

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 340–347 | 340

Sangraha360: An Unknown Malware Detection Framework with

Federated Learning and Drift Detection

Sripooja Mallam1, Gandewar Raja Balaji2, Ginuga Vikas Reddy3, Kichhannapally Tejaswi4, Vishnu

Deshmukh5, Kailasa Bajrang6, Dr. Rajasekaran Subramanian7

Submitted: 28/12/2023 Revised: 04/02/2024 Accepted: 12/02/2024

Abstract: Strong detection mechanisms are required due to the growing threat that malware poses to the security and integrity of digital

systems. To improve malware detection systems, this research study investigates the relationship between Drift Detection and Federated

Learning, with an emphasis on Android devices. The heterogeneity of the Android ecosystem, its vulnerability to different kinds of

malware, and the ever-changing landscape of cyber threats pose formidable obstacles for researchers. The suggested method addresses the

evolving strategies of malware by integrating drift detection to monitor real-time changes in data patterns. A decentralized paradigm called

federated learning is applied to cooperative model training across various Android devices while maintaining user privacy. In this study,

we introduce a framework where federated learning is used in a malware identification model for the first time, and it is strategically

combined with Drift detection Algorithms

Keywords: Malware Detection, Federated learning, Concept Drift, Drift Detection, Data Collection, Machine Learning.

1. Introduction

The security and integrity of digital systems are increasingly

threatened by malicious software or malware, so developing

strong detection mechanisms is crucial for cybersecurity.

The sophistication and diversity of malware, which ranges

from conventional viruses to more clever variants like

ransomware and advanced persistent threats, grows along

with our reliance on digital technologies. The demand for

efficient and flexible malware detection techniques has

never been greater, given the persistent evolution of

cybercriminals' strategies to evade established security

protocols. In this research paper, the promising intersection

of Drift Detection and Federated Learning in the field of

malware detection is investigated. Our goal is to improve

malware detection systems' effectiveness and

responsiveness by merging these modern technologies

where cyber threats are dynamic and evolving.

Although malware poses a threat across different digital

environments, our research focuses specifically on malware

for Android devices. Because of its open ecosystem and

varied app store, Android is a popular platform for malware

of all kinds, including spyware, ransomware, and trojan

horses. The vulnerability of the platform is further increased

by its fragmentation and the widespread use of custom

ROMs and rooting. Being able to recognize unfamiliar

Android malware is essential for creating preventative

security measures and remaining ahead of the constantly

changing threat landscape.

For researchers, developing efficient malware detection

models for Android devices is a challenging task. It can be

tough to create a single model that functions well with a

variety of data sources

due to the diversity present in the Android ecosystem. It is

more difficult to develop a model that can consistently

identify malware throughout the entire system because of

the variations in devices and apps. Given the sensitive

nature of the data used in malware detection, protecting user

privacy is crucial. Researchers must strictly adhere to ethical

and legal requirements in order to guard against potential

abuse and unauthorized access. Models must be able to

adjust to new threats due to malware's dynamic nature,

which is characterized by its constantly changing tactics and

attributes.

 Our research leads the way in using drift detection in

conjunction with federated learning for malware

identification to address these issues. We propose a

framework named Sangrahra360. A strategic decision is

made to combine drift detection with federated learning.

Because federated learning is decentralized, it works well in

the varied and dispersed Android ecosystem. Handling the

variety of Android devices and maintaining individual

privacy, enables us to train the model collaboratively on

each device. A crucial component of our approach is drift

detection, which tracks real-time changes in data. This is

1 Keshav Memorial Institute of Technology, Hyderabad,India
ORCID ID : 0009-0000-7589-6911
2 Keshav Memorial Institute of Technology, Hyderabad,India
ORCID ID : 0009-0005-0235-2856
3 Keshav Memorial Institute of Technology, Hyderabad,India
ORCID ID : 0009-0007-7956-400X
4 Keshav Memorial Institute of Technology, Hyderabad,India
ORCID ID : 0009-0001-1528-3600
5 Keshav Memorial Institute of Technology, Hyderabad,India
ORCID ID : 0009-0003-4661-7938
6 Keshav Memorial Institute of Technology, Hyderabad,India
ORCID ID :
7Neil Gogte Institute of Technology, Hyderabad,India
ORCID ID : 0000-0002-6572-3934
Corresponding Author Email: rajasekarans@ngit.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 340–347 | 341

essential as malware trends change. Our model can

continuously adapt by identifying changes in data patterns,

maintaining its performance in the face of new evolving

malware samples

2. Literature Review

Much research has been done in the field of Android

malware detection, and methods have been divided into two

main groups according to the features used to predict

malicious intent: Static and Dynamic. Historically, static

analysis has been used extensively in the field to examine

features without running the malware. Static Malware

Analysis [1] [2]. Using Machine and Deep Learning [3] is

one popular technique. This method uses cutting-edge

machine and deep learning techniques to delve deeply into

static features. Although it comprehensively analyzes these

characteristics, obfuscated or polymorphic malware may

undermine its efficiency.

Dynamic Malware Analysis Using Machine Learning

Algorithm [4] is a notable example of dynamic malware

analysis. Using machine learning algorithms, this technique

executes malware samples in a controlled environment and

examines their behavior while running [5]. Even though it's

good at identifying patterns in behavior, sophisticated

evasion techniques and zero-day attacks could pose

problems.

The combination of machine learning and drift detection [6]

is another significant development. This approach uses a

combination of machine learning and drift detection

mechanisms to adjust to changing malware patterns.

Although it tackles the issue of concept drift [7] , real-time

adaptability [8] may be impacted by the complexity

involved, making the drift detection method selection

essential.

Federated Learning with FedAvg[9] presents a

decentralized paradigm in which users train models locally

on their devices, and local updates are aggregated to create

a global model. This strategy protects the privacy of data

and shows resilience to centralized attacks. Nevertheless,

there are drawbacks, including potential problems with

heterogeneous datasets and communication overhead.

Federated Learning with FedAvgM improves the federated

learning framework by incorporating adaptive model

averaging, which leads to better convergence in non-IID

scenarios, building upon FedAvg . The non-IID data

distribution problems are addressed by this adaptation, but

for best results, hyperparameters must be carefully adjusted.

 The emphasis switches to managing distributed

concepts [10] and drift in a federated learning environment

in the context of Federated Learning under Distributed

Concept Drift [9]. This method introduces mechanisms that

allow models to adjust to changing conditions across

multiple devices; however, its efficacy depends on its ability

to detect distributed concept drift accurately and respond

appropriately.

Federated Learning with Dynamic Weighted FedAvg and

Drift Detection is a novel approach that combines drift

detection and dynamic model averaging with the concepts

of federated learning. The goal of this framework is to get

around static analysis's drawbacks, especially when it comes

to obfuscated malware. Moreover, it tackles issues brought

about by changing malware patterns and dynamic

environments, providing a more flexible and reliable

solution.

In conclusion, while each technique adds to the developing

field of Android malware detection, the suggested

framework aims to combine the benefits of drift detection,

dynamic approaches, and federated learning for improved

adaptability and privacy-preserving qualities.

3. Preamble

This section provides a quick overview of the subjects

covered in the research process, including frameworks,

federated learning, and datasets

3.1. FLOWER FRAMEWORK

"Federated Learning with Overlapping Experiences," or

"Flower," [11] offers a robust and adaptable framework.

Infrastructure is needed for federated learning, aggregation,

and analytics in order to transfer machine learning models

back and forth, train and compute them on local data, and

then compile the modified models. Using the Flower

framework any workload, any ML framework, and any

programming language can be federated by the user.

This section explores the importance of the Flower

framework, providing details on its features, architecture,

and critical role in developing federated learning

environments

FLOWER ARCHITECTURE

The client-server architecture of the Flower framework is

intended to effectively coordinate the federated learning

process. Flower is primarily made up of two parts: the

clients and the server.

1) server: The Flower architecture is controlled by the

server. It is in charge of directing and coordinating the

federated learning process. Like a conductor in an orchestra,

the server synchronizes the actions of multiple devices, or

clients, to produce an accurate result. Its principal duties

consist of:

● Global Model Management: The global machine

learning model, which forms the basis of the federated

learning procedure, is maintained by the server. Initially,

this global model is developed and made available to each

client..

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 340–347 | 342

● Managing Training Rounds: Flower divides the

federated learning process into rounds and works in a

cyclical manner. The server assigns the global model to the

clients for individual local training in each round.

● Aggregation of Model Updates: The server gathers and

aggregates each client's model updates after the clients have

finished their local training with their individual datasets.

The knowledge gathered from various local datasets is

integrated through this aggregation process, which is

essential for enhancing the global model

2) Client: Within the Flower framework, clients stand in for

the decentralized nodes or gadgets that take part in federated

learning. It is the client's responsibility to use its own dataset

for local model training. An explanation of the client's role

is provided here:

● Local Model Training: The entities that own local

datasets are referred to as clients. Using these datasets, they

train models to identify patterns and insights that are

specific to the data. The global model is guaranteed to gain

knowledge from the different backgrounds of all

participating clients thanks to this local training procedure

● Model Update Submission: Using its dataset, each client

creates a model update following local training. This update

includes details on how to improve the model using the

insights from the local training.

● Communication with the Server: In order to exchange

information, clients communicate with the server. The

server receives their updates for the model, aggregates them,

and improves the global model. A crucial component of

federated learning is communication, which Flower

streamlines for maximum effectiveness

3.2. DATASETS

● In our study, the efficacy and generalizability of the

suggested federated learning model for Android malware

identification are significantly influenced by the dataset

selection. There are many good datasets out there such as

DREBIN [12] , AndroZoo [13] , MalImg [14] , KronoDroid

[15] etc. The KronoDroid dataset is one of the most

important datasets for our research.

● KronoDroid offers an extensive and varied selection of

Android apps. It is a carefully selected dataset designed for

Android malware research. This dataset contains a diverse

array of malware samples, each displaying distinct traits and

actions.

● The characteristics of the Kronodroid dataset are:

1. Data with labels (malware/benign samples)

2. 289 system calls, or dynamic features

3. 300 static features (metadata, permissions, intent filters)

4. four different timestamps for each data sample,

5. covers the years 2008–2020 in Android history

4. Concept Drift

The phenomenon known as "concept drift" describes how a

target variable's statistical characteristics, which a machine

learning model seeks to predict, might alter over time.

Concept drift can happen in datasets when there is a change

or evolution in the relationship between the target variable

and the input features. Dealing with Concept drift is very

crucial in malware prediction due to its evolving nature.

One major difficulty is the dynamic nature of malware.

Malware features change over time as attackers create new

evasion strategies, which makes it harder for models trained

on historical data to recognize previously undiscovered

variations. The emergence of new malware strains has the

potential to disrupt the class balance within a dataset

resulting in data imbalance. In order to maintain

effectiveness in recognizing both known and new malware,

concept drift handling is crucial as traditional models may

become biased towards the majority class.

A potential consequence of neglecting to address concept

drift is a reduction in model performance. Maintaining the

model's accuracy over time requires regular monitoring and

updating based on incoming data, especially when it comes

to identifying novel malware strains. The key to

cybersecurity is real-time detection. Concept drift handling

guarantees that models continue to be sensitive to new

threats, allowing for the prompt detection and reduction of

security problems.

Concept Drift Visualization in a dataset is done using some

statistical tests. In our attempt to visualize Concept drift in

the KronoDroid dataset chi square statistical test is used.

Using the chi square statistical test features with Concept

drift are known. A graph is plotted for 5 of those features

out of which 4 features have drift and one feature doesn’t

have drift. The graph is plotted between feature values and

data samples. Inconsistencies in the drift features and the

consistency in the non-drift features are clearly observed in

Fig 1.

Fig. 1. Visualization of difference between drift features

and Non-drift features in Kronodroid dataset

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 340–347 | 343

5. Methodology

In this section, the methodology employed in our research

is outlined, detailing the integration of federated learning for

Android malware identification. A comprehensive

explanation of our approach to data collection, aggregation

techniques for federated learning, and the associated metrics

is provided

5.1. DATA COLLECTION

An Android application is used to carry out the data retrieval

process, which makes use of a number of functions provided

by the Android SDK to obtain the necessary data for model

training and prediction. Users can choose an installed

application from a dropdown menu displaying all installed

applications in the application interface. Both static and

dynamic data collection are made easier by the application.

At predetermined intervals, dynamic data about the Android

device and static data unique to the selected application are

collected.

In addition to being updated for user reference on the

display, the collected data is also sent to a server for safe

storage in a global database. This dual functionality actively

involves every application user in the ongoing data

collection process while also improving the model's

capabilities. This application makes use of Django to handle

the backend in an effective manner. MongoDB offers secure

storage for the data. The integration of the Android SDK,

Django, and MongoDB highlights a holistic approach to

data storage and retrieval, enhancing user experience and

supporting ongoing model enhancement.

Fig 2 : Static and Dynamic features data collection android

app

5.2. PROPOSED ALGORITHMS

5.2.1. Federated Aggregation Algorithms

Federated learning algorithms facilitate the collaborative

training of models across these decentralized entities.

There are several types of Federated Learning algorithms,

which have their characteristics but in consideration of the

model and the goal for the model, two algorithms are

chosen.

5.2.1.1. Federated Average (FedAvg):

A global model is initialized on a central server, and the

local models are trained on clients using their local data. The

local model’s parameters are then sent to the central server,

which computes the average of all the parameters to update

the global model.

The FedAvg [9] method is chosen as it has many benefits

which align with our ideal model. It reduces the amount of

raw data that must be transferred, which reduces the amount

of data that must travel over the network. Emphasizing the

important model changes instead of all user data

significantly reduces communication overhead and

encourages more effective data sharing within the federated

learning framework.

Furthermore, the concept of enhanced generalization in

federated learning is predicated on the utilization of diverse

data sources. The model is exposed to a wide range of data

types during training since it is trained on datasets derived

from different devices. Because of its diversity, the model is

better able to generalize and recognize patterns in malware

that have never been observed before. The model's potential

is increased by adding knowledge from other sources, which

increases the model's flexibility and resilience.

The main flaw in FedAvg is that it can cause delays or

slower computation completion for stragglers or slow

learners in a federated network. This could rely on a number

of factors, including processing power, latency in the

network, additional data, model complexity, and

synchronization problems. A novel approach known as

"Dynamic Weighted Federated Average" (DW-FedAvg)

was developed to address this problem.

5.2.1.2. Dynamic-Weighted FedAvg (DW-FedAvg):

A method called Dynamic Weighted Federated Average

(DW-FedAvg) [6] aims to improve federated learning

systems' performance. All clients are treated equally in

traditional federated averaging, provided that their models

are of comparable quality and their data is equally

representative. This presumption might not apply in

practical situations, though. This strategy's main concept is

to dynamically assign varying weights, with an emphasis on

accuracy, to each client's model updates based on their

performance metrics.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 340–347 | 344

The accuracy of each client's local model in relation to past

metrics is used to assess how well they performed. The

chosen metric serves as a gauge for how well or poorly the

local model is doing. By modifying the weights allotted to

each client and their contribution to the overall model,

dynamic weighting is put into practice. More weight is

awarded to clients who perform better, as demonstrated by

increased accuracy or improvement. This indicates that the

global model is more affected by their metric. Conversely,

less valuable clients are given a lower weight, which lessens

their influence on the overall model.

 DW-FedAvg stands out for its versatility across several

federated learning cycles. Every round, the weights allotted

to the clients are dynamically adjusted, enabling the system

to adjust to variations in the distribution of client data,

model quality, or other elements influencing each client's

relative contribution. DW-FedAvg offers a lot of benefits.

By giving customer feedback priority over inferior models,

it seeks to increase model quality. Additionally, the

approach is resilient to the natural heterogeneity of clients

in learning environments and easily adjusts to various data

distributions and model attributes.Furthermore, DW-

FedAvg is adaptable, which is vital in situations where

clients and data may change over time.

In federated learning systems, the strategy may lower

overall communication costs by emphasizing more valuable

and efficient customer updates. Additionally, it is highly

effective against model poisoning, a growing concern in the

context of federated learning models.

5.2.2. Drift Detection Algorithms

From [16] is where the Drift detection techniques used in

our approach were taken . The purpose of these techniques

is to precisely tackle the problems caused by idea drift in

Federated Learning (FL) environments, where

heterogeneous data is present across multiple clients and

over time.

5.2.2.1. FedDrift-Eager

This algorithm deals with situations in which there is only

one new idea that appears at once. For each client, it

integrates a local drift detection algorithm to detect the

emergence of a new concept. When a client recognises a

novel idea, they divide it into a new cluster and initialize a

new model for group training. For staggered drift patterns

where only one concept changes at a time this algorithm

works well.

To explain the Drift detection algorithm in detail, if the

model's loss over newly arrived data (ℓ(τ)c,m) degrades by

a threshold δ relative to the loss at time τ−1, it indicates a

drift at client c and time τ. This test identifies any drift that

degrades performance, but the requirement for building a

new model looks specifically for concept drifts that match

an unobserved and incompatible concept for every model

that already exists. If the current model's minimum loss is

greater than the previous model's minimum loss plus δ, a

new model is generated.

It however encounters difficulties, when two or more

concepts appear at the same time. It attempts to train a single

model for both new concepts using a single cluster, which is

a suboptimal solution. In order to overcome this constraint,

the algorithm is expanded to manage the general scenario in

which an arbitrary quantity of novel ideas may emerge

concurrently.

5.2.2.2. FedDrift

This algorithm deals with the general scenario wherein

several new malware trends could appear at the same time.

To conservatively isolate clients by detecting drift in

individual clusters, it makes use of hierarchical

agglomerative clustering. Clusters corresponding to the

same concept are gradually merged over time, allowing for

a steady and secure adaptation to changing concepts. The

algorithm is flexible enough to handle a wide range of drift

patterns and can be tailored to an unknown number of new

malware trends that might emerge in the future.

The approach makes use of a general hierarchical clustering

process that includes a stopping condition and a distance

function over the collection of elements to be clustered.

FedDrift collects loss estimates of models assessed over a

subsample of data linked to the cluster for every model in

order to define a distance function. The initialization of

cluster distances is determined by the variation in loss

estimates, which gauges how much a model's accuracy

deteriorates when applied to its own data.In contrast to

FedDrift-Eager, it requires more computational resources,

generates a greater number of global models (M), and

introduces an O(M2 log M) time complexity at the server

for each time step. The algorithm's efficiency can be

optimized by creating fewer overall models. Clients can also

maintain relevant data and weights for a sliding window of

recent time steps to facilitate subsampling steps.

5.3. Results And Conclusion

METRICS: metrics are quantitative measures used to

evaluate the performance and effectiveness of a model in

solving a particular task. These metrics provide insights into

how well the model generalizes to new, unseen data and

how accurately it makes predictions. Different types of

machine learning tasks, such as classification, regression,

clustering, and more, often require specific metrics tailored

to the nature of the task

Accuracy: It is calculated as the ratio of the number of

correct predictions to the total number of predictions

Loss: It is calculated as the average of the losses of all

clients.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 340–347 | 345

F1 Score: It is calculated as the harmonic mean of precision

and recall.

Precision: It is calculated as the ratio of true positives to true

positives plus false positives. It is the proportion of positive

samples that are correctly classified as positive.

Recall: It is calculated as the ratio of true positives to true

positives plus false negatives. It is the proportion of positive

samples that are correctly classified as positive.

AUC (Area Under the ROC Curve): It is a measure of how

well a binary classification model can distinguish between

positive and negative classes. AUC provides an aggregate

measure of performance across all possible classification

thresholds.

FPR (False Positive Rate): It is the ratio of false positives

to the total number of actual negatives.

Table 1

Metric

s
FedAvg DW-FedAvg

Accura

cy

0.93253 0.96009

Loss 0.410637 0.420644

F1

Score

0.963261 0.978453

Precisi

on

0.978715 0.985501

AUC 0.921036 0.971521

False

Positiv

e Rate

0.051538 0.028479

Table 1: Federated learning aggregation results

with Kronodroid dataset

Table 2

Metric

s
FedDrift-Eager FedDrift

Accura

y

0.9552 0.9849

Loss 0.4543 0.4691

Table 2: Drift detection results for the Kronodroid dataset

with federated learning

 Fig 3: Graphs of Accuracy and Error rate

values using DW-FedAvg

Fig 4: Graphs of Accuracy and Error rate values using

FedAvg

The model is performing extremely well when DW-FedAvg

aggregation is being used and when the FedDrift algorithm

is being used. In terms of accuracy and error rate as seen

from the table and graphs with DW-FedAvg we have an

accuracy of 0.96009 and with FedAvg we have an accuracy

of 0.93253. The same way with FedDrift we have an

accuracy of 0.9849 and with FedDrift -Eager we have an

accuracy of 0.9552.This clearly shows us that with these

aggregation and drift detection algorithms this model

outperforms a lot of traditional models out there

6. Effective Implementations

To apply federated learning in the real-world an

application[11] is used. This application can be downloaded

onto the client’s Android device. It will be sent the global

model from the server and the local training starts on the

device using the device data. After the training is done the

device is equipped with an application for malware

identification service which uses federated learning. For the

server to connect to real time clients all the input it needs is

port number and IP address. When provided with that

information the client gets connected and can participate in

training and predictions.

All the research information till now and future findings and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 340–347 | 346

improvements will be available at the website

“http://sangraha360.org” . This website contains all the

applications, codebases and theory. To know all the future

upgrades and improvements this website can be visited .

Fig 5: Federated learning application for malware

detection [7]

Acknowledgements

Mr.Stephen Lobo, President, and Co-Founder,

CyberGuard360 Inc, USA for Research Guidance. Prof Neil

Gogte, Director , Keshav Memorial Institute of Technology

for the Project Guidance, Finance and Material Support

Author contributions

Sripooja Mallam:Literature survey, analysis of limitations

in previously proposed research work and proposal of new

approach with drift detection and active learning

Balaji Gandewar:Comprehensive contributions across

research, development, and integration of an Android

application including data retrieval and analysis features,

backend integration for periodic data collection, auto-

update, malware detection, user registration, token

authentication, and end-to-end testing to validate server

functionality. Ensured code cleanliness according to Kotlin

conventions with detailed documentation comments.

Bajrang Kailasa: Retrieved static features using Kotlin

libraries, conducted comprehensive analysis of data dumps

generated by various tools, and utilized Android profilers to

analyze app performance ,also implemented procedures for

generating data dumps from different apps using ADB tools,

Python scripts for parsing data dumps, and automated data

dump generation processes.

Vikas Reddy:Development and implementation of the

federated learning approach, integrating the Flower

framework and various aggregation algorithms. Conducted

experiments, analyzed results, and contributed to the

performance evaluation and interpretation of findings.

Kichhannapally Tejaswi: Worked on Drift Identification

and Visualization in various datasets.Development and

implementation of the federated learning approach,with

fedAvg aggregation technique.Conducted experiments,

analyzed results, and contributed to the performance

evaluation by adding drift detection algorithms to federated

learning environment

Vishnu Deshmukh:The backend development for the

project involved the creation of a dedicated endpoint to

integrate the Android app UI with the backend logic. This

included coding to handle and process results derived from

static and dynamic features. To ensure efficient data

management, integrated MongoDB to store both static and

dynamic features securely. Contributing to the project's

security, implemented token authentication, restricting

access to whitelisted users only. Additionally, incorporated

Firebase for the secure storage and management of

authentication tokens, reinforcing the overall security of the

system and limiting access to protected endpoints.

Dr.Rajasekaran Subramanian: Lead the Research,

Guidance and reviewed the publication draft.

Conflicts of interest

The authors declare no conflicts of interest

References

[1] Himanshu Kumar Singh, Jyoti Prakash Singh “Static

Malware Analysis Using Machine and Deep Learning”

[2] Y. Pan, X. Ge, C. Fang and Y. Fan, "A Systematic

Literature Review of Android Malware Detection

Using Static Analysis,"

[3] H. Brendan McMahan, Eider Moore, Daniel Ramage,

Seth Hampson, Blaise Aguera y Arcas

“Communication-Efficient Learning of Deep

Networks from Decentralized Data”.

[4] Udayakumar .N, S Anandaselvi, Dr T Subbulakshmi

“Dynamic malware analysis using machine learning

algorithm”

[5] Fabricio Ceschin, Marcus Botacin, Heitor Murilo

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 340–347 | 347

Gomes, Felipe Pinage, Luiz S. Oliveira, Andre Gregio

“Fast & Furious : Modelling Malware Detection as

Evolving Data Streams”.

[6] E Ayushi Chaudhuri, Arijit Nandi, Buddhadeb

Pradhan “A Dynamic Weighted Federated Learning

for Android Malware Classification”

[7] Jordaney, R., Sharad, K., Dash, S. K., Wang, Z.,

Papini, D., Nouretdinov, I., & Cavallaro, L. (2017).

“Transcend: Detecting concept drift in malware

classification models”

[8] Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J.,

& Cavallaro, L. (2018). TESSERACT: eliminating

experimental bias in malware classification across

space and time

[9] Sashank Reddi , Zachary Charles, Manzil Zaheer,

Zachary Garrett, Keith Rush, Jakub Konecny, Sanjiv

Kumar, H. Brendan McMahan “Adaptive Federated

Optimization”

[10] Anderson, H. S., Kharkar, A., Filar, B., Evans, D., &

Roth, P. (2018). Learning to evade static pe machine

learning malware models via reinforcement learning

[11] Beutel, Daniel J and Topal, Tanner and Mathur, Akhil

and Qui, Xinchi and Fer “Flower: A Friendly

Federated Learning Research Framework”

[12] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H.,

& Rieck, K. (2014). “Drebin: Effective and

explainable detection of android malware in your

pocket”

[13] Allix, K., Bissyand´e, T. F., Klein, J., & Le Traon, Y.

(2016). Androzoo: “Collecting millions of android

apps for the research community”

[14] Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath,

B., 2011. [online] dropbox.com. Available at:

“[Accessed”

[15] Alejandro Guerra-Manzanares, Hayretdin Bahsi,

Sven Nõmm,”KronoDroid: Time-based Hybrid-

featured Dataset for Effective Android Malware

Detection and Characterization”

[16] Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang,

Gauri Joshi, Phillip B. Gibbons “ Federated Learning

under Distributed Concept Drift”

