

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 670

Design of an Error Detection Fault Tolerant Arbiter for a Network on

Chip

1Malathi Naddunoori, 2Dr. Devanathan M.

Submitted: 30/12/2023 Revised: 04/02/2024 Accepted: 12/02/2024

Abstract: Device to Device communications and System-on-Chip (SoC) communications needs thehigh-speed data transfer with low

hardware resource utilization. However, the conventional methods have resulted in higher area, high power consumption including

time delay .This paper thus proposes the concept of Fault Tolerant Arbiter based Network on Chip (FTA-NoC)architecture with FIFO-

Buffer, crossbar switching, route control, and arbiter modules. This work presents encoder and decoder-based route controlling using

fault tolerant arbiter, which was introduced for high speed, error-free route calculation with less hardware resources in NOC.Initially,

data generated from the different devices is stored into FIFO-Buffer logic, which allocates the data based on IP addresses. Then, route

controller module controls the different routers in crossbar switching, which arecontrolled by priority-based scheduling. The data is then

sent from the source to the destination using arbitrator in accordance with request levels. The simulation results show how well the FTA-

NOC performs in terms of area, latency, and power when compared to the most advanced NoC architectures.

Keywords: Route-Controller Network on Chip, System on Chip, FIFO-Buffer, Crossbar switching, route control, Arbiter.

1. Introduction

Thehuman existence has been greatly impacted by the

fascinating advancements of contemporary electronic

technology, such as pervasive and ubiquitous computing,

ambient intelligence [1-2], communication, and Internet.

Today micro-electronic gadgets are affecting the means

of communication, learning and enjoyment. The primary

driving factor for the improvements throughout decades

is the SoC technologies [3], where sophisticated

packages are combined into single VLSI chips. Not only

functionally enhanced, these items such as mobile

phones, laptops and personal portable sets are growing

quicker, smaller-in-size, larger-in-capacity, lighter in

weight, lower-in-power-consumption and cheaper. One

may pleasantly believe that this tendency would

constantly continue. Following this trend, we may

incorporate more and more complicated applications and

even systems into a single chip [4].

However, our existing approaches for SoC design and

integration do not uniformly progress because to the

enormous hurdles encountered. Because the broad

variety of IP modules in SoCs expands [5-6], bus-based

fully connectivity topologies may also prohibit such

structures to satisfy the overall performance necessary

via many applications. For structures within the depth

parallel verbal exchange requirements the buses do not

tend to meet required metrics like latency, bandwidth

and input power .The ultimate solution for overcoming

this bottleneck issue focuses on an integrated switch

connected network, dubbed NoC [7], which connects

all the Intellectual Property units predominantly . This

shows that the system area of the Network on chips is

significantly greater in comparison to the conventional

bus based approach because this ensures to implement

various arbitration for routing algorithms[8].

Inclusively the NoCs employ a specific feature of inbuilt

redundancy which handles tolerance errors

simultaneously overcomes all the bottlenecks in

communication infrastructure. This aims to offer more

scope to the VLSI designer good insight to develop

viable solutions for diverse system features and

restrictions.

In the current day, there may be a desire for convergence

of varied applications (video, conversation, computing

and so on.) onto a single IC [9]. Normally, when any of

these Packages are employed in a stand -alone way, they

have got resources that are isolated and customized to

them [10]. However, at this time, those apps are required

to share a number of the previously separate assets that

make it possible for them to harmoniously work as a unit

after being integrated onto a SoC. One example of this

would be from the point of view of quality of service.

Moore's law [11], which applies to the logic and memory

products of semiconductors, is driving the flaming scale

of integration of many IP cores on a single chip.

Additionally, as a result of Moore's law, a wide variety

of diverse technologies are improving, although at a

more gradual rate. According to the "More than Moore"

(MTM) technique [12], many new capabilities are now

1Research Scholar, School of ECE, Reva University, Bengaluru,

Karnataka, India. Email: n.malathiraj@gmail.com
2Associate Professor, School of ECE, Reva University, Bengaluru,

Karnataka, India. Email: devanathan.m@reva.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 671

emerging as a result of the fact that those technologies

are becoming more accessible. These trends are also

contributing to the phenomenal expansion ofSoCs.The

significant findings in the proposed work are listed in

the following order :

• Implementation of FTA-NoC with FIFO-Buffer,

crossbar switching, route control, and arbiter

modules.

• FIFO-Buffer logic is developed for storing of data

generated from the different devices based on IP

addresses.

• Route Controller logic is developed for assigning

the route priorities between input and output

devices using priority-based scheduling.

• In accordance with request levels, arbitrator logic is

created to transfer data from the source to the

destination.

• When compared to state-of-the-art NoC

architectures, the simulation results of the proposed

FTA-NoC clearly show that the FIFO-Buffer,

crossbar switching, route control, and arbiter

modules performed better in terms of area, power

consumption, and delay.

The remaining portions of the suggested paper are

organized as follows: section 2 provides literature and

problem analysis; section 3 lists a detailed analysis of the

novel concept of FTA-NoC; section 4 provides results

and output analysis; and section 5 concludes with future

possibilities.

2. Literature survey

In [13] authors implemented the low-complexity NoC

with the growing complexity of structures and trends in

technology, the pins and wires that manage

interconnections among systems and components are

scaling down at a slower rate than the components

themselves. This is because the scaling of transistors has

been helped by the trends within the silicon processes of

chip fabrication [14], which help development in device

architectures for SoC design. In [15] authors

implemented the NoC with Globally Asynchronous and

Locally Synchronous (GALS) method and formed

GALS-NoC.In addition, synchronization of approaching

chips with a single clock and a negligible amount of

distortion may be very difficult to accomplish, which

makes use of a number of different clocks. In [16]

authors implemented the synchronization module

concept for next processors. Instead of logic being the

limiting element in modern systems, the transfer of data

across resources is becoming the bottleneck for cost,

performance, size, and power consumption. In [17]

authors implemented the frequency based NoC (DoS-

NoC) systems. In addition, the frequency at which

components communicate with one another is far lower

than the clock rates of modern CPUs. These elements

quickly mix with SoCs, resulting in a shift toward a

communication-focused orientation. However, scaling

[18] wires at the same rate as transistors has proven

problematic, and as a result, gates now cost far less than

wires do, in terms of both the amount of space they take

up and the amount of performance they provide, in

comparison to a number of basic NoC approaches [19].

Since of this, the buses used in SoC designs [20], which

have for a long time been the backbone of device

interconnects, are becoming incapable of keeping up

with the expanding system performance needs. This is a

problem because busses in NoC [21] have long been the

backbone of device interconnects. In the field of device

interconnects, there were several emerging trends,

including crossbars [22] and a great number of others.

may provide a solution to the problem of inadequate

communication.

In [23] authors implemented the hybrid crossbar

switching based NoC. A report for the semiconductor

industry is provided here, and it is derived from the ITR

for Semiconductors [24]. Silicon is used in the

production process of this technology, which is a step

toward the growth of the IC industry. It is very evident

[25], based on the roadmaps, that the reports for the new

research projects focus on the internet of things. In [26]

authors implemented the high speed NoC (HS-NoC). In

addition to this, it places an emphasis on wireless

technologies in order to deliver the finest solution. It is

thus of the utmost importance that the device's overall

energy usage be cut down to a far larger degree. In [27]

authors implemented the cost effective NoC (Connect-

NoC)design, which is effective in efficiently providing

bandwidth and quality of service (QOS) in traffic flows.

As a direct result of this, the need for model-wide

synchronization is reduced. In [28] authors implemented

the NoCusing parallelism,which minimizes the need of

global communication cables, and reducing the overall

power consumption of the chip. All of these benefits

come as a result of the method's use of parallelism. Not

only can the quantity of connections cables be reduced

[29], but also the amount of network traffic may be

monitored and controlled to significantly reduce the

amount of power that is used. In addition, the convenient

clock speed and device controller based NoC (DC-NoC)

voltage may both be adjusted in line with the amount of

bandwidth that is now accessible. The designers of the

networks need to appropriately handle a large number of

issues in order to provide better results from the chip.

3. Proposed NOC Design

The methodology of transmitting data and sharing of

information among the sources in an NoC architecture is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 672

very crucial with two major objectives. The first one is

its size which helps to increase the hardware resources

individually, making then to become as standalone

blocks, at the same time making the NoC structure

interconnected with blocks inside the NoC. Second, the

network is scalable and configurable makingit a flexible

platform which makes its adaptable to a wide variety of

workloads as it still maintains the generality of software

development methodologies .As the network is reliable,

scalable in bandwidth, energy efficient with distributed

routing decision it becomes reusable and all these

features make the the NoC as a viable solution to create

routers with a large scope in NoC design. Ultimaltely all

this is the result router development. Fig. 1 gives a

block diagram of proposed FTA-NoC architecture. The

FTA-NoC has four input and output ports along with

four output/intermediate ports and all these are linked

together with an intermediate crossbar. To make sure

that effectively the transmission of information is done

with the Processing Elements (PEs), the local input and

output ports are connected directly to the datapackets

.Initially the data that sent by the different devices will

be saved to FIFO-Buffer logic, allocation of data is done

depending on the corresponding IP addresses of devices .

The route controller module controls various routers .

All these routers are handled by priority-based

scheduling. Traffic in the routes is managed using an

allocator called static allocator (SSA).This static straight

allocator usually synchronizes encoder-decoder modules

.In the the next step switch allocation (SA) and virtual

channel allocations (VCA) are grouped together to form

virtual channel -switch allocation (VSA). The FTA

arbiter thus controls the different routes along with

checking error correction operation, occurring at the time

of data transmission.Delays in the network are

minimized by a module called look-ahead bypass route

computation (LBRC).Hence ,after all the above

processes the output data is retrieved after decoding of

data successfully.

Figure 1. Proposed FTA-NoC architecture.

3.1FIFO-Buffer Architecture

A schematic representation of the buffer's architecture

can be seen in Figure 2, and it can be broken down as

follows: input/output data; processing circuit; clock

operation; Read Access Memory (RAM); multiplexer;

data ack action; state machine; and logical operation.

The performance of the network is analyzed in order to

retain data whenever a flit becomes congested with many

priorities.

Fig 2. A diagram of the buffer architecture.

Figure 3 shows the input buffer architecture, which acts

as the preprocessing circuit. This is because flits belong

to the even packets, which are separated in another

switch. As part of the process to restructure the structure,

the buffer was included into each input switch port while

simultaneously reducing the hierarchy of blocked flits.

The newly implemented buffers functioned as First-in-

First-out (FIFOs) queues in a circular fashion.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 673

Fig 3. Input buffer architecture.

The O/P-port comprises of the following indications:

• The control signal –Tx indicating availability

of data .

• The output data is indicated by data out signal.

• Ack Tx- is a sort of control signal for

confirming data function successfully.

The input/output port is made up of the following

signals:

• Rx- control signal, which indicates that data is

available

• Data-in - data to be received.

• Ack_Rx - control signal signifying successful

data function.

3.2 Route computation using SSA

The network structure shown by the SSA model is made

up of the same seven levels as the OSI reference

model.Starting with an application layer, the layers are

arranged hierarchically and include a presentation layer,

session layer, transport layer, network layer, data layer,

and physical layer (PL).Figure 4 depicts the SSA's

construction in diagrammatic form. These layers define

the requirements for communication between PEs. In

most cases, the NoCs have implemented a subdivision of

the lower layer, from transport layer down to physical

layer and all these are described under for the context of

the NoC. The PL offers definitions, both mechanical and

electrical, for switching data with various entities at the

bit level. In order to construct buffering systems, the

address of routing resources and memory must be used

to determine the width of the physical data bus. Routing

and arbitration logic, as well as communication ports that

are directly linked to other switches or cores, are typical

components of a switch. The I/P and O/P channels make

up the communication ports, and each one has a buffer

for the short-term storing of any information that may

pass across it (messages). In addition to routing logic, the

switch has four bi-directional ports labeled A, B, C, D,

and Local (L). The data flow via each and every port,

which serves as a temporary storage area for

information. Through the L port, communication may be

established between the "Switch" and the local core of

the device. The switch's other ports, including A, B, C,

D, and L are connected to switches in the surrounding

area.

Fig 4. Route computation using SSA

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 674

Because of its low latency and relatively minimal

amount of memory, the wormhole switch was chosen.

The primary rationale for this decision is to simplify and

reduce the overall cost of the switch by assigning one

logical channel to each physical channel. The wormhole

mode is what is used in order to cut the data packets up

into flits. For the sake of this study, a flit size of 16 bits

has been decided upon for the prototype and assessment

procedure. The 1st and 2nd flits of the packet are the

header information. This information performs the

internal route by SSA switching components, the header

flit, and a number of the flits that are solved are included

inside the packet payload. In addition, every single

switch request goes through the sorting process in the

network. The address is provided in XY coordinates for

the purpose of simplifying the routing algorithms that are

intended to be used on the network. Here, X signifies the

horizontal position, and y denotes the vertical location.

3.3 Parallel VSA

The non-speculative PVSA architecture is shown in

Figure 6. Here, considering all requeststransmitted to

the FTA arbiter's stage one , a single request is made per

input port. Here, the FTA arbitrator also selects the

output port depending on the requests that are available,

which means that FTA chooses the VA or SA allocation,

accordingly. In this case, the header flit request assigns

both VA and SA, whereas the non-header flit request

only assigns SA because the header flit has already

assigned VA. For the duration of the packet's interval,

the Virtual Allocation reservation is intended for the

header flit. However, because switch requests are

distributed on serial flit basis, each flit needs to take the

SA allocation. In order to distinguish between requests

for signals belonging to header and signals meant for

non-header , the bits "0" and "1" are used to choose the

requests for the VC and switch, respectively. The second

step of the arbitrator receives the chosen output port at

that point. The second step of the arbitrator chooses the

various requests made via various input ports that are

sent to the identical output port. The arbitration

outcomes from the second one are retrieved to

corresponding inputs. Access request are grantedonly

after the completion of two stages of arbitration have

been successfully. In the event in case of choosing

switch "0,"type , the Switch Allocation of PVSA

procedure gets completed. If type request for VC is

chosen as"1," the PVSA allocation procedure for VA

proceeds. With the help of the output channel arbitrator

and amount of (V:1). The application monitoring logic

has removed the input request for the output channel that

does not have space available in the virtual machine. On

the output channel, there can only be one grant signal

sent. Ultimately the successful VC assignment is the end

outcome. Since there is no available VA allocation on

the crucial route, switch assignment takes precedence

over VA allocation. Arbitration is required in the event

that there are two allocator levels.

Fig 5. PVSA architecture

3.4LBRC module

The control logic generates a digital system that may be

divided into two categories, such as routing and

arbitration. Figure 4 presents an illustration of the arbiter

architecture. When the switch gets a header flit, the

arbitration receives a sequence of response to operate the

program allowed, and an LBRC algorithm is considered

for the operation of input-port data to the proper O/P

port. The LBRC method creates a connection between

the true switch address (xLyL) of the data packet and the

target switch address (yTyL) of the packet, which is put

in the header flit. When the xT<yT address of the packet

is equal to the xL=yL address of the actual switch, the

flits need to be offered in order to implement all of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 675

nodes. In the event that the criterion is not met, the xL

address is contrasted with the xT address. When the

condition of xLxT is met, the flits will be routed to the

E-port. At addition, the header flit was horizontally

oriented in the prior xL = xT position. In the event that

the criterion is met, the yT address is weighed against the

yL address. The flits will be sent to the S-port if the

condition yLoyT is met, and they will be sent to the N-

port whenever the condition yL>yT is met. In the event

that the desired port is occupied, the header flit

necessitates that the performance of routing data packets

be obstructed. In order to set up connections in the

switch schemes, this packet will need a Routing Request,

abbreviated as RR.

Fig 6. A diagram of the arbiter architecture.

Fig 7. Proposed LBRCmodule.

Figure 7 depicts the proposed architectural arrangement

of the LBRC module, which incorporates the likelihood

of an inline router address for quick route computations

to the output port, adaptive route computation, and a

two-hop neighbor router. The local address and current

output port information have an initial impact on the

address of the subsequent router, and these factors

forecast the addresses of the subsequent router nodes

based on three pipeline bypass rules, respectively. The

two-hop neighbor router then uses PVSA flits to generate

the final status signal. There is no route congestion or

overlapping situation if the status signal is genuine;

otherwise, there is heavy traffic on that specific port. The

status signal is once again stated to be a genuine enable

with a decrease in traffic on that specific port alone. The

adaptive route calculation module uses the status signal

and the next node address to compute the possible routes

depending on the destination node address and

assignment of an optimized route to the successive

output port, accordingly.

3.5Proposed FTA

The proposed FTA is described in the below section in

which the faukt detection methodology is implemented.

The FTA implements the multiple bit detection and

correction of errors.

The proposed Arbiter has a generator matrix which

generates a coded output word. This coded output is

result of matrix multiplication of generator matrix and

input data bits. The resultant codeword is transmitted in

the medium of space engineering. During codeword

transmission in the channel there is a probability of the

codeword getting corrupted because of errors and

inclusion of channel noise. The FTA decoder also

includes features such as Syndrome Detection, detecting

and locating errors, error correction methods. The status

of error , presence or absence of error in codeword are

detected by Syndrome Detection. The error location and

detection module in FTA is used to determine the

quantity of error bits and where they are located inside

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 676

the codeword. Error correction in the encoded result is the responsibility of the correction module.

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Fig 8.Proposed FTA flowchart

3.5.1FTA Encoding

Matrix multiplication of generation generator matrix and

input data bits give the resultant FTA encoded code word

.

Consider W is the word to be encoded , Generator

Matrix is M and if N is the data input then W=M.N ------

----(1)

Generator matrix can be represented as :

M = [Pk x (n – k) . Ik .k] and Z = [PT.I(n – k)]

----------------------------(2)

As 𝐼𝑘×𝑘 is the identity matrix, P is the matrix with size k

× (n − k), and 𝑃𝑇 is the transpose of P.

The process of encoding is done with generator matrix

‘M’.

The following table 1 illustrates Generator matrix values:

The generator matrix which is given below has identity

matrix and parity bits. The size of parity bits is 16x7

placed in rows from columns C0-C6. The identity matrix

size is 16x16 placed in columns C7-C22.

The data bit size is given as 16bits as :

 N= [N1, N2, N3, N4, N5, N6, N7, N8,

N9, N10, N11, N12, N13, N14, N15, N16] (3)

Encoding is got by check bit calculation of C1-C7 given

below:

B1=(𝑁1 ⊕ 𝑁4 ⊕ 𝑁6 ⊕ 𝑁8 ⊕ 𝑁9 ⊕ 𝑁10 ⊕ 𝑁14)

------(4)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 677

B2=(𝑁2 ⊕ 𝑁4 ⊕ 𝑁5⨁𝑁7⨁𝑁8⨁𝑁11⨁𝑁15)

------(5)

B3=(𝑁3 ⊕ 𝑁7⨁𝑁11⨁𝑁13⨁𝑁16⨁𝑁10)

------(6)

B4 =(𝑁1 ⊕ 𝑁4⨁𝑁8⨁𝑁10⨁𝑁12⨁𝑁13)

-------(7)

B5 =(𝑁2 ⊕ 𝑁5 ⊕ 𝑁6⨁𝑁7⨁𝑁8⨁𝑁13 ⊕ 𝑁14)

-------(9)

B6=(𝑁2 ⊕ 𝑁6⨁𝑁7⨁𝑁11⨁𝑁13⨁𝑁16)

-------(10)

B7 =(𝑁3 ⊕ 𝑁6⨁𝑁9⨁𝑁11⨁𝑁12⨁𝑁13⨁𝑁15⨁𝑁16)

--------(11)

Final expression of encoded word is shown as: W=B.N

---------------------(11)

𝑊 =

[B1,B2,B3,B4,B5,B6,B7,N1,N2,N3,N4,N5,N6,N7,N8,N

9,N10,N11,N12,N13,N14,N15,N16]---------(12)

3.5.2 FTA Decoding

The process of Arbiter decoding includes error

detection, correction and identification of error

detection stages.

𝑊 𝑖𝑠 𝑡ℎ𝑒 output encoded word to which X=W+F is the

representation which has noise added to it.

X=W+F --------- (13)

𝑋𝐵 = [𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 + 𝐵5 + 𝐵6 + 𝐵7] + [𝐹1 +

𝐹2 + 𝐹3 + 𝐹4 + 𝐹5 + 𝐹6 + 𝐹7]--------(14)

XN=

[𝑁1, 𝑁2, 𝑁3, 𝑁4, 𝑁5, 𝑁6, 𝑁7, 𝑁8, 𝑁9, 𝑁10, 𝑁11, 𝑁12, 𝑁13, 𝑁14, 𝑁15, 𝑁16] +

[𝐹8, 𝐹9, 𝐹10, 𝐹11, 𝐹12, 𝐹13, 𝐹14, 𝐹15, 𝐹16, 𝐹17, 𝐹18, 𝐹19, 𝐹20, 𝐹21, 𝐹22, 𝐹23]

---------------(15)

X= XB.XN

----------------(16)

If in the following equation the encoded word is written

as W and Y is the syndrome where as F represents the

error ,Z is the parity check matrix , then we have Y=X.

Z transpose -------------------(17)

In table 2 the identity matrix is I with size 7x7 and

parity bits are in rows from H1-H7 with 7x16 size all

rows with H8-H23 columns. When syndrome Y=0 then

zero errors are indicated whereas Y=1 indicated errors

have occurred.

Parity check matrix is given in table 2 :

Z

1

Z

2

Z

3

Z

4

Z

5

Z

6

Z

7

Z

8

Z

9

Z

10

Z

11

Z

12

Z

13

Z

14

Z

15

Z

1

6

Z1

7

Z1

8

Z1

9

Z2

0

Z2

1

Z2

2

Z2

3

1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 1

0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0

0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1

X

B

1

X

B

2

X

B

3

X

B

4

X

B

5

X

B

6

X

B

7

X

N

1

X

N

2

X

N

3

X

N

4

X

N

5

X

N

6

X

N

7

X

N

8

X

N

9

X

N1

0

X

N1

1

X

N1

2

X

N1

3

X

N1

4

X

N1

5

X

N1

6

Simplification of syndrome bit values is done in the

following format:

Y1=XDI ⊕ XNI ⊕ XN4 ⊕ XN6 ⊕ XN8 ⊕ XN9 ⊕

X10 ⊕ X14 ---------------(18)

Y2= XD2 ⊕ XN2 ⊕ XN4 ⊕ XN5 ⊕ XN9 ⊕ XN11 ⊕

XN15 ---------------(19)

Y3= 𝑋𝐷3 ⊕ 𝑋𝑁3 ⊕ 𝑋𝑁7 ⊕ 𝑋𝑁11 ⊕ 𝑋𝑁13 ⊕

𝑋𝑁16 ⊕ 𝑋𝑁10---------------(20)

Y4= 𝑋𝐷4 ⊕ 𝑋𝑁1 ⊕ 𝑋𝑁4 ⊕ 𝑋𝑁8 ⊕ 𝑋𝑁10 ⊕

𝑋𝑁12 ⊕ 𝑋𝑁13 ---------------(21)

Y5= 𝑋𝐷5 ⊕ 𝑋𝑁2 ⊕ 𝑋𝑁5 ⊕ 𝑋𝑁6 ⊕ 𝑋𝑁7 ⊕ 𝑋𝑁8 ⊕

𝑋𝑁13 ⊕ 𝑋𝑁14------------(22)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 678

Y6= 𝑋𝑁6 ⊕ 𝑋𝑁2 ⊕ 𝑋𝑁6 ⊕ 𝑋𝑁7 ⊕ 𝑋𝑁11 ⊕

𝑋𝑁13 ⊕ 𝑋𝑁16-------------(23)

Y7= 𝑋𝐷7 ⊕ 𝑋𝐷3 ⊕ 𝑋𝐷6 ⊕ 𝑋𝑁11 ⊕ 𝑋𝑁12 ⊕

𝑋𝑁13 ⊕ 𝑋𝑁15 ⊕ 𝑋𝑁16 ---------(24)

The error values are identified based on the syndrome .

The following example gives the values of bit pattern as

N=[1,1,0,1,1,1,0,0,1,1,0,0,1,1,1]

Check bits are calculated based equations (4)- (11) and

the result is given as B= [0,0,1,0,1,0,1]

Finally the encoded resultant codeword is expressed as

W=[0,0,1,0,1,0,1,1,1,0,1,1,1,0,0,1,1,0,0,1,1,1,1]

If 4 bits are to be assumed corrupted causes error in the

positions of N2,N3,N4,N5 .

Then the value X =[0,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,1].

The XOR combinations in S-matrix columns are

performed by error locations, and the XOR outputs must

match the values of syndrome for each combination.

The above process is continued for syndrome matching

continuously.

The below Table 3 gives the location of error

identification:

Table 3. Error location identification.

Syndrome matching is done with XOR (Z8,Z9,Z10,Z11)

and error locations are given as XN1,XN2,XN3,XN4.

For the vector X the equivalent Z vector positions

include..Z8,Z9,Z10,Z11.The output id obtained as OUT

which is a result of compliment of error corrected bits

given as OUT =[0,0,1,0,1,0,1,1,1,0,1,1,1,0,0,1,1,1,1] .

4. Results and Discussions.

The implementation of proposed FTA-NoC is dealt in

the below section and the metrics of a NoC are

calculated . The metrics which carry significance for

proposed arbiter are delay, power consumption and area

of the chip.

4.1 Simulation Environment

The Xilinx® Versal® programmable NoC is an AXI-

interconnecting network designed to mimic IP endpoint

data exchange in integrated blocks such as processor

elements (PE), programmable logic (PL), and others.

This infrastructure is present throughout the entire device

and consists of a dedicated high-speed channel with

switching. Through the use of several horizontal and

vertical channels along with a flexible set of architectural

elements, the NoC may be rationally arranged to

illustrate intricate topologies. Scalability was a primary

design goal for the NoC. It is made up of many

programmable hardware-implemented horizontal

(HNoC) and vertical (VNoC) routes that are coupled

together in various ways to fulfill the timing, speed, and

logic consumption requirements of the design.

4.2 Performance evaluation

Z8 Z9 Z10 Z11 XOR (Z8,Z9,Z10,Z11) Y

0 0 1 0 1 1

1 0 1 1 1 1

0 1 0 0 1 1

0 0 1 0 1 1

1 0 0 1 1 0

1 0 0 0 0 1

0 1 0 0 1 1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 679

Fig 9. Simulation outcome.

The next part uses a range of performance indicators,

such as slice registers, path delays, power consumption,

data rate, Look-Up-Tables (LUTs), and Look-Up-Table-

Flip-Flops (LUT-FFs) to compare the performance of the

proposed technique with the state-of-the-art NoC

methods. Figure 9 shows the simulation outcome of

FTA-NoC, which shows the inputs and outputs. Figure

10presents the design summary of propose FTA-NoC.

Figure 11presents the proposed FTA-NoCtime summary.

Fig 10. Design summary.

Fig 11. Time Summary.

Table 4. Performance comparison of NoC approaches.

Method Slice registers LUTs LUT-FF Delay(𝒏𝑺) Power(𝑊)

Stanford-NoC [15] 89 96 28 3.92 1.93

DoS-NoC [17] 76 89 19 2.28 1.84

Conetntion-NoC [27] 72 74 23 1.82 1.29

Proposed FTA-NoC
24 43 8 0.793

0.065

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 680

The performance of the suggested FTA-NoC is

contrasted in Table 4 with that of traditional methods

like Stanford-NoC [15], DoS-NoC [17], and Contention-

NoC [27]. In this case, using traditional methods to

choose the high-speed routing channel results in failure

and higher hardware resource consumption.

Additionally, because of parallelism, the suggested

approach's data rate also increased.

5. Conclusion

The primary emphasis of this paper is placed on the

development of the FTA-NoC architecture using FIFO-

Buffer, crossbar switching, route control, and arbiter

modules. At first, the data that is created by the various

devices is saved into FIFO-Buffer logic, which allocates

the data depending on the IP addresses of the devices.

After then, the route controller module will take control

of the various routers in crossbar switching. These

routers will be controlled by priority-based scheduling.

The arbiter, which is chosen based on the request levels,

then transmits the data from the source to the destination.

The simulation results showed that the recommended

FTA-NoC architecture performed better in terms of area,

latency, and power when compared to other state-of-the-

art NoC designs. Additionally, the suggested increased

data rates by 11.3% as compared to traditional NoC

methods. For better performance, this work can be

expanded using NoC architectures based on

optimization.

References

[1] Mehmood, Farrukh, et al. "An efficient and cost-

effective application mapping for network-on-chip

using Andean condor algorithm." Journal of

Network and Computer Applications 200 (2022):

103319.

[2] Parepalli, Ramanamma, and Mohan Kumar Naik.

"Design alternatives of Network-on-Chip (NoC)

Router microarchitecture for future Communication

System." 2022 International Conference on

Advances in Computing, Communication and

Applied Informatics (ACCAI). IEEE, 2022.

[3] Chen, Yuan-Ho, et al. "A VLSI Chip for the

Abnormal Heart Beat Detection Using

Convolutional Neural Network." Sensors 22.3

(2022): 796.

[4] Manzoor, Misbah, and Roohie Naaz Mir. "PAAD

(Partially adaptive and deterministic routing): A

Deadlock Free Congestion Aware Hybrid Routing

for 2D Mesh Network-on-chips." Microprocessors

and Microsystems (2022): 104551.

[5] Sharma, Ashish, et al. "Pre-Silicon NBTI Delay-

Aware Modeling of Network-on-Chip Router

Microarchitecture." Microprocessors and

Microsystems 91 (2022): 104526.

[6] Gogoi, Ankur, et al. "Application driven routing for

mesh based network-on-chip

architectures." Integration 84 (2022): 26-36.

[7] Yazdanpanah, Fahimeh, and Raheel

Afsharmazayejani. "A systematic analysis of power

saving techniques for wireless network-on-chip

architectures." Journal of Systems Architecture 126

(2022): 102485.

[8] Jadhav, Nathrao B., and Bharat S. Chaudhari.

"Efficient Non-Blocking Optical Router for 3D

Optical Network-on-Chip." Optik (2022): 169563.

[9] Biswas, Arnab Kumar. "Using Pattern of On-off

Routers and Links and Router Delays to Protect

Network-on-Chip Intellectual Property." ACM

Transactions on Computer Systems (TOCS) (2022).

[10] Al-Azzwai, Waleed K., Aqeel A. Al-Hilali, and

Laith F. Jumma. "Design and implementation 4x4

Network on Chip (NoC) using FPGA." Periodicals

of Engineering and Natural Sciences (PEN) 10.3

(2022): 341-349.

[11] Seetharaman, Gopalakrishnan, and Debadatta Pati.

"Design and Area Performance Energy

Consumption Comparison of Secured Network-on-

Chip with PTP and Bus Interconnections." Journal

of The Institution of Engineers (India): Series

B (2022): 1-13.

[12] Xia, Yuhao, et al. "Strict non-blocking four-port

optical router for mesh photonic network-on-

chip." Journal of Semiconductors 43.9 (2022):

092301-1.

[13] Velangi, Radha, and S. S. Kerur. "Hardware

Implementation and Comparison of OE Routing

Algorithm with Extended XY Routing Algorithm

for 2D Mesh on Network on Chip." Micro-

Electronics and Telecommunication Engineering.

Springer, Singapore, 2022. 159-171.

[14] Kashi, Somayeh, et al. "A multi-application

approach for synthesizing custom network-on-

chips." The Journal of Supercomputing (2022): 1-

23.

[15] Florida, L. Mary, S. Brilly Sangeetha, and K.

Krishna Prasad. "OPTIMISED META-

HEURISTIC QUEUING MODEL IN VLSI

PHYSICAL DESIGN."

[16] Amin, Waqar, Fawad Hussain, and Sheraz Anjum.

"iHPSA: An improved bio-inspired hybrid

optimization algorithm for task mapping in

Network on Chip." Microprocessors and

Microsystems 90 (2022): 104493.

[17] Fan, Weibei, et al. "Communication and

performance evaluation of 3-ary n-cubes onto

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 670–681 | 681

network-on-chips." Science China Information

Sciences 65.7 (2022): 1-3.

[18] Gupta, Ruchika, et al. "Securing On-chip

Interconnect against Delay Trojan using Dynamic

Adaptive Caging." Proceedings of the Great Lakes

Symposium on VLSI 2022. 2022.

[19] Kaleem, Muhammad, and Ismail Fauzi Bin Isnin.

"Interval Based Transaction Record Keeping

Mechanism for Adaptive 3D Network-on-Chip

Routing."

[20] F. Imani, Mohammadreza, Sergi Abadal, and

Philipp Del Hougne. "Metasurface‐Programmable

Wireless Network‐On‐Chip." Advanced

Science (2022): 2201458.

[21] Thakkar, Ishan G., et al. "Hardware Security in

Emerging Photonic Network-on-Chip

Architectures." Emerging Computing: From

Devices to Systems. Springer, Singapore, 2023.

291-313.

[22] Bhamidipati, Padmaja, and Avinash Karanth.

"HREN: A Hybrid Reliable and Energy-Efficient

Network-on-Chip Architecture." IEEE Transactions

on Emerging Topics in Computing 10.2 (2022):

537-548.

[23] Kunthara, Rose George, et al. "DAReS: Deflection

Aware Rerouting between Subnetworks in

Bufferless On-Chip Networks." Proceedings of the

Great Lakes Symposium on VLSI 2022. 2022.

[24] Firuzan, Arash, Mehdi Modarressi, and Midia

Reshadi. "Reconfigurable network-on-chip based

Convolutional Neural Network

accelerator." Journal of Systems

Architecture (2022): 102567.

[25] Patil, Trupti, et al. "A Minimal Buffer Router with

Level Encoded Dual Rail-Based Design of

Network-on-Chip Architecture." Wireless

Communications and Mobile Computing 2022

(2022).

[26] Khan, Kamil, Sudeep Pasricha, and Ryan Gary

Kim. "RACE: A Reinforcement Learning

Framework for Improved Adaptive Control of NoC

Channel Buffers." Proceedings of the Great Lakes

Symposium on VLSI 2022. 2022.

[27] Salehnamadi, M. O. H. A. M. M. A. D. R. E. Z. A.

"A Novel 3D Mesh-Based NoC Architecture for

Performance Improvement." Majlesi Journal of

Electrical Engineering 16.2 (2022).

[28] Bhaskar, Adusumilli Vijaya. "A Detailed Power

Analysis of Network-on-Chip." 2022 IEEE Delhi

Section Conference (DELCON). IEEE, 2022.

[29] Bhaskar, Adusumilli Vijaya. "Estimation of Power

Consumption in a Network-on-Chip Router." 2022

IEEE Delhi Section Conference (DELCON). IEEE,

2022.

[30] Singh, Sangeeta, J. V. R. Ravindra, and B. Rajendra

Naik. "Design and implementation of

network‐on‐chip router using multi‐priority based

iterative round‐robin matching with

slip." Transactions on Emerging

Telecommunications Technologies (2022): e4514.

