train, X_test, y_train, and y_test. 

Subsequently, a Convolutional Long Short-Term 

Memory (CLSTM) model is defined, tailored for medical 

image classification. The model is then trained using the 

training dataset (X_train, y_train) to learn relevant 

patterns and relationships. Its performance is assessed by 

evaluating accuracy on the test data (X_test, y_test). 

Once trained, the CLSTM model can predict the class of 

new medical images based on their extracted GLCM 

features, facilitating efficient medical image retrieval and 

classification. 

4. Implementation & Result Analysis 

In this implementation and result analysis, two models, 

Artificial Neural Network (ANN) and CLSTM, were 

utilized. The objective was to assess their performance 

and compare the results. The evaluation was based on 

various metrics such as precision, recall, F1-score, which 

were obtained from the classification report. The 

confusion matrix provided a detailed breakdown of the 

models' predictions and the actual classes. The Receiver 

Operating Characteristic (ROC) curve was employed to 

analyze the models' ability to classify instances accurately 

across different thresholds. By analyzing these metrics 

and visualizations, we gain valuable insights into the 

strengths and weaknesses of models. 

ANN Architecture Components 

We have developed an Artificial Neural Network (ANN) 

system, where we designed the ANN components as 

outlined in table 1, to accurately classify five different 

classes of medical images. 

Layer (type) Output Shape Param # 

dense (Dense) (None, 24) 600 

dropout (Dropout) (None, 24) 0 

dense_1 (Dense) (None, 24) 600 

dropout_1 (Dropout) (None, 24) 0 

dense_2 (Dense) (None, 24) 600 

dense_3 (Dense) (None, 24) 600 

dense_4 (Dense) (None, 5) 125 

Total params: 2,525 

Trainable params: 2,525 

Non-trainable params: 0 

 

 

Table 1: ANN Architecture Components 

The ANN consists of several layers, The first layer, 

named "dense," is a dense layer with 24 neurons. It 

produces an output shape of (None, 24), which means it 

generates an array of 24 elements for each input sample. 

This layer contains 600 trainable parameters representing 

the weights and biases associated with each neuron. 

The second layer, "dropout," is used for regularization to 

prevent overfitting in the model. It retains the output 

shape of (None, 24) since dropout does not alter the shape 

of the data. There are no trainable parameters in the 

dropout layer as it does not have any weights or biases. 

The third layer, "dense_1," is another dense layer with 24 

neurons, producing an output shape of (None, 24). It also 

contains 600 trainable parameters. 

The fourth layer, "dropout_1," is another dropout layer, 

and like before, it retains the output shape of (None, 24) 

and does not have any trainable parameters. 

Next, there are two additional dense layers, "dense_2" and 

"dense_3," each with 24 neurons and 600 trainable 
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parameters. Both layers maintain the same output shape 

of (None, 24). 

Finally, the last layer, "dense_4," is a dense layer with 5 

neurons, representing the total amount of categories in 

the task of classifying medical images. It generates a 

shape of (None, 5) as the output indicating that the model 

generates a probability distribution over the five classes 

for each input sample. This layer contains 125 trainable 

parameters. 

The complete ANN model has 2,525 trainable parameters 

in total. These variables are discovered during the training 

phase to enhance the accuracy of the model in precisely 

categorizing medical images. On the other hand, the non-

trainable parameters are set to zero, and they represent 

certain layer configurations or fixed operations that do not 

change during training

Confusion Matrix- ANN 

 

Fig 6: Confusion Matrix for ANN 

The chart for the confounded ANN is shown in Fig 6.  

Understand how well this model operates from the 

confusion matrix. A total of 903 images are offered. And 

the accuracy of this model was 91%.

AUC-ROC curve for ANN 

 

Fig 7: AUC-ROC curve for ANN 

A common performance assessment technique for 

Artificial Neural Network (ANN) models is the AUC-

ROC curve shown in Fig 7. AUC-ROC is the acronym 

for "Area Under the Curve - Receiver Operating 

Characteristic" curve. At various categorization criteria, 

the curve compares the True Positive Rate (TPR) and 

False Positive Rate (FPR). The model's capacity to 

distinguish among positive & negative examples is 

quantified by the AUC-ROC, which shows the way the 

model performs at various thresholds. AUC-ROC values 

closer to 1 shows great model efficacy in terms of 

accurately categorizing positive and negative examples, 
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whereas values closer to 0.5 imply random guessing. 

CLSTM Architecture Components 

The table 2 showcases the architecture of a CLSTM 

model created to classify five classes. By integrating 

convolutional and LSTM layers, the model efficiently 

processes input data, resulting in precise classification 

outcomes. 

The model begins with two 1D convolutional layers, 

named "conv1d" and "conv1d_1," each having 128 

filters. These layers process the input data, resulting in 

output shapes of (None, 22, 128) and (None, 20, 128), 

respectively. The "conv1d" layer has 512 trainable 

parameters, while the "conv1d_1" layer has 49,280 

trainable parameters. 

Next, a 1D max-pooling layer, "max_pooling1d," is 

applied to down-sample the data. It produces an output 

shape of (None, 10, 128) without introducing any 

trainable parameters. 

Subsequently, two more 1D convolutional layers, 

"conv1d_2" and "conv1d_3," with 256 filters each, further 

process the data. The output shapes are (None, 8, 256) and 

(None, 6, 256), respectively. The "conv1d_2" layer has 

98,560 trainable parameters, while the "conv1d_3" layer 

has 196,864 trainable parameters. 

 

 

 

Layer (type) Output Shape Param # 

conv1d (Conv1D) (None, 22, 128) 512 

conv1d_1 (Conv1D) (None, 20, 128) 49280 

max_pooling1d (MaxPooling1D) (None, 10, 128) 0 

conv1d_2 (Conv1D) (None, 8, 256) 98560 

conv1d_3 (Conv1D) (None, 6, 256) 196864 

max_pooling1d_1 (MaxPooling1D) (None, 3, 256) 0 

dropout (Dropout) (None, 3, 256) 0 

1stm (LSTM) (None, 3, 100) 142800 

1stm_1 (LSTM) (None, 100) 80400 

flatten (Flatten) (None, 100) 0 

dense (Dense) (None, 512) 51712 

dense_1 (Dense) (None, 5) 2565 

 

Table 2: CLSTM Architecture Components 

The output shape is (None, 3, 256) after a 1D max-

pooling layer, "max_pooling1d_1," conducts additional 

down-sampling. 

The subsequent layer, "dropout," is a regularization layer, 

and it does not introduce any trainable parameters. 

Following the convolutional layers, two LSTM (Long 

Short-Term Memory) layers, "lstm" and "lstm_1," 

process the sequential data. The "lstm" layer has 100 

units, producing an output shape of (None, 3, 100), and it 

has 142,800 trainable parameters. The "lstm_1" layer, also 

with 100 units, produces an output shape of (None, 100) 

and has 80,400 trainable parameters. 

A flatten layer, "flatten," is used to convert the 3-

dimensional tensor into a 2-dimensional tensor with shape 

(None, 100). 

The model then incorporates two dense layers, "dense" 
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and "dense_1," for the final classification. The "dense" 

layer has 512 neurons and an output shape of (None, 

512), with 51,712 trainable parameters. The last dense 

layer, "dense_1," has 5 neurons, representing the number 

of classes in the classification task. Its output shape is 

(None, 5), and it introduces 2,565 trainable parameters. 

The neural network has a total of 622,693 trainable 

parameters, which are modified during the training 

procedure to enhance the performance of the model. The 

non-trainable parameters, which indicate particular layer 

configurations that don't change throughout training, are 

set to zero.

Confusion Matrix-CLSTM 

 

                    Fig 9: Confusion Matrix for CLSTM 

The chart for the confounded CLSTM is shown in Fig 9.  

Understand how well this model operates from the 

confusion matrix. A total of 903 images are offered. And 

the accuracy of this model was 99.01%.

AUC-ROC curve for CLSTM 

 

Fig 10: AUC-ROC curve for CLSTM 

A performance measure is the AUC-ROC (Area under 

the Receiver's Operational Characteristic Curve) 

evaluation metric commonly used in CLSTMmachine 

learning models shown in Fig 10. CLSTMmodels 

combine multiple algorithms or techniques to improve 

predictive accuracy and address complex problems 

effectively. 

In especially for binary classification tasks, the 

categorization performance of a CLSTM model is 

evaluated using the AUC-ROC curve. By displaying the 

True Positive Rate (TPR) versus the False Positive Rate 

(FPR) at various classification thresholds, it assesses the 

model's capacity to discern between positive and negative 

cases. The AUC-ROC score goes from 0 to 1, with 0.5 
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denoting a random classifier and 1 denoting a perfect 

classifier. The AUC-ROC score's proximity to 1 

indicates how well the CLSTM model can distinguish 

among the two classes. 

The AUC-ROC curve offers a comprehensive view of the 

CLSTMmodel’s performance across various thresholds, 

making it particularly valuable when dealing with 

imbalanced datasets or complex classification tasks. It 

allows researchers and practitioners to make informed 

decisions about model selection and fine-tuning to 

achieve the best possible performance in CLSTM 

machine learning systems.

 

Table 3: Comparison of CLSTM with ANN 

Class Precision Recall F1-Score Accuracy  

ANN 

Alzimer 0.99 0.99 0.99   

 0.91 BreastCancer 0.92 0.93 0.93 

BrainTumor 0.94 0.95 0.95 

Covid 0.85 0.87 0.86 

Tuberculosis 0.83 0.77 0.80 

CLSTM 

Class Precision Recall F1-Score  

 

0.9901 

Alzimer 0.99 1.00 0.99 

BreastCancer 1.00 0.97 0.98 

BrainTumor 0.99 1.00 0.99 

Covid 0.97 0.99 0.98 

Tuberculosis 0.99 0.98 0.98 

The Table 3 shows that the ANN (Artificial Neural 

Network) model achieved an accuracy of 91%, while the 

CLSTM model achieved an impressive accuracy of 

99.01%. Additionally, the CLSTM model consistently 

outperformed the ANN model in terms of precision, 

recall, and F1-scores across various classification tasks. 

The CLSTM model's high accuracy of 99.01% suggests 

that it is highly effective in disease classification and 

demonstrates superior performance compared to the ANN 

model.

 

Fig 11: Accuracy Comparison Graph 

Accuracy comparison between Artificial Neural 

Networks (ANN) and CLSTM models is a crucial aspect 

of evaluating their performance in various machine 

learning tasks. ANN, a class of deep learning algorithms, 

excels in learning complex patterns from data and 

handling large datasets. Its accuracy heavily depends on 

the network architecture, number of layers, and neurons, 

along with hyper parameters tuning. In tasks like speech 
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recognition, natural language processing, & picture 

recognition, ANN can reach high accuracy. On the other 

hand, CLSTM models combine the strengths of different 

algorithms or techniques to enhance overall performance. 

By integrating various models, they can handle diverse 

data types and address complex problems effectively. 

CLSTM models can outperform standalone algorithms in 

certain situations, especially when dealing with 

imbalanced datasets or handling multiple types of 

features. 

The Fig 11 shows the accuracy comparison between 

ANN and CLSTM models varies based on the dataset and 

problem at hand. In some cases, ANN might yield higher 

accuracy due to its ability to learn intricate patterns. In 

contrast, CLSTM models can offer superior accuracy in 

scenarios where data diversity and feature engineering 

play critical roles. Ultimately, the choice between ANN 

and CLSTM models depends on the specific problem, 

data characteristics, and computational resources 

available. By systematically testing and validating both 

approaches, researchers and practitioners can determine 

which model type is more suitable for a particular task, 

ultimately achieving the desired level of accuracy. 

5. Conclusion 

We have provided a brand-new framework for effective 

content-based retrieval of medical images that is based 

on deep learning. The framework shows how well the 

Gray Level Co-occurrence Matrix (GLCM) & particular 

image attributes may be used to find pertinent medical 

images across a range of categories. Our experimental 

results show that the framework is capable, at the ANN 

(Artificial Neural Network) model categorizing medical 

images with an accuracy of 91%. The Convolutional 

Long Short-Term Memory (CLSTM) hybrid deep 

learning model outperforms the ANN model with an 

accuracy of 99.01%. These high accuracies highlight the 

potential of the proposed framework in accurately 

retrieving relevant medical images. 

Future enhancements could include expanding the 

dataset to a broader range of medical conditions and 

incorporating more diverse medical image modalities 

would increase the system's versatility. Furthermore, 

integrating clinical metadata and patient-specific 

information into the retrieval process could enable 

personalized medical image retrieval, tailored to 

individual patient needs. This would enhance the clinical 

decision-making process and contribute to more precise 

diagnoses and treatment planning. 
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