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Abstract: This paper presents a machine learning system designed to differentiate real from synthetic speech using a Support Vector 

Machine (SVM) classifier. Trained on the 'for-original' Fake-or-Real (FoR) dataset, which consists of over 195,000 genuine and computer-

generated utterances, the system uses Mel Frequency Cepstral Coefficients (MFCCs) to extract features. Evaluation results show a 

promising accuracy of 97.28%, indicating the system's potential efficacy in real-world applications. The work lays the foundation for future 

improvements in detection robustness and reliability by highlighting the significance of raw data in classifier training for deepfake 

detection. 
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1. Introduction 

Deepfakes, manipulated media that realistically replace or 

alter a person's speech or appearance, have grown more and 

more problematic in the current digital era. Their ability to 

deceive audiences and spread misinformation poses 

significant threats to individual privacy, social trust, and 

even national security. While visual deepfakes have 

received much attention, audio-based deepfakes, often 

overlooked, can be equally impactful, manipulating speech 

content and impersonating voices with alarming accuracy. 

This makes reliable audio deepfake detection a critical 

challenge. 

Existing research on deepfake detection has primarily 

focused on visual analysis, leveraging techniques like facial 

recognition and anomaly detection. However, these 

methods are often vulnerable to manipulation and may 

struggle with subtle audio changes. Audio-based detection, 

on the other hand, offers a promising alternative by 

analyzing the intrinsic characteristics of speech signals. This 

approach can potentially detect deepfakes based on subtle 

alterations in voice timbre, pitch, and pronunciation, even 

when the visual content appears unaltered. 

The main focus of this research is to investigate how 

effectively we can identify audio based deepfakes by using 

Mel Frequency Cepstral Coefficients (MFCCs) and Support 

Vector Machine (SVM). MFCCs are a powerful feature 

extraction technique commonly used in audio analysis, 

capturing the spectral characteristics of sound and providing 

a robust representation of speech signals. SVMs are highly 

regarded for their aptitude in tackling intricate data and 

attaining remarkable classification precision. Utilizing a 

combination of these methods, our objective is to create an 

effective and streamlined deepfake detection model that 

employs audio cues to distinguish authentic speech from 

manipulated recordings with exceptional accuracy. 

This research will contribute to the growing field of 

deepfake detection by: 

⚫ Exploring the potential of audio-based analysis 

for deepfake identification. 

⚫ Developing and evaluating a robust audio 

deepfake detection model using MFCCs and 

SVMs. 

⚫ Exploring the advantages and drawbacks of using 

audio-based techniques in comparison, to the 
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methods. 

⚫ Contributing to the development of effective 

tools and techniques for mitigating the harms of 

deepfakes. 

The successful implementation of this research could lead 

to the development of reliable audio deepfake detection 

tools that can be integrated into various applications, such 

as social media platforms, news outlets, and even forensic 

investigations. This, in turn, can help combat the spread of 

misinformation, protect individual privacy, and promote 

trust in digital communication. 

2. Literature Survey 

Authors in [1] provide a comprehensive overview of 

deepfake creation and detection, focusing on multimedia 

content. They explore various generation techniques but 

lack detailed insights into specific detection models or their 

performance. The paper emphasizes the need for robust 

detection methods and highlights challenges in deepfake 

technology. However, it lacks an in-depth analysis or 

concrete results on audio-based detection methods, 

including MFCCs and SVMs, which are central to our 

research.  

In [2], the authors extensively explore various approaches to 

create audio deepfakes. The paper categorizes methods, 

including voice conversion, speech synthesis, voice cloning, 

and audio editing. It highlights advancements in voice 

conversion and speech synthesis, making fake audio more 

realistic. Voice cloning is recognized as a challenging area 

requiring extensive training data. The study also notes the 

effectiveness of audio editing but emphasizes its potential 

for inconsistencies and detectability issues due to unnatural 

transitions, providing a nuanced understanding of the 

complexities in audio deepfake creation.  

In [3], the paper explores machine and deep learning models 

for detecting deepfakes, comparing Support Vector 

Machines (SVMs), Artificial Neural Networks (ANNs), and 

Convolutional Neural Networks (CNNs). The study 

emphasizes the superiority of ANNs and CNNs over SVMs 

in audio deepfake detection, with a focus on Mel-Frequency 

Cepstral Coefficients (MFCCs) as effective features. The 

findings highlight the efficacy of hybrid approaches, 

suggesting that combining various models and features can 

optimize deepfake detection performance.  

In [4], 'POI-Forensics' is introduced as a novel approach to 

deepfake detection, broadening traditional methods with 

combined audio-visual analysis. The methodology utilizes 

contrastive learning to distinguish genuine and manipulated 

representations of specific individuals ('Persons-of-Interest' 

or POI). Unique in its approach, POI-Forensics processes 

audio and video separately, integrating analyses through 

separate sub-networks. This approach ensures alignment 

with the learned POI model without requiring the POI’s 

training data for testing, offering flexibility and broader 

applicability. The model demonstrates robustness against 

challenges like compression and adversarial attacks, 

outperforming other audio-visual and single-modality 

methods in detection accuracy and representing a significant 

advancement in deepfake detection.  

In [5], AVoiD-DF presents a groundbreaking model that 

enhances deepfake detection accuracy by combining audio 

and visual data. It adopts a dual-stage architecture, 

intricately weaving neural networks (CNNs) for spatial and 

temporal characteristics in the visual aspect and Mel 

Frequency Cepstral Coefficients (MFCCs) and Gammatone 

features for audio analysis. The model's joint learning 

mechanism converges audio and visual features in a unified 

latent space, enriched by a cross-modal attention 

mechanism. This alignment significantly improves the 

model's proficiency in detecting subtle inconsistencies often 

missed in single-modality methods. Demonstrating 

robustness against environmental noise and camera effects, 

AVoiD-DF outperforms existing audio-only, video-only, 

and other joint learning models, setting a new standard in 

deepfake detection. The approach marks a substantial leap 

forward, offering a more integrative and precise solution for 

identifying deepfakes.  

In [6], authors propose a novel approach emphasizing non-

speech audio elements, achieving remarkable accuracy and 

robustness across diverse deepfake techniques. The survey 

showcases the evolving landscape of deepfake detection, 

emphasizing a shift from traditional single-modality to 

sophisticated multimodal methods. The integration of 

diverse techniques underscores the complexity and urgency 

of effectively combating deepfake technologies.  

In [7], the paper addresses the intricate challenge of 

detecting deepfakes in group conversations, overcoming 

existing method shortcomings in noisy environments. The 

Group-Aware Deep Convolutional Neural Network 

(GADCNN) focuses on individual speaker attributes and 

group-level dynamics, significantly enhancing detection 

accuracy and outperforming traditional methods in true 

positive and false positive rates. Despite notable success, the 

paper acknowledges limitations such as a small dataset size 

and vulnerability to adversarial attacks, suggesting further 

research with expanded datasets and exploration of 

countermeasures. The potential integration of GADCNN 

into real-time conversation systems is highlighted, 

emphasizing its practical applicability. Overall, the paper 

contributes substantially to deepfake detection in dynamic 

group settings, paving the way for more sophisticated and 

robust detection systems.  

In [8], the paper introduces a machine learning-focused 

approach for audio deepfake detection, emphasizing Mel-

frequency cepstral coefficients (MFCCs). The study 
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addresses challenges in audio-only deepfake detection, 

showcasing the effectiveness of SVMs with an accuracy 

exceeding 95% on real and manipulated audio data from the 

Fake-or-Real dataset. The researchers also explore 

dimensionality reduction techniques like PCA, enhancing 

model accuracy. While acknowledging limitations like a 

narrow dataset focus and potential pre-processing impacts, 

the study suggests future directions, including broader 

dataset evaluations for improved generalizability and 

integration into real-world applications. This research 

highlights the efficacy of traditional machine learning 

methods, especially SVMs, in audio deepfake detection, 

offering a practical alternative to more complex deep 

learning approaches.  

In [9], a novel approach to deepfake audio detection is 

introduced, utilizing a vision transformer-based 

methodology distinct from traditional audio techniques. The 

authors convert audio signals into spectrograms and employ 

a vision transformer for classification, showcasing 

promising performance on a dataset with real and deepfake 

audio samples. This approach highlights the potential of 

visual features from spectrograms to capture nuanced 

manipulation cues not easily discernible in raw audio data. 

While recognizing the need for broader datasets, the study 

suggests pre-training the vision transformer on extensive 

audio datasets to enhance performance and robustness. The 

paper proposes investigating the combination of this 

approach with traditional audio-based techniques for a 

comprehensive deepfake detection system, offering an 

innovative avenue in this domain.  

In [10], the paper addresses the challenge of detecting 

deepfakes across various media types. It categorizes 

deepfakes, discusses limitations, and proposes a "Deepfake 

Detection System" model. However, it lacks specific 

implementation details, comprehensive comparisons with 

existing methods, and empirical evaluations. While valuable 

for newcomers, the paper primarily focuses on theoretical 

aspects, emphasizing the need for further research and 

development. It provides insights and a framework for 

future work but could benefit from more in-depth 

exploration and evaluation of its proposed model and a more 

extensive review of existing detection approaches.  

In [11], the paper focuses on detecting deepfake audio using 

a specialized Deep Convolutional Neural Network (CNN) 

structure. The approach utilizes features like Mel Frequency 

Cepstral Coefficients (MFCCs) and spectral attributes to 

differentiate between genuine and manipulated audio, 

showing high accuracy on a dataset with both types of 

samples. The paper underscores the advantages of CNNs in 

deepfake detection, citing their ability to learn intricate 

patterns and maintain robust performance with limited 

training data. Acknowledging dataset limitations, the 

authors recommend further evaluation on larger, more 

diverse datasets for generalizability. They propose 

exploring different pre-processing methods for effective 

feature extraction and suggest investigating practical 

applications like online communication platforms and voice 

assistants. In conclusion, the paper highlights CNNs as a 

promising tool for deepfake audio detection, providing a 

strong model architecture while emphasizing the need for 

ongoing research and enhancements for practical scenarios. 

In [12], the paper introduces an innovative approach to 

deepfake audio detection using unsupervised pretraining 

models. It presents two architectures: a feature extraction 

model and a multi-task learning model, both achieving 

remarkable performance on the ADD2022 challenge, a 

benchmark dataset. The feature extraction model achieves a 

32.80% Equal Error Rate (EER) for low-quality fake audio, 

while the multi-task learning model achieves an exceptional 

4.80% EER for partially fake audio. The latter demonstrates 

robustness and generalizability, even with substantially 

different data, suggesting real-world applicability. 

Acknowledging potential limitations against high-quality 

deepfakes, the paper calls for further research to enhance 

performance in such scenarios. The authors recommend 

exploring various unsupervised pretraining models and 

architectures for potential improvements and advocate for 

investigating the explainability and interpretability of the 

models' decisions. In summary, this paper showcases 

progress in identifying audio using unsupervised pretraining 

models, emphasizing their potential in constructing efficient 

systems for detecting deepfakes. 

In [13], the paper introduces an audio anti-spoofing system 

designed to combat deepfakes and spoofing attacks, 

leveraging low-frequency sub-band information for robust 

detection. The system demonstrates effectiveness against a 

dataset containing deepfake audio examples, maintaining 

accuracy and resilience even in challenging scenarios with 

background noise and channel mismatch. While the paper 

presents a novel approach emphasizing low-frequency 

features, it acknowledges limitations, including a relatively 

small dataset, suggesting the need for broader evaluations 

and addressing potential vulnerabilities to advanced 

spoofing techniques. The authors recommend further 

research to enhance robustness and investigate 

computational efficiency for real-time applications. 

In [14], the paper introduces a novel deepfake audio 

detection approach using bi-level optimization to enhance 

robustness against adversarial attacks. The method involves 

two optimization stages, with Level 1 utilizing a deep neural 

network for authenticity prediction and Level 2 employing 

an adversarial perturbation function. This iterative process 

results in a more resilient detection system, outperforming 

traditional models on a dataset of genuine and manipulated 

audio samples. Despite its promising potential, the 

methodology faces challenges such as potential 
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computational expenses and vulnerability to complex 

adversarial attacks. Further research is recommended for 

mitigating these issues and exploring interpretability. 

Overall, the paper offers a valuable advancement in creating 

robust audio verification systems for detecting deepfakes.  

In [15], the paper introduces Quick-SpoofNet, a deep 

learning model designed for audio deepfake detection in 

voice anti-spoofing systems. Quick-SpoofNet employs 

innovative techniques, including one-shot learning, metric 

learning, and spectral feature analysis, to discern differences 

between real and manipulated audio. Its strength lies in its 

impressive ability to generalize effectively using minimal 

training data, achieving high accuracy and generalizability 

across various deepfake generation techniques. While 

contributing significantly to voice security, future research 

should involve testing on diverse real-world audio 

recordings, exploring different feature extraction methods, 

and assessing integration feasibility into existing voice 

biometric systems. 

In [16], the paper presents SpecRNet, an innovative deep 

learning architecture for efficient audio deepfake detection. 

SpecRNet uses lightweight convolutional layers and 

residual blocks to reduce computational demands while 

maintaining high accuracy. It significantly reduces 

processing time, making it suitable for real-time 

applications, and demonstrates effectiveness across diverse 

datasets and conditions. Noteworthy strengths include faster 

and more accessible deepfake detection, especially in real-

time scenarios, and compatibility with various devices. 

Future work should involve evaluation against real-world 

deepfakes, exploration of methods to enhance accuracy, and 

integration with existing audio processing pipelines and 

security systems. "SpecRNet" advances audio deepfake 

detection by offering a fast, efficient, and accurate model for 

practical use in safeguarding online communication. 

In [17], the paper introduces the SE-Res2Net-Conformer 

architecture, a novel model designed for detecting synthetic 

voices and audio splicing. Combining SE-Res2Net for local 

pattern capture and Conformer for global temporal context, 

the model outperforms previous approaches in synthetic 

voice detection on the ASVspoof 2019 dataset. The paper 

also proposes a new formulation for audio splicing 

detection, emphasizing splicing segment boundaries, 

improving detection accuracy. While showcasing strengths 

in feature extraction and detection performance, the study 

acknowledges limitations in dataset size and suggests 

testing on more diverse datasets and real-world scenarios. 

The paper presents a promising approach to audio 

manipulation detection, offering improved performance in 

synthetic voice and spliced audio detection. 

In [18], the authors propose a novel method for identifying 

deepfake audio using Mel-Frequency Cepstral Coefficients 

(MFCCs) and deep learning techniques. The approach 

leverages a deep neural network architecture, with CNNs 

outperforming other models in detecting manipulated audio 

on a controlled dataset. Despite considerable accuracy, the 

study recognizes limitations due to a smaller dataset, 

suggesting further research on larger and more diverse 

datasets to assess generalizability. The authors also 

recommend exploring different pre-processing techniques 

and evaluating the model's resilience against advanced 

deepfake generation methods and adversarial attacks. The 

paper marks a promising beginning in deepfake detection, 

acknowledging its limitations and paving the way for future 

advancements in more robust detection systems.  

In [19], the paper introduces a novel deep learning approach 

for detecting fake audio messages using a hybrid model 

combining recurrent and convolutional neural networks 

(RNN-CNNs). The RNNs capture temporal dependencies, 

while CNNs extract spatial features from spectrograms. The 

model shows promising results on a dataset with real and 

fake audio messages, achieving high accuracy. The 

combined RNN-CNN approach outperforms using only 

RNNs or CNNs, highlighting its effectiveness in feature 

extraction and classification. While demonstrating 

innovative potential, the paper acknowledges limitations, 

including a relatively small dataset, suggesting further 

evaluation on larger datasets and exploration of different 

pre-processing techniques. Investigating the model's 

robustness against advanced deepfake techniques and 

adversarial attacks is suggested for future work. 

In [20], the paper explores deep learning methods for 

detecting deepfake audio in digital forensics. It reviews 

existing deepfake audio classification methods and conducts 

a comparative analysis of various deep learning techniques, 

including custom architectures and pre-trained models like 

VGG-16. The evaluation considers features such as MFCC, 

Mel-spectrum, Chromagram, and spectrograms. Custom 

architectures excel with Chromagram, Spectrogram, and 

Mel-Spectrum features, while VGG-16 performs well with 

MFCC features. The paper contributes to forensic 

investigators' capabilities in distinguishing real and 

synthetic voices, offering insights for advancing digital 

forensics tools. Strengths include a comprehensive 

overview, method evaluation, and visualization of audio 

features. Limitations involve a limited dataset, suggesting 

further assessment with larger datasets, exploration of other 

feature sets, and investigation of model robustness against 

advanced deepfake techniques and adversarial attacks. 

In [21], the paper introduces a novel deepfake detection 

approach by simultaneously analyzing audio and video 

modalities. This addresses the vulnerability of single-

modality methods to manipulations targeting the other 

modality. The proposed deep learning architecture enables 

cross-modal interaction and information fusion, enhancing 

the model's ability to detect inconsistencies between audio 
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and video features. Evaluation on diverse deepfake datasets 

demonstrates effectiveness, with strengths including a 

multimodal approach and robust performance. However, the 

paper acknowledges dataset limitations, emphasizing the 

need for larger and more diverse datasets for further 

evaluation. It also highlights the importance of improving 

explainability and understanding the model's decision-

making process, with further research needed for real-world 

scenarios involving sophisticated deepfakes and adversarial 

attacks. 

In [22], the paper critically examines the impact of 

deepfakes on scientific knowledge dissemination and 

proposes mitigation strategies. The study emphasizes the 

susceptibility of individuals in the education sector to 

deepfake manipulation and underscores the need for 

detection tools, critical thinking skills, and information 

verification. A field experiment assesses vulnerability, 

revealing the necessity for targeted interventions and 

educational training. The study contributes by exploring this 

under-researched area and advocating a multi-pronged 

approach. Despite its strengths, the study has limitations, 

including a small sample size, necessitating further research 

with larger and more diverse populations. Future 

exploration of detection and mitigation strategies in real-

world situations and the use of emerging technologies is 

suggested. Overall, the paper provides valuable insights into 

addressing deepfake impact on scientific information 

dissemination, advocating proactive measures for 

knowledge safeguarding.  

3. Proposed Architecture 

Fig. 1 explains the architecture our system, which begins 

with the preparation of the datasets. We curate a collection 

of genuine audio clips and an equivalent set of sophisticated 

deepfake audio samples. The authenticity of real audio 

samples is verified through controlled recording 

environments to ensure the baseline dataset's integrity. We 

utilize Mel-Frequency Cepstral Coefficients (MFCCs) for 

feature extraction due to their effectiveness in encoding 

timbral aspects of the audio signal which are crucial for 

distinguishing deepfakes from real audio. To streamline the 

dataset, we compute the mean MFCCs across all samples to 

derive a consistent feature vector that represents the essence 

of the dataset. This process ensures a reduced-dimensional 

feature space for efficient training. 

 

Fig. 1. Architecture of the Proposed Model 

Our predictive model, as displayed in figure 1 of the model 

training and evaluation section, relies on a customized 

Support Vector Machine (SVM) classifier. We specifically 

selected an SVM due to its impressive performance in high-

dimensional spaces and its capacity to handle non-linear 

boundaries through kernel functions. To ensure the model's 

effectiveness in predicting unseen samples, we conduct a 

grid search optimization to fine-tune hyperparameters. 

Additionally, we employ cross-validation with a subset of 

the dataset that was not used in the training process, using 

metrics like accuracy, precision, recall, and F1-score to 

continuously enhance the model's performance. 

The user interface accepts an audio file input, which is then 

processed to extract MFCCs, mirroring the feature 

extraction process used in dataset preparation this is shown 

in figure 1 in user input. These features are fed into the SVM 

classifier, which uses the decision function shaped during 

the training phase to evaluate the audio file. The classifier 

outputs the a score that provides an indication of the 

probability that the audio's a deepfake. To ensure 

robustness, we implement a thresholding mechanism that 

allows for configurable sensitivity, accommodating 

scenarios where a higher degree of certainty is required 

before flagging an audio clip as fake. 

The prediction made by the SVM classifier is presented to 

the user along with a confidence score that quantifies the 

certainty of the model’s decision which is shown in figure 1 

in results. Visualization tools are shown in figure 1 in 

visualization, are integrated into the system to offer a 

transparent view of the decision-making process: The 

MFCC graph visually represents the extracted features from 
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the user's audio file, allowing for a comparison against 

typical profiles of real and fake audio. The waveform graph 

provides a direct visual comparison of the audio file's 

waveform to common patterns observed in genuine and 

deepfake samples. The Mel-spectrogram offers a heat map 

of frequency intensities over time, providing insight into the 

temporal characteristics of the audio signal, which could be 

indicative of manipulation. These visual outputs not only 

serve as an explanatory aid to support the system's 

prediction but also enable users to perform a heuristic 

analysis, potentially identifying artifacts that automated 

processes may overlook. 

4. Implementation 

4.1. Dataset Preparation 

For the construction and evaluation of our SVM-based 

deepfake audio detection system, we employed the 'for-

original' variant of the Fake-or-Real (FoR) Dataset. This 

dataset is part of a comprehensive collection curated by the 

APTLY lab and accessible through the Biometric 

Intelligence Lab at York University [23]. The 'for-original' 

dataset comprises a substantial corpus of over 195,000 audio 

utterances, meticulously gathered to represent both 

authentic human speech and synthetic speech outputs from 

state-of-the-art TTS technologies. Our system's design 

philosophy mandated the use of raw, unaltered data to 

ensure that the model was trained under conditions that 

closely mimic real-world scenarios. This dataset variant, 

being the most pristine and unprocessed among the 

available options, was thus an ideal fit for our objectives.   

Dataset Characteristics: 

Volume and Diversity: The "for-original" dataset contains 

a diverse collection of speech variations that encompass a 

broad range of vocal characteristics shaped by the speaker's 

identity, accent, and linguistic content. 

Source Inclusivity: The inclusion of samples from 

advanced TTS systems like Deep Voice 3 and Google 

Wavenet TTS, alongside human speech from the Arctic, 

LJSpeech, and VoxForge datasets, provides a robust 

challenge for the classifier's discriminatory capacity. 

Quality Assurance: The high fidelity of the recordings 

ensures that the model is trained and tested against data that 

maintain the integrity of the acoustic properties inherent in 

genuine and synthetic speech. 

4.2. Feature Extraction 

MFCCs are widely recognized for their efficacy in encoding 

timbral and textural aspects of sound, making them 

particularly suitable for speech and audio analysis tasks 

where the identification of unique characteristics is 

paramount. The process of computing MFCCs entails 

several computational stages, each designed to transform 

the raw audio waveform into a feature set that faithfully 

captures the essential spectral properties while aligning with 

the human auditory system's perceptive capabilities. 

Process of Computing MFCCs is explained in fig. 2. The 

process begins with the raw audio waveform, representing 

the sound pressure variations over time. The first 

computational step is the application of the DFT, which 

transforms the signal from the time domain into the 

frequency domain. The DFT of an audio sample is 

mathematically represented as: 

𝑋(𝑘)

= ∑ 𝑥(𝑛)

𝑁−1

𝑛=0

⋅ 𝑒−𝑗
2𝜋
𝑁

𝑘𝑛                                                                 (1) 

                        

 where  is the Fourier Transform of the signal at frequency 

bin 𝑘, 𝑥(𝑛), is the 𝒏 − 𝒕𝒉 sample of the input signal, and 

is the total number of samples. The magnitude squared of 

the DFT results in the power spectrum, which illustrates the 

power present at each frequency component: 

𝑃(𝑘)

= |𝑋(𝑘)|2                                                                                   (2) 

The power spectrum is then passed through a set of bandpass 

filters known as the Mel filter bank. The number of filters, 

M, in the filter bank typically ranges from 20 to 40 and is 

spaced  

 

 

Fig. 2. Process of extraction of MFCCs 

uniformly on the Mel scale which is shown in fig. 3. The 

filter bank output, 𝑆(𝑚), is given by: 
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𝑆(𝑚)

= ∑ 𝑃(𝑘)

𝑁−1

𝑘=0

⋅ 𝐻𝑚(𝑘)                                                                 (3) 

 

where 𝐻𝑚(𝑘) is the Mel filter bank's 𝒎 − 𝒕𝒉 filter. 

 

Fig. 3. Mel Scale 

The log filter bank energies are calculated using a 

logarithmic scale, mimicking the way our ears perceive 

loudness, and producing a group of precise measurements: 

𝑙𝑜𝑔 𝑆(𝑚) = 𝑙𝑜 (∑ 𝑃(𝑘)

𝑁−1

𝑘=0

⋅ 𝐻𝑚(𝑘))                                             (4)  

 

Finally we apply the Discrete Cosine Transform (DCT) to 

the log Mel filter bank energies to calculate the MFCCs. 

This step decorrelates the log Mel spectrum and yields a 

compressed representation of the filter banks, emphasizing 

the lower order coefficients, which typically capture the 

most salient aspects of the signal. The 𝒏 − 𝒕𝒉 MFCC, 𝑪𝒏, 

is calculated as follows: 

𝐶𝑛 = ∑ 𝑙𝑜𝑔

𝑀

𝑚=1

𝑙𝑜𝑔 𝑆 (𝑚) ⋅

𝑐𝑜𝑠 𝑐𝑜𝑠 [𝑛(𝑚 − 0.5)
𝜋

𝑀
]                  (5)  

 

for 𝒏 = 𝟏, 𝟐, . . . , 𝑳, where 𝑳 is the number of MFCCs kept 

for the analysis (often 𝑳 is set to 12 or 13). 

The MFCCs are a compact representation of the audio 

signal’s spectral characteristics. The lower-order 

coefficients, which contain the most important information 

for audio processing tasks, are typically utilized for 

deepfake detection. This selection is due to their ability to 

characterize the vocal tract configuration, which is altered 

during the creation of deepfake audio. In deepfake detection 

algorithms, these coefficients serve as input features to 

classification models, such as Support Vector Machines 

(SVM). Their effectiveness stems from their capacity to 

capture nuances in speech that can distinguish genuine from 

manipulated audio. The MFCCs' robustness against 

variations in speaking environments and recording 

conditions further justifies their selection for this 

application. 

For our system's core analytical capability hinges on 

extracting Mel-Frequency Cepstral Coefficients (MFCCs) 

to serve as features for our Support Vector Machine (SVM) 

classifier. The `extract_mfcc_features` function processes 

audio files to compute 13 MFCCs, utilizing an FFT window 

of 2048 and a hop length of 512. These parameters were 

empirically determined to capture the essential 

characteristics of the audio signal for the purpose of 

deepfake detection. The dataset is dynamically constructed 

using the `create_dataset` function, which iterates over 

audio files in specified directories, classifying them as 

genuine or deepfake. The function extracts MFCC features 

from each audio sample and labels them accordingly, 

ensuring a balanced dataset for model training. 

4.3. Model Training & Evaluation 

Before we train our SVM classifier, it's essential to 

preprocess our feature set by standardizing it with a mean of 

zero and a variance of one. To accomplish this, we rely on 

the `StandardScaler` from Scikit-learn. Our training process 

involves splitting the dataset into two sets, a training set and 

a test set, using a stratified approach to maintain the 

proportion of classes between them. Using Scikit-learn's 

`SVC` with a linear kernel, we then train our SVM classifier 

on the scaled training data. 

Post-training, the classifier's performance is quantified 

through the accuracy metric, and the results are distilled into 

a confusion matrix. These metrics play a crucial role in 

evaluating how well the classifier can apply what it learned 

from the training data to new and unseen data, giving an 

unbiased indication of its predictive capabilities. We 

deliberately chose accuracy as our primary metric due to its 

interpretability and relevance to binary classification 

problems; however, it's complemented by the confusion 

matrix, which provides deeper insight into classification 

errors. To facilitate the operational deployment of the 

model, we serialize the trained SVM classifier and the scaler 

using Joblib, which is a Python library for lightweight 

pipelining in Python. This allows for the model and 

preprocessing steps to be saved and loaded efficiently for 

subsequent predictive analysis without the need to retrain. 

The technical architecture of our model training pipeline is 

designed to ensure scalability, performance, and 

maintainability. This approach allows us to adapt our 

solution to the evolving landscape of deepfake audio 

detection, ensuring that our system remains at the forefront 

of technological efficacy. 
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The evaluation of the SVM model has been conducted on a 

dataset comprising real and deepfake audio samples. 

The performance metrics extracted described in fig. 4 from 

the testing phase are as follows: 

The dataset is composed of two distinct classes - 0 for 

genuine and 1 for deepfake. These classes were identified 

through careful examination of the unique classes within the 

training set, which consists of a total of 30,204 samples. 

Each sample is described by 13 MFCC features, indicating 

a sizable dataset. This large dataset size is advantageous for 

building a robust model. To enable effective training and 

evaluation, the dataset was divided into a  

 

Fig. 4. Model Evaluation result 

training set comprising 24,163 samples and a test set with 

6,041 samples, adhering to the standard 80-20 split ratio. 

This common practice in machine learning ensures 

sufficient data for learning while also providing a 

substantial evaluation set. 

 

Fig. 5. Confusion Matrix for the model 

Fig. 5 displays the confusion matrix for the test set. 

Where TP (True Positive) indicates genuine audio correctly 

classified, FP (False Positive) indicates genuine audio 

incorrectly classified as deepfake, FN (False Negative) 

indicates deepfake audio incorrectly classified as genuine, 

and TN (True Negative) indicates deepfake audio correctly 

classified. 

The confusion matrix provides insights: 

⚫ The model performed significantly well, having a 

minimal false positive rate of only 79 out of 6469 

genuine samples incorrectly classified. This is 

particularly crucial for situations where falsely 

identifying authentic audio as deepfake could 

have severe consequences. 

⚫ The model exhibits a low false negative rate, with 

only 85 out of 647 deepfake samples being 

incorrectly labeled. This further demonstrates the 

model's reliability in successfully identifying the 

majority of deepfake instances, a crucial 

component in the success of deepfake detection 

systems. 

5. Results & Visualization 

5.1. Results 

The model's accuracy of 97.28% is a strong indication of its 

ability to effectively differentiate between real and deepfake 

audio samples, as illustrated in figure 4. Such high success 

rate serves as a testament to the model's proficiency. 

 

Fig. 6. Result of input audio 

The result shown in fig. 6 is generated at the end of testing 

the various audio files as shown in the image. 

The SVM classifier showed exceptional performance, 

achieving a remarkable 97.28% classification accuracy in 

accurately distinguishing genuine and deepfake audio 

samples. This impressive outcome highlights the strong 

predictive ability of the model within the specific 

parameters of the test setting. The model's high true positive 

and true negative rates further demonstrate its proficiency in 

confidently identifying both classes. Moreover, the balance 

observed in the representation of both classes during the 

training and testing phases serves as a testament to the 

robustness of the SVM classifier. This equilibrium ensures 

that the model does not exhibit any bias towards a particular 

class. However it's crucial to be cautious when interpreting 

these findings in real life situations because variables, like 

quality, background noise and recording circumstances have 

the potential to impact the systems reliability. 

5.2. Visualization  

5.2.1. Waveform Plot 

This part of the study emphasizes the visualization of audio 
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waveforms, providing a comparative analysis between real 

and deepfake audio samples. These visualizations facilitate 

an understanding of the variations inherent in genuine 

versus manipulated audio content. 

 

Fig. 7. Raw Real Audio Waveform 

The waveform in Fig. 7 represents a genuine audio sample 

titled real_audio.wav. 

 

Fig. 8. Deepfake Audio Waveform 

Fig. 8 illustrates the waveform of a deepfake audio sample. 

5.2.2. Spectrogram 

In this study, we incorporate spectrogram analysis as a 

crucial component to enhance our deepfake audio detection 

methodology. Spectrograms, with their ability to visually 

display the frequency spectrum of audio signals over time, 

offer indispensable insights into the complex interplay of 

frequencies in both authentic and manipulated audio. This 

analytical approach is essential for identifying subtle 

spectral anomalies that are characteristic of deepfake audio, 

thereby providing a robust tool for our comparative analysis. 

In Fig. 9 & 10, we present two Mel spectrogram images: the 

first  

 

Fig. 9. Mel Spectogram of Real Audio 

 

 

Fig. 10. Mel Spectogram of Deepfake Audio 

depicting real audio with its natural, fluctuating frequency 

patterns, and the second showing deepfake audio, 

characterized by irregular spectral features. These visual 

contrasts, especially in the spectral energy distribution, are 

critical in differentiating authentic speech from 

synthetically generated content. 

5.2.3. MFCC Plot 

MFCCs, also known as Mel-Frequency Cepstral 

Coefficients, hold immense importance in the realm of 

audio signal processing, specifically in speech and audio 

recognition. Their efficiency lies in their ability to 

encapsulate the power spectrum of an audio signal in a 

condensed form. This allows for the extraction of crucial 

timbral features, enabling the differentiation of various 

sounds and voices. In the realm of deepfake detection, 

MFCCs play a critical role in identifying minute changes 

and modifications in speech patterns, which are common in 

manipulated audio. 

The comparison between the MFCC plots of the authentic 

and deepfake audio reveals distinct differences which are 

shown in fig. 11 & fig. 12. 

 

Fig. 11. MFCC graph for Real Audio 

The authentic audio's MFCC plot shows a consistent and 

regular pattern of cepstral features, aligning with the 

expected characteristics of natural speech. In contrast, the 

deepfake audio's  
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Fig. 12. MFCC graph for Deepfake Audio 

 plot displays irregularities and inconsistencies in the 

cepstral coefficients, indicating potential manipulation. 

6. Conclusion 

This research advances synthetic audio detection using a 

Support Vector Machine (SVM) classifier trained on the 

diverse 'for-original' Fake-or-Real (FoR) dataset. 

Leveraging Mel-Frequency Cepstral Coefficients (MFCCs) 

as features, the model achieves an impressive 97.28% 

accuracy, showcasing its robustness for digital 

authentication and security. The strategic use of the FoR 

dataset enhances performance in test environments and real-

life scenarios, contributing significantly to cybersecurity 

and digital forensics. As deepfake threats evolve, tools like 

this play a crucial role in combating digital fraud and 

misinformation. Future work involves expanding the 

dataset, exploring advanced algorithms, and enhancing 

interpretability and user interface for broader applicability. 

In conclusion, this research provides a pivotal step in 

effective deepfake detection, laying the groundwork for 

ongoing efforts to preserve digital information integrity.  
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