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Abstract: Strong detection mechanisms are required due to the growing threat that malware poses to the security and integrity of digital 

systems. To improve malware detection systems, this research study investigates the relationship between Drift Detection and Federated 

Learning, with an emphasis on Android devices. The heterogeneity of the Android ecosystem, its vulnerability to different kinds of 

malware, and the ever-changing landscape of cyber threats pose formidable obstacles for researchers. The suggested method addresses the 

evolving strategies of malware by integrating drift detection to monitor real-time changes in data patterns. A decentralized paradigm called 

federated learning is applied to cooperative model training across various Android devices while maintaining user privacy. In this study, 

we introduce a framework where federated learning is used in a malware identification model for the first time, and it is strategically 

combined with Drift detection Algorithms 
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1. Introduction 

The security and integrity of digital systems are increasingly 

threatened by malicious software or malware, so developing 

strong detection mechanisms is crucial for cybersecurity. 

The sophistication and diversity of malware, which ranges 

from conventional viruses to more clever variants like 

ransomware and advanced persistent threats, grows along 

with our reliance on digital technologies. The demand for 

efficient and flexible malware detection techniques has 

never been greater, given the persistent evolution of 

cybercriminals' strategies to evade established security 

protocols. In this research paper, the promising intersection 

of Drift Detection and Federated Learning in the field of 

malware detection is investigated. Our goal is to improve 

malware detection systems' effectiveness and 

responsiveness by merging these modern technologies 

where cyber threats are dynamic and evolving.  

Although malware poses a threat across different digital 

environments, our research focuses specifically on malware 

for Android devices. Because of its open ecosystem and 

varied app store, Android is a popular platform for malware 

of all kinds, including spyware, ransomware, and trojan 

horses. The vulnerability of the platform is further increased 

by its fragmentation and the widespread use of custom 

ROMs and rooting. Being able to recognize unfamiliar 

Android malware is essential for creating preventative 

security measures and remaining ahead of the constantly 

changing threat landscape. 

For researchers, developing efficient malware detection 

models for Android devices is a challenging task. It can be 

tough to create a single model that functions well with a 

variety of data sources  

due to the diversity present in the Android ecosystem. It is 

more difficult to develop a model that can consistently 

identify malware throughout the entire system because of 

the variations in devices and apps. Given the sensitive 

nature of the data used in malware detection, protecting user 

privacy is crucial. Researchers must strictly adhere to ethical 

and legal requirements in order to guard against potential 

abuse and unauthorized access. Models must be able to 

adjust to new threats due to malware's dynamic nature, 

which is characterized by its constantly changing tactics and 

attributes. 

 Our research leads the way in using drift detection in 

conjunction with federated learning for malware 

identification to address these issues. We propose a 

framework named Sangrahra360. A strategic decision is 

made to combine drift detection with federated learning. 

Because federated learning is decentralized, it works well in 

the varied and dispersed Android ecosystem. Handling the 

variety of Android devices and maintaining individual 

privacy, enables us to train the model collaboratively on 

each device. A crucial component of our approach is drift 

detection, which tracks real-time changes in data. This is 
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essential as malware trends change. Our model can 

continuously adapt by identifying changes in data patterns, 

maintaining its performance in the face of new evolving 

malware samples 

2. Literature Review 

Much research has been done in the field of Android 

malware detection, and methods have been divided into two 

main groups according to the features used to predict 

malicious intent: Static and Dynamic. Historically, static 

analysis has been used extensively in the field to examine 

features without running the malware. Static Malware 

Analysis [1] [2]. Using Machine and Deep Learning [3] is 

one popular technique. This method uses cutting-edge 

machine and deep learning techniques to delve deeply into 

static features. Although it comprehensively analyzes these 

characteristics, obfuscated or polymorphic malware may 

undermine its efficiency. 

Dynamic Malware Analysis Using Machine Learning 

Algorithm [4] is a notable example of dynamic malware 

analysis. Using machine learning algorithms, this technique 

executes malware samples in a controlled environment and 

examines their behavior while running [5]. Even though it's 

good at identifying patterns in behavior, sophisticated 

evasion techniques and zero-day attacks could pose 

problems. 

The combination of machine learning and drift detection [6] 

is another significant development. This approach uses a 

combination of machine learning and drift detection 

mechanisms to adjust to changing malware patterns. 

Although it tackles the issue of concept drift [7] , real-time 

adaptability [8] may be impacted by the complexity 

involved, making the drift detection method selection 

essential. 

Federated Learning with FedAvg[9]  presents a 

decentralized paradigm in which users train models locally 

on their devices, and local updates are aggregated to create 

a global model. This strategy protects the privacy of data 

and shows resilience to centralized attacks. Nevertheless, 

there are drawbacks, including potential problems with 

heterogeneous datasets and communication overhead. 

Federated Learning with FedAvgM improves the federated 

learning framework by incorporating adaptive model 

averaging, which leads to better convergence in non-IID 

scenarios, building upon FedAvg . The non-IID data 

distribution problems are addressed by this adaptation, but 

for best results, hyperparameters must be carefully adjusted. 

      The emphasis switches to managing distributed 

concepts [10] and drift in a federated learning environment 

in the context of Federated Learning under Distributed 

Concept Drift [9]. This method introduces mechanisms that 

allow models to adjust to changing conditions across 

multiple devices; however, its efficacy depends on its ability 

to detect distributed concept drift accurately and respond 

appropriately. 

Federated Learning with Dynamic Weighted FedAvg  and 

Drift Detection is a novel approach that combines drift 

detection and dynamic model averaging with the concepts 

of federated learning. The goal of this framework is to get 

around static analysis's drawbacks, especially when it comes 

to obfuscated malware. Moreover, it tackles issues brought 

about by changing malware patterns and dynamic 

environments, providing a more flexible and reliable 

solution. 

In conclusion, while each technique adds to the developing 

field of Android malware detection, the suggested 

framework aims to combine the benefits of drift detection, 

dynamic approaches, and federated learning for improved 

adaptability and privacy-preserving qualities.  

3. Preamble 

This section provides a quick overview of the subjects 

covered in the research process, including frameworks, 

federated learning, and datasets 

3.1. FLOWER FRAMEWORK 

"Federated Learning with Overlapping Experiences," or 

"Flower," [11] offers a robust and adaptable framework. 

Infrastructure is needed for federated learning, aggregation, 

and analytics in order to transfer machine learning models 

back and forth, train and compute them on local data, and 

then compile the modified models. Using the Flower 

framework any workload, any ML framework, and any 

programming language can be federated by the user. 

This section explores the importance of the Flower 

framework, providing details on its features, architecture, 

and critical role in developing federated learning 

environments 

FLOWER ARCHITECTURE 

The client-server architecture of the Flower framework is 

intended to effectively coordinate the federated learning 

process. Flower is primarily made up of two parts: the 

clients and the server. 

1) server: The Flower architecture is controlled by the 

server. It is in charge of directing and coordinating the 

federated learning process. Like a conductor in an orchestra, 

the server synchronizes the actions of multiple devices, or 

clients, to produce an accurate result. Its principal duties 

consist of: 

● Global Model Management: The global machine 

learning model, which forms the basis of the federated 

learning procedure, is maintained by the server. Initially, 

this global model is developed and made available to each 

client.. 
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● Managing Training Rounds: Flower divides the 

federated learning process into rounds and works in a 

cyclical manner. The server assigns the global model to the 

clients for individual local training in each round. 

● Aggregation of Model Updates: The server gathers and 

aggregates each client's model updates after the clients have 

finished their local training with their individual datasets. 

The knowledge gathered from various local datasets is 

integrated through this aggregation process, which is 

essential for enhancing the global model 

2) Client: Within the Flower framework, clients stand in for 

the decentralized nodes or gadgets that take part in federated 

learning. It is the client's responsibility to use its own dataset 

for local model training. An explanation of the client's role 

is provided here: 

● Local Model Training: The entities that own local 

datasets are referred to as clients. Using these datasets, they 

train models to identify patterns and insights that are 

specific to the data. The global model is guaranteed to gain 

knowledge from the different backgrounds of all 

participating clients thanks to this local training procedure 

● Model Update Submission: Using its dataset, each client 

creates a model update following local training. This update 

includes details on how to improve the model using the 

insights from the local training. 

● Communication with the Server: In order to exchange 

information, clients communicate with the server. The 

server receives their updates for the model, aggregates them, 

and improves the global model. A crucial component of 

federated learning is communication, which Flower 

streamlines for maximum effectiveness 

3.2. DATASETS 

● In our study, the efficacy and generalizability of the 

suggested federated learning model for Android malware 

identification are significantly influenced by the dataset 

selection. There are many good datasets out there such as 

DREBIN [12] , AndroZoo [13] , MalImg [14] , KronoDroid 

[15] etc. The KronoDroid dataset is one of the most 

important datasets for our research. 

● KronoDroid offers an extensive and varied selection of 

Android apps. It is a carefully selected dataset designed for 

Android malware research. This dataset contains a diverse 

array of malware samples, each displaying distinct traits and 

actions. 

● The characteristics of the Kronodroid dataset are: 

1. Data with labels (malware/benign samples) 

2. 289 system calls, or dynamic features 

3. 300 static features (metadata, permissions, intent filters) 

4. four different timestamps for each data sample, 

5. covers the years 2008–2020 in Android history 

4. Concept Drift 

The phenomenon known as "concept drift" describes how a 

target variable's statistical characteristics, which a machine 

learning model seeks to predict, might alter over time. 

Concept drift can happen in  datasets when there is a change 

or evolution in the relationship between the target variable 

and the input features. Dealing with Concept drift is very 

crucial in malware prediction due to its evolving nature. 

One major difficulty is the dynamic nature of malware. 

Malware features change over time as attackers create new 

evasion strategies, which makes it harder for models trained 

on historical data to recognize previously undiscovered 

variations. The emergence of new malware strains has the 

potential to disrupt the class balance within a dataset 

resulting in data imbalance.  In order to maintain 

effectiveness in recognizing both known and new malware, 

concept drift handling is crucial as traditional models may 

become biased towards the majority class. 

A potential consequence of neglecting to address concept 

drift is a reduction in model performance. Maintaining the 

model's accuracy over time requires regular monitoring and 

updating based on incoming data, especially when it comes 

to identifying novel malware strains. The key to 

cybersecurity is real-time detection. Concept drift handling 

guarantees that models continue to be sensitive to new 

threats, allowing for the prompt detection and reduction of 

security problems. 

Concept Drift Visualization in a dataset is done using some 

statistical tests. In our attempt to visualize Concept drift in 

the KronoDroid dataset chi square statistical test is used. 

Using the chi square statistical test features with Concept 

drift are known. A graph is plotted for 5 of those features 

out of which 4 features have drift and one feature doesn’t 

have drift. The graph is plotted between feature values and 

data samples. Inconsistencies in the drift features and the 

consistency in the non-drift features are clearly observed in 

Fig 1. 

 

Fig. 1.  Visualization of difference between drift  features 

and Non-drift features in Kronodroid dataset 
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5. Methodology 

In this section, the methodology employed in our research 

is outlined, detailing the integration of federated learning for 

Android malware identification.  A comprehensive 

explanation of our approach to data collection, aggregation 

techniques for federated learning, and the associated metrics 

is provided 

5.1. DATA COLLECTION 

An Android application is used to carry out the data retrieval 

process, which makes use of a number of functions provided 

by the Android SDK to obtain the necessary data for model 

training and prediction. Users can choose an installed 

application from a dropdown menu displaying all installed 

applications in the application interface. Both static and 

dynamic data collection are made easier by the application. 

At predetermined intervals, dynamic data about the Android 

device and static data unique to the selected application are 

collected. 

In addition to being updated for user reference on the 

display, the collected data is also sent to a server for safe 

storage in a global database. This dual functionality actively 

involves every application user in the ongoing data 

collection process while also improving the model's 

capabilities. This application makes use of Django to handle 

the backend in an effective manner. MongoDB offers secure 

storage for the data. The integration of the Android SDK, 

Django, and MongoDB highlights a holistic approach to 

data storage and retrieval, enhancing user experience and 

supporting ongoing model enhancement. 

 

Fig 2 : Static and Dynamic features data collection android 

app 

5.2. PROPOSED ALGORITHMS 

5.2.1. Federated Aggregation Algorithms 

Federated learning algorithms facilitate the collaborative 

training of models across these decentralized entities. 

There are several types of Federated Learning algorithms, 

which have their characteristics but in consideration of the 

model and the goal for the model, two algorithms are 

chosen. 

5.2.1.1. Federated Average (FedAvg): 

A global model is initialized on a central server, and the 

local models are trained on clients using their local data. The 

local model’s parameters are then sent to the central server, 

which computes the average of all the parameters to update 

the global model. 

The FedAvg [9] method  is chosen as it has many benefits 

which align with our ideal model. It reduces the amount of 

raw data that must be transferred, which reduces the amount 

of data that must travel over the network. Emphasizing the 

important model changes instead of all user data 

significantly reduces communication overhead and 

encourages more effective data sharing within the federated 

learning framework. 

Furthermore, the concept of enhanced generalization in 

federated learning is predicated on the utilization of diverse 

data sources. The model is exposed to a wide range of data 

types during training since it is trained on datasets derived 

from different devices. Because of its diversity, the model is 

better able to generalize and recognize patterns in malware 

that have never been observed before. The model's potential 

is increased by adding knowledge from other sources, which 

increases the model's flexibility and resilience. 

The main flaw in FedAvg is that it can cause delays or 

slower computation completion for stragglers or slow 

learners in a federated network.  This could rely on a number 

of factors, including processing power, latency in the 

network, additional data, model complexity, and 

synchronization problems. A novel approach known as 

"Dynamic Weighted Federated Average" (DW-FedAvg) 

was developed to address this problem. 

5.2.1.2. Dynamic-Weighted FedAvg (DW-FedAvg): 

A method called Dynamic Weighted Federated Average 

(DW-FedAvg) [6] aims to improve federated learning 

systems' performance. All clients are treated equally in 

traditional federated averaging, provided that their models 

are of comparable quality and their data is equally 

representative. This presumption might not apply in 

practical situations, though. This strategy's main concept is 

to dynamically assign varying weights, with an emphasis on 

accuracy, to each client's model updates based on their 

performance metrics. 
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The accuracy of each client's local model in relation to past 

metrics is used to assess how well they performed. The 

chosen metric serves as a gauge for how well or poorly the 

local model is doing. By modifying the weights allotted to 

each client and their contribution to the overall model, 

dynamic weighting is put into practice. More weight is 

awarded to clients who perform better, as demonstrated by 

increased accuracy or improvement. This indicates that the 

global model is more affected by their metric. Conversely, 

less valuable clients are given a lower weight, which lessens 

their influence on the overall model. 

  DW-FedAvg stands out for its versatility across several 

federated learning cycles. Every round, the weights allotted 

to the clients are dynamically adjusted, enabling the system 

to adjust to variations in the distribution of client data, 

model quality, or other elements influencing each client's 

relative contribution. DW-FedAvg offers a lot of benefits. 

By giving customer feedback priority over inferior models, 

it seeks to increase model quality. Additionally, the 

approach is resilient to the natural heterogeneity of clients 

in learning environments and easily adjusts to various data 

distributions and model attributes.Furthermore, DW-

FedAvg is adaptable, which is vital in situations where 

clients and data may change over time. 

In federated learning systems, the strategy may lower 

overall communication costs by emphasizing more valuable 

and efficient customer updates. Additionally, it is highly 

effective against model poisoning, a growing concern in the 

context of federated learning models. 

5.2.2. Drift Detection Algorithms 

From [16] is where the Drift detection techniques used in 

our approach were taken . The purpose of these techniques 

is to precisely tackle the problems caused by idea drift in 

Federated Learning (FL) environments, where 

heterogeneous data is present across multiple clients and 

over time. 

5.2.2.1. FedDrift-Eager 

This algorithm deals with situations in which there is only 

one new idea that appears at once. For each client, it 

integrates a local drift detection algorithm to detect the 

emergence of a new concept. When a client recognises a 

novel idea, they divide it into a new cluster and initialize a 

new model for group training. For staggered drift patterns 

where only one concept changes at a time this algorithm 

works well. 

To explain the Drift detection algorithm in detail, if the 

model's loss over newly arrived data (ℓ(τ)c,m) degrades by 

a threshold δ relative to the loss at time τ−1, it indicates a 

drift at client c and time τ. This test identifies any drift that 

degrades performance, but the requirement for building a 

new model looks specifically for concept drifts that match 

an unobserved and incompatible concept for every model 

that already exists. If the current model's minimum loss is 

greater than the previous model's minimum loss plus δ, a 

new model is generated. 

It however encounters difficulties, when two or more 

concepts appear at the same time. It attempts to train a single 

model for both new concepts using a single cluster, which is 

a suboptimal solution. In order to overcome this constraint, 

the algorithm is expanded to manage the general scenario in 

which an arbitrary quantity of novel ideas may emerge 

concurrently. 

5.2.2.2. FedDrift 

This algorithm deals with the general scenario wherein 

several new malware trends could appear at the same time. 

To conservatively isolate clients by detecting drift in 

individual clusters, it makes use of hierarchical 

agglomerative clustering. Clusters corresponding to the 

same concept are gradually merged over time, allowing for 

a steady and secure adaptation to changing concepts. The 

algorithm is flexible enough to handle a wide range of drift 

patterns and can be tailored to an unknown number of new 

malware trends that might emerge in the future. 

The approach makes use of a general hierarchical clustering 

process that includes a stopping condition and a distance 

function over the collection of elements to be clustered. 

FedDrift collects loss estimates of models assessed over a 

subsample of data linked to the cluster for every model in 

order to define a distance function. The initialization of 

cluster distances is determined by the variation in loss 

estimates, which gauges how much a model's accuracy 

deteriorates when applied to its own data.In contrast to 

FedDrift-Eager, it requires more computational resources, 

generates a greater number of global models (M), and 

introduces an O(M2 log M) time complexity at the server 

for each time step. The algorithm's efficiency can be 

optimized by creating fewer overall models. Clients can also 

maintain relevant data and weights for a sliding window of 

recent time steps to facilitate subsampling steps. 

5.3.  Results And Conclusion 

METRICS: metrics are quantitative measures used to 

evaluate the performance and effectiveness of a model in 

solving a particular task. These metrics provide insights into 

how well the model generalizes to new, unseen data and 

how accurately it makes predictions. Different types of 

machine learning tasks, such as classification, regression, 

clustering, and more, often require specific metrics tailored 

to the nature of the task 

Accuracy: It is calculated as the ratio of the number of 

correct predictions to the total number of predictions 

Loss: It is calculated as the average of the losses of all 

clients. 
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F1 Score: It is calculated as the harmonic mean of precision 

and recall. 

Precision: It is calculated as the ratio of true positives to true 

positives plus false positives. It is the proportion of positive 

samples that are correctly classified as positive. 

Recall: It is calculated as the ratio of true positives to true 

positives plus false negatives. It is the proportion of positive 

samples that are correctly classified as positive. 

AUC (Area Under the ROC Curve): It is a measure of how 

well a binary classification model can distinguish between 

positive and negative classes. AUC provides an aggregate 

measure of performance across all possible classification 

thresholds. 

FPR (False Positive Rate):  It is the ratio of false positives 

to the total number of actual negatives. 

Table 1 

Metric

s 
FedAvg DW-FedAvg 

Accura

cy 

0.93253 0.96009 

Loss 0.410637 0.420644 

F1 

Score 

0.963261 0.978453 

Precisi

on 

0.978715 0.985501 

AUC 0.921036 0.971521 

False 

Positiv

e Rate 

0.051538 0.028479 

 

  

Table 1: Federated learning aggregation results 

with Kronodroid dataset 

  

Table 2 

Metric

s 
FedDrift-Eager FedDrift 

Accura

y 

0.9552 0.9849 

Loss 0.4543 0.4691 

 

  

 

Table 2: Drift detection results for the Kronodroid dataset 

with federated learning 

 

 Fig 3: Graphs of Accuracy and Error rate 

values using DW-FedAvg 

 

Fig 4: Graphs of Accuracy and Error rate values using 

FedAvg 

The model is performing extremely well when DW-FedAvg 

aggregation is being used  and when the FedDrift algorithm 

is being used. In terms of accuracy and error rate  as seen 

from the table and graphs with DW-FedAvg we have an 

accuracy of 0.96009 and with FedAvg we have an accuracy 

of 0.93253. The same way with FedDrift we have an 

accuracy of 0.9849 and with FedDrift -Eager we have an 

accuracy of 0.9552.This clearly shows us that with these 

aggregation and drift detection algorithms this model 

outperforms a lot of traditional models out there 

6. Effective Implementations 

To apply federated learning in the real-world an 

application[11] is used. This application can be downloaded 

onto the client’s Android device. It will be sent the global 

model from the server and the local training starts on the 

device using the device data. After the training is done the 

device is equipped with an application for malware 

identification service which uses federated learning. For the 

server to connect to real time clients all the input it needs is 

port number and IP address. When provided with that 

information the client gets connected and can participate in 

training and predictions. 

All the research information till now and future findings and 
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improvements will be available at the website 

“http://sangraha360.org” . This website contains all the 

applications,  codebases and theory. To know all the future 

upgrades and improvements this website can be visited .  

 

Fig 5: Federated learning application for malware 

detection [7] 
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