

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 781–785 | 781

Optimization Strategies for Performance Enhancement of Packrat

Parsers

Nikhil Mangrulkar*1, Kavita Singh2, Sagar Badhiye3

Submitted: 22/12/2023 Revised: 28/01/2024 Accepted: 08/02/2024

Abstract: Memoization in computing refers to storing intermediate results and referring them when same inputs appear again instead of

calculating them again. Packrat parsing is a comparatively new parsing technique based on top down approach with backtracking for

parsing input which uses memoization and ensures linear time parsing. Introduced in 2002 by Bryan Ford, Packrat parsing was developed

with focus on computer oriented languages. The ensured linear time parsing by packrat parsers comes at a cost of huge primary memory

consumption for memoization making it impractical to implement. Here we have proposed a three way approach to optimize the use of

memory required for memoization. Our implementation allocates memory for memoization dynamically based on resources available. Non

linear data structure eliminates the requirement of continues blocks of free memory. Using linear time searching technique it is ensured

that latency is constant even in case where higher number of intermediate results are stored. The proposed implementation is a promising

approach for exploiting benefits of memoization to ensure linear time parsing while avoiding burdening the system in case where primary

memory is a constraint..

Keywords: Parsing, Parsing expression grammar, Packrat parser, Linear time parsing, Memoization

1. Introduction

Parsing in computer science is a part of language processing

and is used to decide whether the input string is according

to the syntax of that programming language or not.

Typically, parsing comprises of two tasks: lexical analysis

and parsing. Lexical analysis is the process of dividing the

input string into smallest recognizable units called lexemes

and create tokens of those lexemes which are in form of

<token-name, attribute-value>. These tokens are provided

to the parser for further processing. The parser refers to the

rules of the language which are written using grammar, to

decide whether input string can be accepted by the language.

The initial research on parsing was focused on parsing

natural or human language [1]. The ability of regular

expression (RE) and context free grammar (CFG) to

represent ambiguity was the obvious reason for their use to

specify the rules for parsing natural language. It was

observed later that the method used for parsing natural

language could also be used for parsing machine oriented or

computer programming languages. The principal difference

between computer programming language and natural

language is that most of the programming languages are

designed not to be ambiguous. Thus, the ability of RE’s and

CFG’s to represent ambiguity is not required in computer-

oriented languages. Instead, sometimes it becomes overhead

to handle the ambiguity where it was not required in first

place. It is very well-known that top-down parsing methods

with backtracking struggle with two major issues: First, a

top-down parser generally fails to terminate on some inputs

while using a left-recursive grammar. Second, in

backtracking parsers a noticeable amount of redundant

computation is required, and in the worst case, parsing time

is exponential in the length of the input string [2].

Several different parsing techniques based on various

approaches like top-down parsing and bottom-up parsing

have been developed by researchers. Packrat parsing is one

of such relatively newer technique developed by Bryan Ford

keeping focus on machine-oriented languages[3] [4].

Packrat parsing is a backtracking supportive top-down

approach for parsing inputs. It uses Parsing Expression

Grammar (PEG) instead of RE’s or CFG’s to specify the

rules. PEG was also introduced by Bryan Ford during his

work on packrat parsers [1]. The initial work was done by

A. Birman et. al. [5] which was further worked upon by Aho

and Ullman and called is generalized top-down parsing

language (GTDPL). This was the first deterministic

backtracking top-down parsing algorithm. Due to the

deterministic nature of resulting grammar, it was found that

the parsing results could be memoized to avoid redundant

calculations. Memoization in computer science is the

technique used to store all intermediate results and refer

them whenever same calculations come up in future. But at

that time, availability of main memory was limited, because

of which this approach was never practically implemented.

The main issue with packrat parsing is the requirement of

huge memory for memoization. As correctly pointed out by

1 Yeshwantrao Chavan College of Engineering, Nagpur – 441110, INDIA

ORCID ID : 0000-0001-5190-9722
2 Yeshwantrao Chavan College of Engineering, Nagpur – 441110, INDIA

ORCID ID : 0000-0003-4012-6786
3 Symbiosis Institute of Tech. Nagpur Campus, Nagpur– 440008, INDIA

ORCID ID : 0000-0002-0710-3761

* Corresponding Author Email: nmangrulkar@ycce.edu

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 781–785 | 782

Ralph Becket and Zoltan Somogyi, for every byte of the

input, about 400 bytes of memory is required [6]. The

memory required for memoization is directly proportional

to the input and as the size of input grows, memory

requirement of memoization increases linearly, raising the

question on benefits provided by memoization over the

resources required to make it possible.

In this paper, rather than avoiding memoization completely,

we propose a three-way approach for optimizing the use of

memory required for memoization, making it possible to

exploit the benefits that are offered by memoization when

possible, while avoiding the excessive use of memory when

resources are limited.

2. Related Work

Conventional top-down parsers with backtracking may face

exponential parsing time in case of backtracking. Because

of the fact that packrat parsers can achieve linear time

parsing even in the case of backtracking, researchers have

put the efforts into making packrat parsers implementable.

For a detailed literature review on packrat parsers, our

review paper [7] on this topic can be referred. Here, only the

work carried out to improve the performance of packrat

parsers has been discussed.

Robert Grimm presented the packrat parser-based Rats!

parser generator for Java that translates a grammar

specification into programming language source code. [8]

Rats! ensures linear-time performance as it stores

intermediate results. The paper emphasizes the importance

of parsers as a essential first step for any language processor

and compares the difficulties in extending context-free

grammars and LR or LL parsers with the advantages of

using packrat parsers. The experimental evaluation results

demonstrating the parser generator's performance and

usability has also been described in the paper.

Alessandro Warth et. al. in their presented work discussed

about the modification of packrat parsers to support direct

and indirect left recursion without the need for left recursion

elimination transformations [9]. The given modifications

enable packrat parsers to parse a broader class of grammar

and extend their support to left-recursive portions of

grammar, such as Java grammar. The authors also discuss

the impact of these modifications on parse times.

Mouse, a tool for transcribing Parsing Expression Grammar

into an executable parser in Java is presented by Roman R.

Redziejowski [10]. The paper explains how to define

parsing expressions in PEG, how Mouse generates a parser

from the specified grammar, and how it incorporates

semantic actions to provide meaning to parsed structures. It

also discusses the efficiency trade-offs involved in using

backtracking, the possibility of memoization to improve

performance.

Manish M. Goswami, et. al., presented technique for

improving the performance of a stack-based recursive-

descent parser for Parsing Expression Grammar [11]. The

authors have proposed optimizing a stack-based recursive-

descent parser by eliminating function calls for grammar

production and using stack operations instead. Moreover,

they introduce optimizations using the * (star) and cut

operators, which help reduce redundant stack operations and

backtracking activities, respectively. The experimental

results presented shows that the optimized stack-based

parser offers better performance over a straightforward

recursive-descent parser and competitive performance when

compared to packrat parsers with memoization. The

comparison includes metrics like the number of packrat

pushes, backtrack pushes, CPU time, and backtracking

activity.

Kimio Kuramitsu tried to address the issue of high memory

consumption associated with packrat parsing by introducing

the concept called elastic packrat parsing, which employs a

sliding window buffer to store memoized results, thereby

bounding heap consumption and maintaining constant space

complexity regardless of input size [12]. The presented

approach leverages the observation of worst-case backtrack

lengths to determine the buffer's size. Since it's challenging

to know the longest backtrack length before parsing, an

approximated window size is selected based on empirical

analysis, which can then be adjusted during parsing.

3. Proposed Methodology

Here we are presenting a three step approach for optimizing

memory usage for storing intermediate results.

3.1. Dynamic Memory Allocation for Memoization

Even though memoization offers huge advantage of

guaranteed linear time parsing over traditional top town

parsers with no memoization, packrat parsing is still not

adapted at large. The main reason behind this is the huge

memory consumption for memoization as mentioned

earlier. For this reason alone, many researchers have

criticized memoization due to the cost at which it comes.

With the advancement of technology, memory may be

available in sufficient size in some machines.

Here we propose an algorithm to use memory optimally to

take most of the advantage that memoization has to offer.

We have implemented logic to cap the limit on memory

usage for memoization dynamically. If sufficiently large

memory is available in machine, we use memoization

without any restrictions. For deciding value of sufficiently

large memory (α), we calculate the total free memory

available at the time of parsing and if only 1% of it is used

to store the intermediate results (1).

𝛼 = (µ − 𝛾) 0.1 (1)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 781–785 | 783

Where,

α is maximum memory that can be used for memoization

µ is total memory available

γ is memory currently being used by the system

The number of results that can be stored in α is the

maximum number of intermediate results that will be saved.

Maximum memoization is capped to 100 results as it is

sufficiently large number of intermediate results for any

input. Capping the memory utilization for memoization to α

ensures that there is no any additional overhead to the

system while ensuring parsing in linear time. For further

details of this implementation, our work presented in [13]

can be referred.

3.2. Using Nonlinear Data Structure

Parser generator tools like Rats! [8] and Mouse [10] have

used array data structure for implementing memoization.

Stack based recursive descent parser is also presented [11].

It is commonly known that both array and stack are linear

data structures and need continues block of free memory.

Situation in which primary memory is available but is

scattered, or less memory is available, swapping is required.

Swapping in computer science is the technique used to move

a process to secondary memory so that more memory

becomes available to the other demanding process. It is

obvious that swapping may introduce issues of page fault,

thereby increasing the process running time.

Using nonlinear data structure is a promising approach

specifically in cases where space in main memory is

available but is fragmented. Nonlinear data structure does

not require continues free memory and we can use

fragmented memory instead of implementing sweeping

thereby reducing the chance of page faults. We have

implemented memoization using Map data structure. Map

stores data in combination of <key, value> pair, making it

ideal for implementing memoization as entries in

memoization are of symbol appeared and number of tokens

that can be skipped without rescanning. This information

can be efficiently stored in Map data structure.

3.3. Implementing Constant Time Searching

Technique

Changing data structure to implement inherently calls for

change in searching technique implemented to search

stored results. Current implementations where arrays and

stack data structure are used to implement memoization,

binary search technique is used. The searching time in

binary search is directly proportional to the number of

results to be searched. In implementation where array

data structure is used, the requirement of binary search of

sorted array makes the actual searching complexity of O

log(n) as O nlog(n). Stack based implementation has

searching complexity of O log(n) and shows better

performance over array based implementation.

The number of intermediate results stored in array based

and stack based Mouse parser is 10 (optional and

maximum) and 5 respectively. This number is very small

compared to the maximum number of intermediate

results that can be stored in our proposed approach.

Therefore, we have implemented searching technique of

Hashing, which have constant lookup time of O(1) for

any number of results to be looked up as opposed to other

implemented searching technique where searching time

is proportional to number of results stored. In scenario

where memoization is less, Hashing might not perform at

par with binary search and might even perform poorer

than the later. But as size of memoization increases,

hashing ultimately outperforms other implementations.

For more details of this proposed implementation, our

work presented in [14] can be referred.

4. Implementation

We have implemented our proposed approach by

changing the current implementation of Mose tool.

Execution has been analyzed on a system with Intel(R)

Core(TM) i5-8265U CPU @1.60GHz and 8.00 GB (7.89

GB usable) primary memory. Modifications have been

implemented in Java version 1.8.0_331 on Windows 11

OS. The performance of the tool with proposed

modifications is stable and is performing accurately

under varying input lengths.

5. Result & Discussion

To evaluate the performance of our proposed approach as

compared to other implementations, various parameters

are used for comparison. Heap utilization, time required

to search intermediate results and time complexity of

searching techniques used by various implementations.

Fig 1. Heap utilization by various implementations.

Fig. 1 shows memory consumption by various

implementations. In terms of heap consumption, the

proposed approach uses more memory as compared to

original Mouse tool and Mouse with stack

implementation but less than Rats! tool. The extra

memory required is due to additional information of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 781–785 | 784

pointers that needs to be stored for Map data structure.

In terms of latency, i.e. time required to access the store

intermediate results, as can be observed in fig. 2, is

minimum for our proposed approach.

Fig 2. Latency of proposed approach < Rats! < Stack

Based Mouse < Mouse.

Fig 3. Time complexity of different search techniques.

Figure 3 shows the time complexities of different

searching techniques. It can be observed from the figure

that when number of intermediate results stored are less,

using hashing technique performs poorly than binary

search for array and binary search for stack. But as the

number of intermediate results to be stored increases,

Hashing has a slight upper hand on binary search

implemented on stacked based mouse tool.

6. Conclusion and Future Scope

As we understand, the main reason behind non adaption

of packrat parser at large is huge memory requirement for

implementing memoization. Although memoization

guarantees parsing in linear time even in the case of

backtracking, the memory resources it consumes is a

matter of concern. In this paper we presented a three-way

approach for optimizing memory usage required for

memoization. Firstly, by using dynamic buffer

allocation, we ensure that memoization will not be an

additional burden on the system. This also ensures that

whenever enough memory is available, maximum

memoization will be done and if there is scarcity of

primary memory, less intermediate results will be stored.

Secondly, by using non linear data structure, Map,

fragmented memory can be used for storing intermediate

results thereby reducing the page faults and swapping.

Lastly, by implementing constant time searching

technique, the latency of system is kept constant even in

case of large number of intermediate results to be

searched for.

The performance of the proposed approach is stable it

performs well in terms of latency. Memory required by

proposed approach is slightly higher, but it is ensured that

it won’t prove to be a burden on system.

Further actual reduction in page faults and swapping can

be calculated to show the effectiveness of proposed

approach.

Author contributions

Nikhil Mangrulkar: Conceptualization, Methodology,

Software Kavita Singh: Writing-Reviewing and Editing

Sagar Badhiye: Visualization, Validation and Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] B. Ford, “Parsing expression grammars: A

recognition-based syntactic foundation,” Conference

Record of the Annual ACM Symposium on Principles

of Programming Languages, vol. 31, pp. 111–122,

2004.

[2] M. Johnson, “Memoization of Top-down Parsing,”

Computational Linguistics, vol. 21, no. 3, 1995.

[3] B. Ford, “Packrat Parsing: Simple, Powerful, Lazy,

Linear Time Functional Pearl,” in Seventh ACM

SIGPLAN international conference on Functional

programming (ICFP ’02), New York: Association for

Computing Machinery, 2002, pp. 36–47. [Online].

Available: http://pdos.lcs.mit.edu/

[4] B. Ford, “Packrat Parsing: a Practical Linear-Time

Algorithm with Backtracking,” Dissertation for Master

of Science in Computer Science and Engineering,

Massachusetts Institute of Technology, 2002.

[5] Birman Alexander, “The TMG Recognition Schema,”

Dissertation for Doctor of Philosophy, Princeton

University, 1970.

[6] R. Becket and Z. Somogyi, “DCGs + Memoing =

Packrat Parsing But is it worth it?,” in Practical

Aspects of Declarative Languages. PADL 2008, P.

Hudak and D. S. Warren, Eds., Springer, Berlin,

Heidelberg, 2008. doi: https://doi.org/10.1007/978-3-

540-77442-6_13.

[7] N. S. Mangrulkar, K. R. Singh, and M. M.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 781–785 | 785

Raghuwanshi, “Parsing Expression Grammar and

Packrat Parsing—A Review,” 2023, pp. 377–384. doi:

10.1007/978-981-19-0095-2_36.

[8] R. Grimm, “Practical Packrat Parsing.” [Online].

Available: http://www.cs.nyu.edu/rgrimm/xtc/.

[9] Warth Alessandro, Douglass James R., and Millstein

Todd, “Packrat Parsers Can Support Left Recursion,”

Association for Computing Machinery, 2010, p. 158.

[10] R. R. Redziejowski, “Mouse: From Parsing

Expressions to a Practical Parser,” in CS&P

Workshop, Jan. 2009, pp. 514–525. [Online].

Available: http://www.romanredz.se/freesoft.htm.

[11] M. M. Goswami, M. M. Raghuwanshi, and L. Malik,

“Performance Improvement of Stack Based

Recursive-Descent Parser for Parsing Expression

Grammar,” International Journal of Latest Trends in

Engineering and Technology, vol. 6, no. 3, pp. 302–

309, 2016.

[12] K. Kuramitsu, “Packrat parsing with elastic sliding

window,” Journal of Information Processing, vol. 23,

no. 4, pp. 505–512, Jul. 2015, doi:

10.2197/ipsjjip.23.505.

[13] Nikhil Mangrulkar, Kavita Singh, and Mukesh

Raghuwanshi, “Packrat Parsing with Dynamic Buffer

Allocation,” JOURNAL OF ADVANCED APPLIED

SCIENTIFIC RESEARCH, vol. 4, no. 1, Apr. 2022,

doi: 10.46947/joaasr412022227.

[14] N. Mangrulkar and K. Singh, “Optimizing Packrat

Parsing with Non-Linear Data Structures for

Memoization,” in 2023 International Conference on

Self Sustainable Artificial Intelligence Systems

(ICSSAS), IEEE, Oct. 2023, pp. 1–4. doi:

10.1109/ICSSAS57918.2023.10331889.

