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Abstract: Wireless sensor networks (WSNs) are employed in a variety of applications, including healthcare, home automation, and military 

security. To address MMECA's drawbacks, we propose Enhanced Multiple Mobile-sink Energy Efficient Clustering Algorithm (EMMCA) 

for WSNs. To improve energy efficiency, sink mobility management, and network performance, EMMECA employs manifold-based 

clustering and energy-aware algorithms. To remedy the shortcomings of MMCA, EMMCA adds a slew of key features. To begin, E-

MMECA enhances sensor-sink communication and coordination in order to decrease network overhead. With effective sink position update 

algorithms, it reduces traffic and energy consumption. Second, E-MMECA employs network architecture and intelligent sink mobility 

control based on energy dynamics. This optimizes sink movement while also lowering computational complexity. E-MMECA also offers 

optimization algorithms for mobile sink number and location in order to manage sink deployment and cost. By taking into account network 

coverage, energy consumption, and communication efficiency, E-MMECA optimizes sink position to increase network performance while 

minimizing resource requirements. To boost fault tolerance, E-MMECA employs powerful sink and communication failure mechanisms. 

E-MMECA analyzes sink movement energy use by adopting energy-efficient routing and movement patterns. It blends sink mobility with 

energy economy to increase network life and data collection. In large-scale networks, distributed coordination and data aggregation reduce 

computational costs and communication delay, making E-MMECA scalable. Comprehensive simulations and evaluations validate 

MOSEC's effectiveness. In terms of network longevity, energy utilization, communication delay, and load balancing, E-MMECA 

outperforms MMECA, MMSR, LEACH, and PEGASIS. 

Keywords: Clustering Enhanced MMECA Algorithm, Energy-Aware Strategies, And Wireless Sensor Network. 

1. Introduction  

Wireless Sensor Networks, also known as WSNs, have 

developed into a significant technology that has used for a 

variety of purposes, including the monitoring of the 

environment, industrial automation, and healthcare [1]. 

WSNs consist of sensor nodes that collaborate with one 

another to gather data from their surroundings and then send 

that data to a central sink node where it has further 

processed and analyzed. Energy efficiency is a fundamental 

concern in these networks [2-4], mostly because of the 

resource-constrained nature of sensor nodes. These nodes 

often operate on limited battery power. The "Manifold 

Optimal-Sink Energy-Aware Clustering Algorithm for 

WSN" is an algorithm that was developed with the goal of 

resolving the challenges associated with the consumption of 

energy and the lifetime of the network in this context. The 

suggested method places an emphasis on optimizing the 

building of sensor node clusters in such a manner as to 

improve the network's energy efficiency while also 

extending the WSN's overall lifetime [5-7]. 

The "Optimal-Sink Energy-Aware" method is a significant 

achievement in the area of WSNs, aiming to overcome the 

energy efficiency difficulties associated with sensor node 

communication and data aggregation [8-9]. WSNs are often 

utilized in a variety of applications including as 

environmental monitoring, smart agriculture, industrial 

automation, and healthcare. Sensor nodes in these networks 

work together to gather and send data to a central sink node 

for processing and analysis [10-12]. Due to the limited 

battery capacity of sensor nodes, which often operate in 

distant or inaccessible areas, energy efficiency is a key 

problem in WSNs [13]. Long-term and trustworthy WSN 

deployments must maximize network longevity while 

reducing energy usage. The "Optimal-Sink Energy-Aware" 

algorithm proposes a unique method for intelligently 

managing energy resources by dynamically choosing the 

most efficient sink node for data aggregation and 

transmission [14-15]. 

The algorithm's main conception is based on the concept of 

manifold optimization, which allows efficient data 

aggregation and transmission through optimum sink node 

selection. The program saves energy during data collection, 

processing, and forwarding by carefully picking sink nodes. 

Furthermore, the algorithm adds energy-aware 

considerations to intelligently manage the energy resources 
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of the sensor nodes and avoid premature node failure, 

leading to network lifetime [16-17]. 

This work describes the Manifold Optimal-Sink Energy-

Aware Clustering Algorithm for WSN in detail, outlining 

its goals and discussing its possible benefits over current 

clustering methods [18]. The algorithm's performance is 

compared to various clustering algorithms in terms of 

energy efficiency, network longevity, and scalability in a 

complete study, revealing its usefulness in improving the 

overall performance and energy management of WSNs [19-

23]. 

1.1 Motivation of the Paper 

The impetus for presenting the Enhanced MMECA 

(EMMECA) algorithm for WSNs stems from WSNs' 

growing importance and acceptance in healthcare, home 

automation, and military security sectors. However, current 

MMECA might have constraints, preventing WSNs from 

reaching their full potential. EMMECA solves these issues 

by improving energy economy via streamlined 

communication and sink mobility management, lowering 

network overhead, and implementing efficient fault 

tolerance techniques.  

2. Background Study  

A.Faid et al. [1] a clustering strategy for wireless sensor 

networks that takes into consideration energy economy was 

presented. This blend of the centralized K-medoids 

algorithm with the distributed LEACH protocol leads in 

improved energy efficiency as well as extended network 

lifespan. A.Jumnal and D. Kumar S.M [3] introduced the 

DBRCR algorithm, which creates clusters based on 

dynamic coefficients considering residual energy and 

distance to the base station. This enhances data transmission 

reliability, leading to a decreased packet-loss rate. D. K. 

Kotary and S. J. Nanda [6] used a multi-goal chaotic whale 

optimization strategy to distributed clustering, which 

yielded precise results for both distinct and overlapping 

clusters. They used a technique based on reference points to 

do many-objective clustering. G. M. E. Rahman and K. A. 

Wahid [8] increased WSN coverage without raising the 

number of hops between clusters; this was a difficulty. To 

achieve one-hop data transmission from SNs to the mobile 

DS through CHs, they suggested an LDCA that uses 

residual energy, RSSI, and SNR to assess wireless quality. 

I.Azzouz et al. [10] proposed an Energy Aware cluster head 

selection technique with balanced Fuzzy C-mean cluster 

formation, which considerably improved energy efficiency 

by taking into consideration different aspects in cluster head 

rotation. K. V. Deshpande and D. Kumar [12] Compared to 

existing methods, the findings of the suggested nccVAT, a 

unique approach to cluster estimation and cluster generation 

in WSN-generated spatiotemporal data, are encouraging. P. 

Satyanarayana et al. [16] introduced a genetic algorithm-

based clustering method for increasing WSN reliability, 

throughput, and scalability. Their method improved 

efficiency by efficient cluster head allocation, work 

scheduling, and the K-means algorithm. S. Hriez et al. [18] 

proposed a trust model to detect untrusted nodes in WSN 

and IoT networks, which consumed less energy in sensor 

nodes. They also developed a clustering protocol using the 

SFS optimization algorithm to maximize the network's 

lifetime. W. Xin et al. [20] developed a genetic method to 

improve the K-Means clustering routing technique. Cluster 

head node election took into account each node's energy 

factor and relative location, which resulted in more efficient 

use of resources and longer network life, lower power 

consumption, and higher throughput. 

2.1 PROBLEM DEFINITION 

In Wireless Sensor Networks (WSNs), the proposed 

Enhanced MMECA (EMMECA) algorithm solves the 

primary challenge of enhancing energy efficiency, sink 

mobility control, and overall network performance. WSNs 

are extensively used in a variety of areas, however current 

MMECA might have limits in energy efficiency, sink 

mobility coordination, and fault tolerance, resulting in 

inferior network performance and network longevity. 

EMMECA includes unique innovations such as improved 

sensor-sink communication and coordination, intelligent 

sink mobility management based on network topology and 

energy dynamics, and optimization techniques for selecting 

ideal sink deployment site.  

3. Materials and Methods  

We offer the materials and methods utilized in our research 

to explore and assess the suggested methodology in this 

part. We provide an overview of the essential components, 

tools, and methodologies used to meet the study goals and 

obtain the intended results. This section's goal is to offer a 

clear knowledge of the experimental setup as well as the 

techniques used for data collection, analysis, and validation. 

3.1 System model 

The system model for the Enhanced MMECA (EMMECA) 

algorithm in Wireless Sensor Networks (WSNs) comprises 

sensor nodes, mobile sink nodes, clustering, energy-aware 

approaches, sink mobility management, sink deployment 

optimization, and fault tolerance mechanisms. The WSN is 

made up of sensor nodes dispersed across the network, each 

having limited processing and energy supply. To effectively 

aggregate data, mobile sink nodes wander around the 

network. EMMECA uses manifold-based clustering 

algorithms to build clusters, with cluster leaders in charge 

of data gathering and transmission. Energy-aware 

approaches make better use of energy resources, improving 

network longevity. Sink mobility is intended to take into 

account network structure and energy dynamics. The 
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application incorporates optimization methods for 

determining the optimal number and location of mobile 

sinks while accounting for network coverage and energy 

usage. Robust fault tolerance approaches control sink 

failures and communication issues, ensuring that data is 

reliably gathered and sent. This comprehensive system 

model enables EMMECA to outperform traditional 

techniques while boosting energy efficiency, sink mobility, 

and overall network performance in a variety of application 

domains. 

 

Fig 1: E-MMECA Block diagram 

3.2 Energy Model 

This model evaluates the amount of energy required by 

various sensor node components during various operations 

such as sensing, communication, data processing, and sleep. 

Each of these tasks requires a different amount of energy. 

Depending on how far apart the transmitter and receiver are, 

either a free space channel model (with a power loss of d2) 

or a multi-path fading channel model (with a power loss of 

d4) will be employed. 

Energy required by each sensor node to send a l-bit packet 

across a distance of d is as follows, in𝐸𝑇𝑥: 

𝑃𝑟 = 𝑃𝑡 (
𝐺𝑡𝐺𝑟λ2

(4𝜋)2𝑑2) -------- (1) 

Where: 

• 𝑃𝑟  is the received power, 

• 𝑃𝑡 is the transmitted power, 

• 𝐺𝑡 and 𝐺𝑟  are the gains of the transmitting and 

receiving antennas, respectively, 

• 𝜆 is the wavelength of the signal, and 

• 𝑑 is the distance between the transmitter and receiver. 

3.3 Energy Efficient Clustering Algorithm 

 In a clustering approach, the energy dissipation of 

the cluster head is much higher than that of the general 

nodes Z. Liu et al. et al. (2022). This is for the reason that 

the cluster head serves as the local control center and is 

responsible for transporting data to and from other cluster 

heads via multi-hop. Maintaining the lifetimes of the cluster 

heads that are closest to the BS for as long as possible in 

order to keep the intercluster connection up and running is, 

of course, very necessary to ensure the uninterrupted 

operation of the network as a whole. This indicates that 

clusters that are physically closer to the BS should have a 

lower total number of nodes than those that are physically 

farther away B. Fan and P. Lin (2023). 

 Assume for the moment that n sensor nodes are 

planted evenly (in terms of the number of nodes per square 

meter) in a wedge V area at an angle that will be referred to 

as the clustering angle. V is segmented into m concentric 

rings, each of which is given the corresponding 

label𝑉1, 𝑉2, . . . , 𝑉𝑚 . A cluster is shown as a ring, and the 

distance between any two adjacent rings is given 

as(𝑑1, 𝑑2, . . . , 𝑑𝑚), where di is the distance between clusters 

that have traveled in a single hop. The cluster that is located 

closer to the BS is considered dj to be part of the upper layer, 

whilst the other cluster is considered to be part of the lower 

layer.  

𝑛𝑖 = 𝜌
𝜃

2(𝑑𝑖
2 + 2𝑑𝑖 ∑ 𝑑𝑖

𝑙=𝑖−1
𝑙=1 ) --------- (2) 

• 𝑛𝑖: Number of sensor nodes in cluster𝑖. 

• 𝜌: Density of sensor nodes per square meter. 

• 𝜃: Clustering angle. 

• 𝑑𝑖: Distance between clusters in layer𝑖. 

𝑑𝑖
2 + 2𝑑𝑖 ∑ 𝑑𝑖

𝑙=𝑖−1
𝑙=1 : This term involves the cumulative sum 

of distances up to the (𝑖 − 1)Th layer multiplied by2𝑑𝑖. 

One way to represent the number of nodes in 𝑉𝑖+1  is as 

follows: 

𝑛𝑖+1 = 𝜌𝐴𝑖+1 =
𝜌𝜃

2
(𝑑𝑖+1

2 + 2𝑑𝑖+1 ∑ 𝑑𝑙𝑙=𝑖
𝑙=1 ) ------- (3) 

• 𝑛𝑖+1: Number of sensor nodes in cluster(𝑖 + 1). 

• 𝜌: Density of sensor nodes per square meter. 

• 𝜃: Clustering angle. 

• 𝑑𝑖+1
2 : Distance between clusters in the (𝑖 + 1)Th 

layer. 

The connectedness of the networks requires that the 

numbers of nodes in sets 𝐴𝑖 and 𝐴𝑖+1 be met as 

𝑛𝑖+1 > 𝑛𝑖 -------- (4) 

The cluster head will receive information from a member 

and send it, along with any fusions performed, to the cluster 

at the next higher tier or to the BS. If there are many nodes 

in the cluster, the leader might not be able to work until it 
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completes its first task. Similarly, if the cluster is extremely 

tiny, there will be fewer nodes. As a result, the bulk of the 

energy stored in its nodes is used to transfer data from lower 

layer clusters, and while the network is down, its nodes 

might have a substantial amount of wasted energy. As a 

result, the cluster size has changed by modifying the 

clustering angle. 

The dynamic or frequent selection of the cluster head, 

which is included into many different clustering algorithms, 

leads to the wasteful consumption of energy owing to the 

broadcasting of signals to either general nodes or to other 

cluster heads. It is abundantly evident that often upgrading 

the cluster head will have a negative impact on the 

consistency of the cluster and the networks that are linked 

with it. If each cluster head serves continuously as the local 

control center and is not replaced by other nodes positioned 

in the same cluster until its working hours approach the 

threshold, then the requirement to update cluster heads and 

the amount of energy used for broadcasting messages has 

decreased. In addition, this might result in a lower overall 

consumption of energy. The greatest cluster size that has 

been discovered is cm. Let's say that 𝑓𝑖 = 1,2,3, … 𝑚 

represents the continuous shifts that the cluster leader, who 

is in charge of day-to-day operations, works. If the nonstop 

shifts of each cluster node are able to meet𝑓1, 𝑓2, … 𝑓𝑚, then 

it will be possible to efficiently maintain the connection of 

a cluster that has the same clustering angle. 

Algorithm 1: Energy Efficient Clustering Algorithm 

Input: 

• N: Total number of sensor nodes in the network. 

• M: Number of clusters (rings). 

• Θ: Clustering angle. 

• d1hop: One-hop distance in multi-hop 

communication. 

• Desired continuous working times for cluster 

heads: 𝑓1, 𝑓2, … 𝑓𝑚. 

Algorithm Steps: 

1. Calculate the area of each cluster using the 

formula provided: 𝑛𝑖 = 𝜌
𝜃

2(𝑑𝑖
2 + 2𝑑𝑖 ∑ 𝑑𝑖

𝑙=𝑖−1
𝑙=1 ) 

2. Divide the total number of nodes (n) among the 

clusters proportionally based on their areas. 

3. Assign one cluster head to each cluster. The 

cluster head can be the node closest to the center of the 

cluster or selected based on other criteria if needed for 

Nodes Behaviour. 

4. Provide each cluster head's continuous working 

times with the values 𝑓1, 𝑓2, . . . , 𝑓𝑚 that want to use as an 

initial starting point. 

Output: 

• The design of clusters, including the number of 

nodes in each cluster as well as the choice of cluster 

heads. 

3.3.1 Manifold-based clustering 

Manifold-based clustering is an approach that focuses on 

uncovering the intrinsic structure of data by considering the 

underlying geometric relationships or manifolds within the 

dataset. Unlike traditional clustering methods that rely on 

linear distance metrics, manifold-based clustering takes into 

account the non-linear nature of data points and aims to 

project them into a lower-dimensional space where their 

inherent structure becomes more apparent. By capturing the 

complex relationships embedded in the dataset, manifold-

based clustering techniques enhance clustering accuracy, 

making them particularly useful for datasets with intricate 

non-linear patterns. 

The affinity matrix WW encodes pairwise relationships 

between data points. It is typically computed using a 

Gaussian kernel or another similarity measure. 

𝑊𝑖𝑗 = 𝑒
−

|𝑥𝑖−𝑥𝑗|
2

2𝜎2  ------- (5) 

Here, 𝑥𝑖  and 𝑥𝑗  are data points, and 𝜎  is a parameter 

controlling the width of the Gaussian kernel. 

Algorithm 2: Manifold-based clustering 

Input: 

• Data Points: 𝑥1, 𝑥2, . . . , 𝑥𝑛 representing the dataset. 

Steps: 

1. Compute Affinity Matrix (WW): 

o Initialize an 𝑛 × 𝑛  matrix 𝑊  where 𝑛  is the 

number of data points. 

o For each pair of data points 𝑥𝑖 and 𝑥𝑗, compute 

the Gaussian similarity using: 

𝑊𝑖𝑗 = 𝑒
−

|𝑥𝑖−𝑥𝑗|
2

2𝜎2  

2. Construct Degree Matrix (DD): 

o Compute the degree matrix DD as a 

diagonal matrix, where 𝐷𝑖𝑖 is the sum of the weights in the 

corresponding row of 𝑊: 

𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗

𝑛

𝑗=1
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3.4 Enhanced Multiple Mobile-sink Energy Efficient 

Clustering Algorithm 

The Enhanced Multiple Mobile-sink Energy Efficient 

Clustering Algorithm (EMMCA) is proposed for Wireless 

Sensor Networks (WSNs) to overcome the limitations of 

existing solutions like MMECA. EMMCA incorporates 

manifold-based clustering and energy-aware algorithms to 

optimize energy efficiency, sink mobility management, and 

overall network performance. By enhancing sensor-sink 

communication, employing effective sink position update 

algorithms, and implementing intelligent sink mobility 

control based on energy dynamics, EMMCA reduces 

network overhead, traffic, and energy consumption. 

The algorithm also offers optimization algorithms for 

mobile sink number and location, considering network 

coverage, energy consumption, and communication 

efficiency, thereby improving network performance and 

minimizing resource requirements. EMMCA enhances 

fault tolerance through powerful sink and communication 

failure mechanisms, and it integrates energy-efficient 

routing and movement patterns to analyze sink movement 

energy use, ultimately increasing network life and data 

collection efficiency. 

The use of mobile sink techniques extends the life of a 

network. However, conventional wisdom on mobile sinks 

is that either all network-wide data is already known or that 

mobile sinks broadcast their data repeatedly to the whole 

network. Therefore, the benefit to the network's longevity 

has cancelled out by the broadcasting's excessively high 

energy needs. 

Both the clockwise and counterclockwise rotation of the 

sink and its velocity v are fixed in our approach. 

Consequently, the sink has to once-only broadcast 

throughout the network to tell all sensor nodes of its present 

position. After a period of time t, the skewed angle has 

lowered since the sensor nodes remembered the sink's initial 

position: 

𝑣 =
𝜃∗𝑅

∆𝑡
=> 𝜃 =

𝑣∗∆𝑡

𝑅
 -------- (6) 

• 𝑣: Velocity of the mobile sink. 

• 𝜃: Skewed angle. 

• 𝑅: Radius of the circular trajectory followed by the 

mobile sink. 

• ∆𝑡: Time period. 

Our approach involves the sink relocating around the arc of 

the circular area at a constant speed𝑉 . ∆𝑡  first, the sink 

announces its present location, defined as the angular 

distance from the field center that it subtends ( 𝜃 ). To 

determine where the mobile sink has moved to after a 

certain amount of time, ∆𝑡, use the formula below: 

∆Θ =
𝑉×∆𝑡

𝑅
 ------ (7) 

𝛥𝛩: Change in angle (angular displacement). 

 Since the worldwide distribution of the sink's 

velocity 𝑉  and the circular region's radius 𝑅  allows each 

CH to calculate the sink's current location using equation 6. 

Algorithm 3: Enhanced Multiple Mobile-sink 

Energy Efficient Clustering Algorithm 

Input: 

• Initial sink position P0 (angular distance from 

the field center) 

• Sink velocity V 

• Circular region radius R 

• Time interval ∆t 

Algorithm Steps: 

1. Initialize the sink's current position Θ = P0. 

2. While the algorithm is running:  

3. a. Calculate the change in position ∆Θ using the 

formula: ∆Θ = (V × ∆t) / R.  

4. b. Update the sink's position: Θ = Θ + ∆Θ. 

5. End the algorithm. 

Output: 

• Updated sink position Θ (angular distance from 

the field center) 

 

4. Results and Discussion  

This section represents to communicate the outcomes of the 

experiments, analyses. Here we will examine the most 

important findings from our research presented. 

4.1 Throughput 

Throughput= 
Number of Packet Size

Time duration∗Successful average Packet size
  -------

---- (7) 

Table 1: throughput comparison 

 Throughput  

Pack

et 

Size 

PEGAS

IS 

LEAC

H 

MMS

R 

MMEC

A 

E-

MMEC

A 

50 0.172 0.212 0.243 0.263 0.303 

100 0.344 0.425 0.487 0.526 0.606 

150 0.517 0.638 0.731 0.789 0.909 

200 0.689 0.851 0.975 1.052 1.212 

250 0.862 1.063 1.219 1.315 1.515 
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The tables 1 demonstrate that as the packet size increases, 

the throughput also increases for all routing protocols. E-

MMECA consistently outperforms others, providing the 

highest throughput values at all packet sizes due to its 

energy-aware clustering and adaptive data aggregation 

mechanisms. LEACH exhibits reasonable throughput, 

while PEGASIS shows the lowest throughput values. These 

findings highlight the significance of selecting appropriate 

routing protocols based on specific application 

requirements. E-MMECA emerges as a promising choice 

for high-throughput wireless networks, while LEACH and 

PEGASIS has better suited for other scenarios.  

 

Fig 2: Throughput comparison 

The figure 1 shows throughput comparison chart the x axis 

shows packet size and the y axis shows throughput ratio. 

4.2 Energy  

Energy= 
Number of Sensor nodes

Energy consumption for sending packets at a times
   ------

----- (8) 

Table 2: Energy comparison 

 Energy in joules  

Numb

er of 

Nodes 

PEGAS

IS 

LEAC

H 

MMS

R 

MME

CA 

E-

MME

CA 

10 0.833 0.769 0.666 0.588 0.526 

20 1.666 1.538 1.333 1.176 1.052 

40 3.333 3.076 2.667 2.352 2.105 

60 5.000 4.615 4.001 3.529 3.157 

80 6.666 6.153 5.334 4.705 4.210 

100 8.333 7.692 6.667 5.882 5.263 

  

The table 2 shows that as the number of nodes increases, the 

energy consumption also increases for all energy-efficient 

routing. Both PEGASIS and LEACH demonstrate 

relatively comparable energy consumption, whereas 

MMSR and MMECA exhibit better energy efficiency than 

PEGASIS and LEACH. These findings highlight the 

importance of selecting appropriate energy-efficient routing 

protocols to prolong the network's lifetime and optimize 

energy consumption.  

 

Fig 3: Energy comparison chart 

The figure 2 shows energy comparison chart the x axis 

shows number of nodes and the y axis shows energy in 

joules. 

 

4.3 TIME DELAY 

Time Delay= 
Number of Sensor nodes

energy consumption for sending packets at a times x forwarding time in ms
   

----------- (9) 

Table 3: Time (End to End Delay) 

 Time (End to End Delay)  

Num

ber of 

Node

s 

PEGASI

S 

LEAC

H 

MM

SR 

MME

CA 

E-

MME

CA 

10 0.066 0.066 0.063 0.062 0.057 

20 0.133 0.132 0.127 0.124 0.114 

40 0.267 0.265 0.255 0.248 0.229 

60 0.401 0.398 0.383 0.372 0.344 

80 0.535 0.531 0.511 0.496 0.459 

100 0.669 0.664 0.639 0.621 0.574 
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The table 3 presents end-to-end delay values for different 

numbers of nodes under various routing protocols 

(PEGASIS, LEACH, MMSR, MMECA, and E-MMECA). 

This makes E-MMECA a promising choice for applications 

requiring low latency and efficient data transmission. The 

results emphasize the importance of selecting appropriate 

routing protocols to optimize communication efficiency, 

and further research could explore mechanisms to enhance 

end-to-end delay performance in specific network 

scenarios. 

 

Figure 4: Time (End to End Delay) comparison chart 

The figure 3 shows Time (End to End Delay) comparison 

chart the x axis shows number of nodes and the y axis 

shows time delay. 

4.4 Packet Delivery ratio 

PDR= 
Number of Packets Receive

Total Packets
∗ 100   ----------- (10) 

Table 4: Packet Delivery Ratio 

 Packet Delivery ratio  

Numb

er of 

packet

s 

PEGAS

IS 

LEAC

H 

MMS

R 

MME

CA 

E-

MME

CA 

50 96.2 96.4 96.6 97.6 98.6 

100 98.1 98.2 98.3 98.8 99.3 

150 98.7 98.8 98.86 99.2 99.53 

200 99.05 99.1 99.15 99.4 99.65 

250 99.24 99.28 99.32 99.52 99.72 

 

The table 4 illustrates the Packet Delivery Ratio (PDR) 

values for different numbers of packets transmitted under 

various routing protocols, including PEGASIS, LEACH, 

MMSR, MMECA, and E-MMECA. As the number of 

packets increases, the PDR tends to improve for all 

protocols, indicating better packet delivery performance in 

larger data transmission scenarios.  

 

Fig 5: Packet Delivery ratio 

 The comparison table for packet delivery rates has 

seen in figure 4. The number of nodes is shown along the x 

axis, while the percentage of packets delivered is shown 

along the y axis.  

5. Conclusion 

To summarize, the proposed Enhanced MMECA 

(EMMECA) algorithm is an innovative and comprehensive 

technique for Wireless Sensor Networks (WSNs) that 

addresses the constraints of current Multiple Mobile-sink 

Energy Efficient Clustering Algorithms. EMMECA 

increases energy economy, sink mobility management, and 

overall network performance by utilizing manifold-based 

clustering approaches and energy-aware tactics. 

EMMECA's primary advancements result in significant 

benefits. For starters, optimizing communication and 

coordination between sensors and sinks minimizes network 

overhead and wasteful traffic, resulting in increased energy 

efficiency. Second, intelligent sink mobility management 

considers network structure and energy dynamics to ensure 

optimum sink movement with the least amount of 

computing complexity. Furthermore, EMMECA addresses 

sink deployment and cost concerns by offering optimization 

methods for finding the appropriate quantity and placement 

of mobile sinks. This method optimizes network 

performance while reducing resource needs. The 

algorithm's strong methods for dealing with sink failures 

and communication problems improve fault tolerance, 

providing reliable data collection and transmission even in 

the face of interruptions. Furthermore, the use of energy-

efficient routing and movement patterns balances sink 
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mobility with energy efficiency, thereby increasing network 

lifespan. Scalability in large-scale networks is handled by 

distributed coordination and data aggregation approaches, 

which reduce computing overhead and communication 

delays. Through extensive simulations and assessments, 

EMMECA outperforms current methodologies such as 

MMECA, MMSR, LEACH, and PEGASIS in important 

metrics such as network lifespan, energy consumption, 

communication latency, and load balancing. 
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