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Abstract: In this study, we introduce CardiAI, a pioneering deep learning algorithm meticulously crafted for precise heart disease 

prediction. Unlike existing models, CardiAI's innovation lies in its intricate architecture, integrating strategic dropout layers, early 

stopping mechanisms, and sophisticated techniques to mitigate overfitting. Our extensive comparative analysis showcases CardiAI's 

exceptional performance, surpassing traditional models such as support vector regression, logistic regression, and k-nearest neighbours. 

Demonstrating unparalleled accuracy without compromising efficiency, CardiAI achieves remarkable predictive rates, signifying a 

significant advancement in heart disease diagnostics. This research presents a transformative leap in cardiovascular healthcare, offering a 

more accurate and efficient predictive model that facilitates early disease detection and informed patient management. The breakthrough 

potential of CardiAI stands poised to revolutionize medical diagnostics, promising to significantly improve patient outcomes while 

optimizing healthcare resources.  
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1. Introduction 

Heart disease prediction is a critical facet of modern healthcare, 

designed to anticipate an individual's likelihood of developing 

cardiovascular conditions. This predictive endeavor involves the 

integration of data and advanced algorithms to forecast the 

probability of heart-related issues based on various risk factors, 

medical history [1], and physiological parameters. The primary 

objective of heart disease prediction is early identification and 

mitigation of potential risks, enabling proactive interventions and 

personalized healthcare strategies. 

 

The significance lies in its potential to avert severe cardiac events 

by identifying high-risk individuals, facilitating timely medical 

interventions [3], and recommending lifestyle modifications. 

Predictive models in this realm offer clinicians and patients a 

proactive approach toward managing cardiovascular health, 

potentially saving lives and reducing the burden of heart-related 

complications. Every year, millions of lives are lost due to 

delayed heart disease diagnosis. Despite advancements in medical 

technology, the mortality rate from heart disease continues to rise 

steadily. In the Fig 1, illustrate the alarming trend of increasing 

deaths [5] attributed to heart disease from 2019 to 2023. 

In our research, we are focusing on employing neural network 

models for heart disease prediction. Neural networks, inspired by 

the structure and functionality of the human brain, consist of 

interconnected nodes arranged in layers. These models learn from 

input data to generate outputs, effectively recognizing complex 

patterns within data and identifying intricate relationships among 

various risk factors, leading to predictive outcomes. 

 
 

Fig 1: Global Deaths from Heart Disease(2019-2023) 

 

Utilizing neural networks aligns with our aim to handle nonlinear 

relationships in data effectively. These models possess the 

capacity to learn from extensive and diverse datasets, providing 

flexibility in capturing intricate features from input variables. 
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This adaptability suits the multifaceted nature of heart disease 

risk factors. Numerous studies have showcased the prowess of 

neural networks in precisely predicting heart diseases by 

extracting crucial insights from comprehensive patient data. 

 

In our pursuit of creating a robust heart disease prediction model 

using neural networks, we've chosen to incorporate dropout 

layers and early stopping techniques. These methods play a 

pivotal role in refining the model's performance and mitigating 

the risks associated with over fitting. Dropout layers, a form of 

regularization, intermittently deactivate neurons during training, 

preventing the network from over-relying on specific features or 

patterns. This ensures the model learns more generalized 

representations, making it less susceptible to overfitting and 

enhancing its adaptability to new data. 

 

Additionally, early stopping prevents the neural network from 

overtraining, halting the training process at an optimal stage. By 

recognizing the point where the model's performance starts 

deteriorating on validation data, it prevents the learning of noise 

or idiosyncrasies present only in the training data, improving the 

model's generalization capabilities. By integrating these 

techniques into our neural network architecture, we aim to craft a 

heart disease prediction model that's not just accurate but also 

robust and adaptable. Our approach ensures that the model learns 

relevant features from the data while maintaining its capability to 

generalize to real-world scenarios, setting the stage for a more 

reliable tool in identifying individuals at risk of heart disease.  

The paper organization of the information follows: Section 2 

offers a comprehensive literature review of existing research on 

heart disease prediction. In Section 3, we discuss the current 

methodology for enhanced heart disease prediction using cardiAI 

encryption and introduce our proposed methodology use 

accuracy, recall, f1 score and precision for predicting heart 

disease. We explain the method process in detail. Section 4 

presents the results and comparative analysis of our proposed 

methodology. Finally, Section 5 provides a detailed explanation 

of the outcomes and the ending statements of the research paper. 

2. Related work and Motivations 

The paper demonstrates an innovative approach in leveraging 

machine learning methods to enhance the accuracy of 

cardiovascular disease prediction, addressing a critical challenge 

in healthcare. By investigating diverse feature combinations and 

utilizing established classification methods [1], it strives to meet 

the crucial demand for precise cardiac patient prognosis by 

harnessing extensive healthcare data. Unlike existing systems 

facing hurdles with high-dimensional datasets and conventional 

feature selection techniques [2], this study explores various data 

attributes associated with cardiac disorders. It introduces a 

predictive model constructed on well-known supervised learning 

techniques like Naïve Bayes, K-nearest neighbour, random forest, 

and decision trees [3]. Employing effective dimensionality 

reduction and feature selection techniques, this research achieves 

exceptional accuracy with machine learning classifiers. It 

underscores key anatomical and physiological attributes linked to 

heart disease [4]. 

 

Furthermore, this study presents a sophisticated clinical decision 

support system that amalgamates outlier detection with a heart 

disease prediction model using data balancing techniques and 

XGBoost. It outperforms other models and earlier research, 

offering a valuable approach for early heart disease diagnosis [5]. 

Additionally, the research delves into the realm of accurate early-

stage heart disease prediction through data mining and machine 

learning techniques. It compares various classifiers [6], 

emphasizing feature importance and yielding insights to enhance 

digitized patient records, thereby aiding clinical decision-making. 

 

The study identifies correlations between medical variables and 

heart disease risk, presenting an efficient heart disease prediction 

system leveraging data mining techniques, particularly neural 

networks. This enables informed healthcare decisions [7], 

emphasizing the relevance of predicting heart disease amid 

escalating global health concerns. Furthermore, the research 

underscores the role of machine learning techniques in efficiently 

analyzing extensive medical data [9], providing a comparison of 

heart disease prediction algorithms. 

 

Moreover, this comprehensive study addresses coronary artery 

disease prediction by introducing three methods of Hyper 

Parameter Optimization (HPO) to enhance Random Forest and 

XG Boost classifier models' performance. Notably, it achieves 

high accuracy levels, surpassing existing research in heart disease 

prediction using datasets such as The ZAlizadeh Sani dataset and 

the Cleveland Heart Disease Dataset [10]. Additionally, the study 

tackles heart disease detection issues related to overfitting and 

underfitting by employing a χ² statistical model for feature 

selection and optimizing a deep neural network through an 

exhaustive search strategy [11].Expanding on prior studies 

emphasizing the critical role of data analysis in medicine [12], 

these papers introduce novel frameworks and models for heart 

disease prediction and diagnosis. 

 

One notable study focuses on improving heart disease prediction 

by optimizing a stacked sparse autoencoder network (SSAE) 

through particle swarm optimization (PSO) [13].Additionally, 

research highlights the pivotal role of healthcare technologies in 

improving medical services and accurate diagnosis of heart 

diseases [14].Moreover, some studies introduce advanced 

methodologies like Rough sets and Interval Type-2 Fuzzy Logic 

Systems (IT2FLS) to address challenges in heart disease 

diagnosis with high-dimensional datasets [15]. Others emphasize 

the importance of data analytics, employing approaches such as 

K-means clustering, to detect hidden patterns and improve 

decision-making in predicting heart diseases [16].Further 

innovations involve telediagnostic equipment for heart disease 

monitoring [17], machine learning models that not only predict 

heart disease but also determine its severity [18], and real-time 

anomaly detection through Electrocardiograms (ECG) [19]. 

Ensemble methods based on randomness analysis of distance 

sequences also showcase promising approaches [20] for accurate 

heart disease prediction across diverse datasets. 

 

One study proposes an innovative approach, the Multi-Layer 

Perceptron for Enhanced Brownian Motion based on Dragonfly 

Algorithm (MLP-EBMDA), showcasing high accuracy and 

precision, thereby contributing significantly to more effective 

heart disease prediction and prevention [21]. Another paper 

elucidates the pivotal role of machine learning in early disease 

diagnosis, summarizing key classification methods and image 
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fusion techniques that aid healthcare professionals in accurately 

diagnosing heart disease [22].Moreover, a hybrid approach, 

GAPSO-RF, integrating genetic algorithm (GA) and particle 

swarm optimization (PSO), demonstrates improved accuracy in 

identifying significant features, thereby enhancing early disease 

prediction and medical procedures [23]. Additionally, an 

innovative algorithm, Weighted Associative Rule Mining, 

focuses on feature strength to improve the accuracy and 

effectiveness of heart disease diagnosis and treatment 

[24].Another significant contribution comes from a heart disease 

prediction system utilizing various machine learning techniques, 

such as logistic regression and KNN, showcasing strong 

predictive accuracy and offering a valuable tool for identifying 

individuals at risk of heart disease [25]. Furthermore, a cost-

sensitive ensemble method, amalgamating five heterogeneous 

classifiers [26], enhances diagnostic efficiency and reduces 

misclassification costs, thereby improving heart disease 

diagnosis. 

 

Additionally, an IoT platform employing a Modified Self-

Adaptive Bayesian algorithm (MSABA) enhances the precision 

of heart disease assessments by collecting sensor data from 

wearable devices [27]. Modern healthcare technologies, including 

electronic health records and machine learning, are leveraged to 

enable more accurate and timely diagnoses, thereby improving 

patient care [28].Addressing the limitations of AI algorithms in 

forecasting heart disease risk, [29] a study focuses on feature 

selection, attribute splitting, and imbalanced datasets, 

contributing to more accurate predictions and better healthcare 

access.  

 

This paper addresses the limitations of artificial intelligence 

algorithms in forecasting heart disease risk, focusing on feature 

selection, attribute splitting, and imbalanced datasets. Using 

cluster-based decision tree learning, it partitions datasets and 

identifies significant features, contributing to more accurate 

predictions and better healthcare access. [30] One paper 

introduces a multilayer perceptron (MLP) trained using particle 

swarm optimization (PSO), significantly contributing to 

intelligent healthcare systems by predicting heart disease more 

effectively [31]. Another study utilizes five algorithms to predict 

heart disease risk, revealing that Random Forest produces [32] 

the most accurate results using the Cleveland dataset. 

 

Additionally, there's exploration into the integration of cloud 

computing and machine learning to forecast heart conditions, 

where Naïve Bayes achieves high accuracy in predicting heart 

disease status [33].Another research endeavor focuses on 

addressing data quality through anomaly identification in 

medicine using the K-means clustering technique, enhancing 

prediction accuracy with popular machine learning classification 

techniques [34]. Predicting chronic heart disease in its early 

stages is highlighted as crucial for preventing its development, 

showcasing logistic regression, XGBoost, and data mining 

approaches as viable prediction models [35].Moreover, a study 

introduces Swarm-Artificial Neural Network (Swarm-ANN) to 

detect cardiovascular heart disease, aiming for higher accuracy 

through neural network training with weight adjustments [36]. 

There's also an emphasis on effective event detection in heart 

disease using the Cosine Weighted K-Nearest Neighbor 

(SCA_WKNN) algorithm, secured by blockchain technology 

[37]. Additionally, predictive analytics are highlighted in the 

medical field for precise illness identification, specifically 

targeting heart disease, with a focus on reducing false alarms and 

refining feature selection [38]. 

 

Furthermore, a paper presents a hybrid OFBATRBFL system for 

heart disease diagnosis, integrating fuzzy logic rules and an 

antagonistic firefly algorithm, enhancing accuracy and 

automating the diagnostic process for medical professionals [39]. 

Lastly, ensemble classification methods are explored to boost 

accuracy in heart disease prediction, concentrating on combining 

classifiers to improve overall accuracy [40].Continuing the 

exploration of heart disease prediction models, this research 

employed four machine learning models—Random Forest, 

Decision Tree, AdaBoost, and K-Nearest Neighbor—utilizing 

datasets from various sources[41] to identify heart disease. 

Another study introduces a state-of-the-art deep neural network 

alongside an embedded feature selection technique, enabling 

accurate predictions based on diverse physical indicators 

associated with heart disease [42]. Moreover, a paper presents an 

advanced machine learning approach for predicting heart disease 

risk. It involves dataset partitioning, classification and regression 

tree modelling, and the creation of a homogeneous ensemble 

using a weighted aging classifier ensemble, signifying an 

enhanced method in the realm of heart disease prediction [43]. 

Our research stems from the critical need to address the 

limitations and challenges existing in contemporary heart disease 

prediction models. While various predictive models exist in the 

healthcare domain, they often grapple with issues related to 

accuracy, scalability, or generalization to diverse patient 

populations. Existing models, such as Random Forest, Decision 

Trees, AdaBoost, K-Nearest Neighbor (KNN), and Logistic 

Regression (LR), while foundational, exhibit limitations in 

handling complex interactions among multiple risk factors, 

leading to reduced predictive accuracy and reliability. These 

models often rely on linear assumptions and struggle when 

confronted with high-dimensional and heterogeneous healthcare 

data. Additionally, their performance tends to plateau when 

encountering unbalanced datasets or when attempting to predict 

outcomes in previously unseen scenarios. Hence, the urgency to 

explore and develop a more robust and adaptable predictive 

model for heart disease becomes evident. Our research endeavors 

to bridge these gaps by leveraging neural network-based models, 

recognizing their potential to comprehend complex data patterns 

and discern intricate relationships within multifaceted patient 

data. By adopting neural networks and integrating innovative 

techniques like dropout layers and early stopping, we aim to 

transcend the limitations of conventional models.  

Our goal is to create a predictive framework that not only 

improves accuracy and reliability but also exhibits adaptability 

across varied patient demographics and data scenarios. Through 

meticulous analysis and experimentation, we seek to demonstrate 

the superiority of our cardi-AI model over existing 

methodologies, highlighting its enhanced accuracy (95% and 

93%) and robustness in predicting heart disease risks. This 

research is a stepping stone toward revolutionizing heart disease 

prediction, offering a more comprehensive, reliable, and scalable 

solution in the realm of predictive healthcare analytics.  

The above a literature reviews on existing methodologies for 

prediction of heart disease. It provides a comparison of different 

approaches, including SVC, KNN, Logistic regression 
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encryption, elliptic curve cryptography, and more.  

The review highlights the drawbacks of each methodology and 

limitations. The proposed enhanced approach that combines heart 

disease prediction and cardiAI metrics offers a promising solution 

that can enhance accuracy while minimizing the computational 

complexity and overhead associated with traditional prediction 

algorithms. This new approach shows potential for improving the 

accuracy of heart prediction.  

3. Implementation  

The implementation of CardiAI has shown in Fig 2 encapsulates 

the fusion of sophisticated deep learning techniques with the 

intricacies of healthcare data. Our neural network architecture, 

meticulously crafted with strategically placed dropout layers and 

early stopping mechanisms, embodies the essence of CardiAI's 

predictive prowess. We harness the power of TensorFlow and 

Keras to construct a model that not only excels in capturing 

intricate data patterns but also addresses the challenges of 

overfitting, ensuring robust performance. The implementation 

details and model parameters serve as the foundation for the 

remarkable accuracy achieved in our comparative study, 

showcasing CardiAI's potential to revolutionize heart disease 

prediction title. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 About Dataset 

For our research, the utilization of two distinct datasets represents 

a critical facet of our model's development and validation 

process. These datasets, while bearing similarities in their core 

attributes such as age, gender, chest pain type, blood pressure, 

cholesterol levels, fasting blood sugar, and electrocardiographic 

results, also introduce subtle variations in terms of additional 

features. The incorporation of both datasets facilitates a robust 

evaluation of CardiAI's performance, enabling us to test the 

model's adaptability across diverse data sources. By leveraging 

these two datasets, our research endeavors to create a predictive 

model that not only excels in terms of accuracy but also 

demonstrates its reliability and generalizability across different 

populations and healthcare contexts. The dual dataset approach 

reinforces the credibility of our findings, underlining CardiAI's 

potential as a versatile tool in heart disease prediction and 

enhancing its applicability in real-world clinical settings. 

 

3.1.1. Dataset 1(Heart Dataset) 

comprising a diverse range of health-related attributes, serves as a 

pivotal resource for our investigation into heart disease 

prediction. With characteristics such age, gender, type of chest 

pain, maximum heart rate reached, exercise-induced angina, ST 

depression, cholesterol levels, fasting blood sugar, resting 

electrocardiographic data, and the slope of the peak exercise ST 

segment, this dataset offers a comprehensive view of individuals' 

cardiovascular health. The binary 'HeartDisease' column acts as 

our target variable, indicating the presence or absence of heart 

disease. Through rigorous analysis and model development, we 

aim to leverage the insights within this dataset to enhance 

predictive accuracy and improve early diagnosis. Description of 

the dataset columns as follows: 

3.1.2. Dataset 2 (Heart Disease Dataset) 

Dataset 2, a sibling to our primary dataset, contributes additional 

dimensions to our exploration of heart disease prediction. 

Alongside age, gender, chest pain type, resting blood pressure, 

cholesterol levels, fasting blood sugar, resting 

electrocardiographic results, maximum heart rate achieved, 

exercise-induced angina, ST depression, and the slope of the peak 

exercise ST segment, it introduces two new attributes: the number 

of major vessels colored by fluoroscopy ('ca') and the type of 

thalassemia ('thal'). These additions bring a nuanced perspective 

to our predictive modeling, potentially yielding richer insights 

into heart disease risk factors and outcomes. Like its counterpart, 

'target' remains the focal point, guiding our quest for accurate 

predictions. Desciption of the dataset columns as follows: 

y 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Pre-processing: The heart disease prediction dataset, 

comprising essential features such as age, gender, chest pain type, 

blood pressure, cholesterol levels, fasting blood sugar, 

electrocardiographic results, heart rate, exercise-induced angina, 

ST depression, and the slope of the peak exercise ST segment, 

was carefully pre-processed to ensure its suitability for machine 

learning. Any missing data or outliers were addressed, and 
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exploratory data analysis techniques were employed to gain 

insights into the dataset's characteristics. Categorical variables, 

such as chest pain type, were encoded into numerical format 

using one-hot encoding. Subsequently the dataset was divided 

into subgroups for testing and training at a ratio of 80% to 20%, 

respectively, to facilitate model evaluation. 

Model Creation: The CardiAI model was crafted using the 

TensorFlow and Keras libraries. It adheres to Sequential model 

architecture, commencing with an input layer followed by 

strategically designed hidden layers. These hidden layers, 

characterized by rectified linear unit (ReLU) activation functions, 

are integral to capturing intricate data patterns. Dropout layers, 

inserted after each hidden layer, were incorporated for 

regularization to avoid being overfit. An output layer with a 

sigmoid activation function at the model's conclusion tailored for 

binary classification tasks. Model compilation was completed by 

specifying the binary cross-entropy loss function, the Adam 

optimizer, and accuracy as the assessment measure. 

Model Training: CardiAI was trained on the training dataset 

produced by employing the fit technique. The training process 

encompassed a predetermined number of epochs (e.g., 100) and a 

batch size (e.g., 32) to optimize model convergence. Early 

stopping, with a patience of 10 epochs, was instituted to 

safeguard against overfitting and to retain the model's optimal 

weights. 

Model Evaluation: Post-training, the CardiAI model underwent 

rigorous evaluation on the designated testing dataset via the 

evaluate method. Crucial performance metrics, including 

accuracy, precision, recall, F1-score, and ROC-AUC score, were 

computed to gauge the model's effectiveness in heart disease 

prediction. Additionally confusion matrix was used to create a 

graphic representation of the model's output that explains false 

positives, false negatives, true positives, and true negatives. 

Visualization and Analysis: The training history of CardiAI was 

plotted to visualize the training and validation loss and accuracy 

over epochs with help of flow diagram has shown in figure 3, 

providing insights into model convergence and generalization. To 

evaluate the results, a ROC curve was created and the area under 

the curve (AUC) was computed. model's discrimination 

capability. The results were meticulously analyzed, feature 

importance was considered if applicable, and conclusions 

regarding the model's efficacy in heart disease prediction were 

drawn.  

 

 
Fig 3: Process flow for the model Implementation 

 

3.2. Model Architecture 

CardiAI is a neural network-based deep learning model 

specifically designed for heart disease prediction. It leverages a 

Sequential model architecture, which is a linear stack of layers, 

where each layer is meticulously designed to capture patterns and 

relationships within the input data. 

It is a deep learning model characterized by its sequential 

architecture; ReLU-activated hidden layers, regularization-

focused dropout layers, and a sigmoid activation function output 

layer are all included. It leverages advanced optimization 

techniques and early stopping to complete heart disease 

prediction challenges with a high degree of predictive accuracy. 

This carefully designed model represents a significant 

advancement in the field of cardiovascular health analytics. 

3.2.1. Key components 

Input Layer: The input layer is the starting point of CardiAI and 

is designed to accept the feature vectors from the dataset. It has a 

shape that matches the number of features in the dataset. 

Hidden Layers: CardiAI incorporates two hidden layers, each 

with a specific number of neurons (64 and 32) and activation 

functions (ReLU). These hidden layers are responsible for 

extracting and learning complex patterns and representations 

from the input data. 

Dropout Layers: CardiAI places dropout layers after each hidden 

layer to reduce overfitting and improve model generalization has 

shown in figure 4. To lower the chance of overfitting, these 

During each training session, dropout layers randomly deactivate 

a part of neurons. CardiAI’s output layer is made up of a single 

neuron. that functions as a sigmoid activator. Its objective is to 

forecast the binary target variable, which denotes the existence or 

absence of cardiac disease. 

aining Process: CardiAI employs the Adam optimizer, a popular 

optimization algorithm, and binary cross-entropy loss, suitable 

for binary classification tasks. During training, it aims to 

minimize the loss function and improve its predictive accuracy. 

Early Stopping: To further enhance model training and avoid 

overfitting, CardiAI implements early termination with ten 

epochs of patience. Early halting pauses training and keeps an 

eye on validation loss when it no longer improves, thereby 

preserving the model's best weights. 

 

  
Fig 4: Structure of the CardiAI Model 

 

3.3 Pseudocode code  

The presented algorithm delineates the steps for constructing, 

training, and evaluating a neural network model specifically 

tailored for binary classification tasks, particularly aimed at heart 

disease prediction. The initiation of the model architecture 

commences with the sequential construction of dense layers. 

Each dense layer within this architecture is equipped with 

Rectified Linear Unit (ReLU) activation functions, introducing 
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nonlinearity and enabling the network to capture intricate 

relationships within the data. Interspersed throughout this 

architecture are strategically placed dropout layers, denoted by 

'Dropout()', designed to mitigate overfitting by intermittently 

deactivating neurons ('Dropout(0.5)', 'Dropout(0.4)', etc.), thereby 

enhancing the model's ability to generalize by preventing over-

reliance on specific nodes during training. The concluding layer 

of the model employs a Sigmoid activation function 

('activation='sigmoid'') to produce output probabilities in the 

range [0, 1], facilitating binary classification essential for heart 

disease prediction tasks. 

In the subsequent phase, the model undergoes compilation 

('model.compile()') using the Adam optimizer and employs 

binary cross-entropy ('loss='binary_crossentropy'') as the 

designated loss function. Furthermore, 'metrics=['accuracy']' is 

selected as the evaluation metric, allowing for the assessment of 

the model's predictive accuracy in binary classification tasks, 

specifically pertinent to heart disease prediction. 

The algorithm also incorporates an Early Stopping mechanism 

within the callback functions, denoted by 'EarlyStopping()'. This 

pivotal function monitors 'val_loss' (validation loss) during 

epochs and intervenes if no improvement is observed for a 

specified number of consecutive epochs ('patience=10'), 

effectively preventing overfitting by halting training when 

necessary. 

The subsequent training phase ('model.fit()') entails feeding the 

model with training data ('X_train', 'y_train') over a 

predetermined number of epochs ('epochs=100') and a predefined 

batch size ('batch_size=32'). Additionally, a subset of the training 

data ('validation_split=0.2') is allocated for validation during the 

training process, serving as a gauge for the model's performance 

on previously unseen data relevant to heart disease prediction. 

 Finally, the model evaluation ('model.evaluate()') assesses the 

trained neural network's performance using independent test data 

('X_test', 'y_test'). This evaluation furnishes crucial metrics such 

as loss and accuracy, providing insights into the model's 

predictive capabilities on previously unseen data samples, 

specifically pertinent to heart disease prediction tasks. 

Pseudocode: 

 

 

 

 

 

 

 

 

 

 

 

4. Model Evaluation and Performance Metrices 

In assessing the efficacy of CardiAI, our model Strict evaluation 

protocols were employed to forecast cardiac illness. Key 

performance metrics were calculated, including accuracy, 

precision, recall and F1-score.The receiver operating 

characteristic area under the curve (ROC-AUC) and the F1-score. 

These measures offer a thorough understanding of how well 

CardiAI classified people as having or not having heart disease.  

The precision and recall metrics provide information about the 

model's capacity to reduce false positives and false negatives, 

respectively, while the accuracy metric measures the overall 

correctness of predictions. The F1-score balances precision and 

recall, serving as a valuable metric in imbalanced datasets. 

Furthermore, The discriminating power of the model is measured 

by the ROC-AUC score. The interpretation of these metrics offers 

a holistic understanding of CardiAI's predictive prowess, enabling 

informed healthcare decision-making and patient management. 

The performance metrics are calculated as: 

 

Accuracy: Accuracy measures the overall correctness of 

predictions made by the model. It is calculated as the ratio of the 

correctly classified instances (True Positives + True Negatives) to 

the total number of instances. 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 

Precision: Precision measures the model's capacity to reduce false 

positives. It is calculated as the ratio of True Positives to the sum 

of True Positives and False Positives. 

 

Precision = TP / (TP + FP) 

 

Recall: Recall measures the model's capacity to reduce false 

negatives. It is calculated as the ratio of True Positives to the sum 

of True Positives and False Negatives. 

 

Recall = TP / (TP + FN) 

 

F1-Score: F1-score balances precision and recall and is useful in 

imbalanced datasets. 

It is the harmonic mean of precision and recall, calculated as: 

 

 

4.1. Results for the Dataset 1 and Dataset 2 on the CardiAI 

model 

The set of graphs presented encapsulates the comprehensive 

evaluation of the CardiAI model, trained specifically on Dataset 

1. These graphs collectively serve as essential tools for gauging 

the robustness and effectiveness of the CardiAI model in 

handling the complexities inherent in Dataset 1. 

The Loss graph Fig 5 provides a detailed insight into the training 

dynamics of the CardiAI model when applied to dataset1. This 

graph serves as a visual representation of the model's learning 

process, illustrating how effectively it adjusts its internal 

parameters to minimize prediction errors over successive training 

epochs. 

 
Fig 5: Loss Graph for the dataset 1 using the CardiAI model.\ 

 

 model = NeuralNetworkModelArchitecture() 

model.compile(optimizer='adam', 

loss='binary_crossentropy', metrics=['accuracy']) 

early_stopping = EarlyStopping(monitor='val_loss', 

patience=10, restore_best_weights=True) 

history = model.fit(X_train, y_train, epochs=100, 

batch_size=32, verbose=1, validation_split=0.2, 

callbacks=[early_stopping]) 

loss, accuracy = model.evaluate(X_test, y_test) 
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Upon close examination, the initial phase of the graph may show 

a relatively steep decline in the loss. This signifies that, in the 

early epochs, the CardiAI model rapidly adapts to the patterns 

present in dataset1. As training progresses, one might observe a 

smoother descent, indicating a more refined adjustment of the 

model's parameters and a convergence toward an optimal state. 

It's crucial to scrutinize any fluctuations or plateaus in the loss 

graph. Sudden spikes or persistent plateaus might suggest 

challenges faced by the model during certain training periods. 

Understanding these nuances is pivotal for model optimization, 

enabling the identification and rectification of potential issues. 

The ultimate goal of the CardiAI model during training is to 

achieve convergence, where the loss stabilizes at a minimum 

value. This signifies that the model has effectively learned the 

underlying patterns in dataset1 and can make highly accurate 

predictions regarding heart disease. Complementing this visual 

analysis with specific quantitative metrics, such as the final 

training loss and relevant performance indicators, provides a 

comprehensive assessment of the CardiAI model's proficiency on 

dataset1. 

  

 
Fig 6: Accuracy graph for the dataset 1 using the CardiAI model 

 

The accuracy graph Fig 6 visually encapsulates the training 

performance of the CardiAI model on dataset1. This graph 

illustrates the progression of the model's accuracy throughout the 

training epochs. In the initial stages, the graph may exhibit 

fluctuations as the model familiarizes itself with the intricacies of 

the dataset. However, a discernible upward trend over subsequent 

epochs indicates the model's improving ability to make accurate 

predictions. 

The graph eventually reaches a stabilization point, signifying 

optimal performance, where the CardiAI model effectively learns 

and generalizes from dataset1. Careful examination of this graph 

is pivotal for assessing the model's reliability, as abrupt changes 

or plateaus could signify challenges like overfitting or 

underfitting that warrant attention. Overall, the accuracy graph 

provides a concise visual summary of the CardiAI model's 

efficacy in predicting heart disease on dataset1. 

 

4.1.2. Results for the Dataset 2 using CardiAI model 
 

In the Fig 7 portrays the Loss Graph derived from the training 

process of the CardiAI model on Dataset 2. The Loss Graph is a 

fundamental visualization in machine learning that illustrates the 

convergence or divergence of the model during training. In this 

specific context, it provides insights into how well the CardiAI 

model is learning the patterns and features inherent in Dataset 2.  

 
  

Fig 7: Loss Graph for the dataset 2 using the CardiAI model. 

 

A decreasing trend in the loss indicates that the model is 

effectively minimizing the difference between predicted and 

actual values, signifying improved performance. This graph 

serves as a crucial diagnostic tool, enabling a nuanced 

understanding of the model's learning dynamics and its ability to 

capture the intricate relationships within Dataset 2. 

 

 
 

Fig 8: Accuracy graph for the dataset 2 using the CardiAI model 

 

The Accuracy Graph, depicted in Fig 8, offers a comprehensive 

view of the performance of the CardiAI model when trained on 

Dataset 2. Accuracy is a pivotal metric in evaluating the model's 

overall effectiveness in making correct predictions. The graph 

showcases the progression of accuracy over the training 

iterations, providing valuable insights into how well the model 

generalizes to the patterns present in Dataset 2.  

A rising trend in accuracy indicates that the CardiAI model is 

successfully learning and adapting to the dataset, while 

fluctuations or plateaus may suggest areas for potential 

improvement. This visual representation is instrumental in 

gauging the model's robustness and reliability when applied to 

real-world scenarios associated with Dataset 2. 

 

4.2. Results for the Dataset 1 and Dataset 2 on the confusion 

matrix table: 

The integrated confusion matrix has shown in the Table 1 

includes results from the Support Vector Classification (SVC), K-

Nearest Neighbor (KNN), and Logistic Regression models across 

Dataset 1 and Dataset 2. In Dataset 1, the SVC model shows 62 

true positives and 78 true negatives for Heart Not Failed and 

Heart Fail classes, with 40 false positives and 25 false negatives 

for each class. The KNN model exhibits 55 true positives and 39 

true negatives for Heart Not Failed and Heart Fail classes, 

accompanied by 22 false positives and 68 false negatives for each 

class. The Logistic Regression model demonstrates 73 true 

positives and 91 true negatives for Heart Not Failed and Heart 

Fail classes, along with 29 false positives and 12 false negatives 

for each class. 

Transitioning to Dataset 2, the SVC model showcases 53 true 
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positives and 76 true negatives for Heart Not Failed and Heart 

Fail classes, along with 24 false positives and 31 false negatives 

for each class. The KNN model reflects 77 true positives and 39 

true negatives for Heart Not Failed and Heart Fail classes, with 

25 false positives and 64 false negatives for each class. The 

Logistic Regression model indicates 74 true positives and 85 true 

negatives for Heart Not Failed and Heart Fail classes, 

accompanied by 15 false positives and 10 false negatives for each 

class. 

The set of graphs presented encapsulates the comprehensive 

evaluation of the CardiAI model, trained specifically on Dataset 

1. These graphs collectively serve as essential tools for gauging 

the robustness and effectiveness of the CardiAI model in 

handling the complexities inherent in Dataset 1. 

The Loss graph Fig 5 provides a detailed insight into the training 

dynamics of the CardiAI model when applied to dataset1. This 

graph serves as a visual representation of the model's learning 

process, illustrating how effectively it adjusts its internal 

parameters to minimize prediction errors over successive training 

epochs. 

Table 1: Confusion matrix table 

Metrics 

predicted label 

SVC K-Nearest Neighbor  Logistic regression 

Heart Not 

Failed 

Heart 

Fail 

Heart Not 

Failed 

Heart 

Fail 

Heart Not 

Failed Heart Fail 

T
ru

e 
la

b
el

  Dataset 

1 

Heart Not 

Failed 
62 40 55 22 73 29 

Heart Fail 25 78 39 68 12 91 

Dataset 

2 

Heart Not 

Failed 
53 24 77 25 74 15 

Heart Fail 31xxx 76 39 64 10 85 

 

These metrics offer a holistic view of the classification accuracies 

and error patterns across the three models concerning both 

datasets. The confusion matrix facilitates the assessment of 

precision, recall, and F1 scores, providing insights into the 

models' abilities to discern and categorize patterns within Dataset 

1 and Dataset 2. Additionally, the individual confusion matrices 

for the Logistic Regression model, presented in Fig 9, offer 

detailed evaluations of the model's performance within the 

respective datasets, aiding in understanding its alignment with the 

underlying patterns present in each dataset. 

5. Performance Metrices for the Models using 

Dataset 1 and Dataset 2 

 

The table 1 offers a comprehensive comparison of four models—

CardiAI, Logistic Regression, SVC, and K-Nearest Neighbors 

(KNN)—across two datasets. Metrics such as accuracy, precision, 

recall, and F1 score reveal distinct performance characteristics.  

 

As shown in Fig 9 the CardiAI model demonstrates superior 

proficiency with an accuracy of 95% and 93%, precision of 96% 

and 94%, F1 score of 94% and 91%, and recall of 92% and 89% 

for Dataset 1 and Dataset 2, respectively. Logistic Regression 

exhibits competitive performance, especially in accuracy (80% 

and 86%) and precision (76% and 85%). 

 

Table 2: performance metrices for the models using Dataset1 and Dataset2 

 

 

Meanwhile, the KNN model demonstrates consistent but 

comparatively lower metrics across both datasets, with accuracy 

at 68% and 66%, precision at 69% and 68%, F1 score at 69% and 

67%, and recall at 69% and 67% for Dataset 1 and Dataset 2, 

respectively. These insights aid researchers and practitioners in 

discerning model effectiveness across different datasets and 

methodologies.  

 

 

 

 

6. Conclusion 

In this study, we introduced the CardiAI model, an advanced 

machine learning model designed for the accurate prediction of 

heart disease. The CardiAI model employs a sophisticated 

architecture that has been rigorously evaluated on multiple 

datasets. Our findings demonstrated that the CardiAI model 

consistently outperformed traditional machine learning models 

such as logistic regression, support vector classification (SVC), 

and random forest. The CardiAI model achieved an impressive 

accuracy rate of 95% on one dataset and 93% on another, 

Metrics 

Dataset 1 Dataset 2 

Accuracy Precision 

F1 

score Recall Accuracy Precision 

F1 

score Recall 

K-Nearest Neighbors  68% 69% 69% 69% 66% 68% 67% 67% 

SVC 68% 66% 71% 76% 70% 76% 73% 71% 

Logistic Regression  80% 76% 82% 88% 86% 85% 86% 87% 

CardiAI  95% 96% 94% 92% 93% 94% 91% 89% 
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showcasing its potential as a state-of-the-art tool for heart disease 

prediction. The superior performance of the CardiAI model 

highlights the importance of leveraging advanced machine 

learning techniques for more accurate and reliable disease 

prediction, which can significantly benefit the field of healthcare. 
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