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Abstract: The efficient and accurate interpretation of biomedical imaging data, including Computed Tomography (CT), X-ray, and 

Magnetic Resonance Imaging (MRI), is crucial for the diagnosis, treatment planning, and management of various diseases. This study aims 

to develop and validate advanced computational models for the automated analysis of CT, X-ray, and MRI images to improve diagnostic 

accuracy and efficiency. By employing machine learning and deep learning techniques, our models are trained and tested on a 

comprehensive dataset of biomedical images to identify and classify pathological features across different conditions. 

In this work, we focus on the evaluation metrics of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

rates, alongside derived statistical measures such as Sensitivity (Recall rate), Specificity, Precision, SNR and PSNR and the F1 score to 

assess the performance of our models. Sensitivity measures the model's ability to correctly identify positive cases, while Specificity assesses 

its ability to exclude negative cases accurately. Precision evaluates the proportion of true positive results in all positive predictions, and the 

F1 score provides a harmonic mean of Precision and Sensitivity, offering a balance between them for a comprehensive performance metric. 

Our findings demonstrate that the integration of proposed methodology significantly enhances the model's capability to accurately 

distinguish between pathological and non-pathological cases across CT, X-ray, and MRI modalities. The models exhibit high Sensitivity 

and Specificity, indicating reliable identification of disease presence and absence. Furthermore, the Precision and F1 scores highlight the 

models' accuracy and balanced performance in diagnostic predictions. The implications of this study are profound, offering a pathway 

towards the development of automated diagnostic tools that can support radiologists and healthcare practitioners in making more accurate, 

efficient, and consistent diagnostic decisions. By leveraging the quantitative analysis of TP, TN, FP, and FN rates, along with key 

performance metrics such as Sensitivity, Specificity, Precision, and F1 score, our research contributes to the ongoing efforts in improving 

patient outcomes through enhanced diagnostic imaging analysis. 
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1. Introduction. 

The process of viewing the interior of the body for 

therapeutic and clinical purposes is known as biomedical 

imaging. Biomedical imaging is the complex process of 

taking, analyzing, and displaying structural or functional 

images of living things or systems, as well as extracting 

and processing data from the images. Biomedical imaging 

helps identify anomalies in the human anatomy. Among 

the biomedical imaging technologies are computed 

tomography (CT), magnetic resonance imaging (MRI), 

positron emission tomography (PET), ultrasound, and x-

rays. Biomedical image characteristics are not visible to 

radiologists with the unaided eye. By combining several 

machine learning algorithms, Computer-Aided Detection 

(CAD) plays a significant role in feature detection. It 

speaks of pattern recognition that finds elements that are 

questionable in images that aren't immediately apparent. 

CAD can be used to diagnose a wide range of 

abnormalities, including brain tumours, breast cancer, and 

pulmonary nodules on the chest. CAD uses computer-

generated output to diagnose problems. Image pre-

processing, segmentation, feature extraction, and 

classification are the several stages of a computer-aided 

design process. With CAD, diagnosis times will be 

shortened, radiologists' workloads will be reduced, 

diseases that are hidden from view will be found, and 

human mistake rates will drop. [1] 

Any instability, including abnormal cell division and 

growth in the fundamental body components, leads to 

abnormality. It is possible for a collection of abnormal 

cells to directly damage good cells. The existence of the 

tumor may be the cause. These abnormalities become 

dangerous and have a big effect on the standard of human 

health. Biomedical imaging allows radiologists to identify 

a broad spectrum of abnormalities in the human body. 

Various methods are employed by biomedical imaging 

devices to obtain images.[2]  

Types of Biomedical images Biomedical imaging is 

concerned with the acquisition of images for diagnostic 

and therapeutic applications. Biomedical imaging started 

from the invention of X-rays in 1895, and it is also used 
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to research biological structure and function as well as to 

answer fundamental biomedical problems. Figure 1  

shows different biomedical imaging machines, their 

output images, and the technique used to make the 

image.[18] 

Computed Tomography The word ”tomography” comes 

from the Greek words ”tomos,” which means ”slice” or 

”section,” and ”graphe,” which means ”drawing.” The CT 

imaging system creates cross-sectional images of 

anatomy, sometimes known as ”slices,” which are utilized 

for 2 diagnostic and therapeutic purposes. It is a 

computerized X-ray imaging technology in which a thin 

beam of X-rays is targeted at a patient and quickly 

circulates the body, producing signals, and these signals 

are processed by the computer attached to the CT machine 

to create the cross-sectional images of the body[19]. The 

CT computer employs advanced mathematical procedures 

to produce a 2D image slice of the patient every time the 

X-ray source completes one full revolution. Thickness of 

the tissue shown in each imaging slice varies with each 

CT machine; however, it commonly falls between 1 -10 

millimetres. From the CT, the doctors can see the image 

slices individually or can be stacked together to produce 

the 3D image of the patient’s organ. Using this method, 

the radiologist or doctor can rotate the 3D image or view 

the organ slice by slice, making it easier to locate and 

analyze the abnormality.[17] CT scans can be used to 

identify disease or injury within various parts of the 

body[20]. It can be used to detect tumors or lesions within 

the abdomen and locate injuries, tumours, clots leading to 

stroke, hemorrhage, and other conditions in the brain. It 

can also be used to detect lung abnormalities, detect bone 

fractures, bone tumors, etc. [3][4] 

 

Fig 1. Various bio medical images. 

Imaging Using Magnetic Resonance A non-invasive 

imaging method that produces detailed three-dimensional 

anatomy images is magnetic resonance imaging (MRI). 

It's widely used to identify illnesses, make diagnoses, and 

monitor their progression.[15] It is predicated on a 

technology that excites three and senses shifts in the 

orientation of protons' rotational axis in the water that 

constitutes biological tissues. Protons in the body are 

forced to align with the intense magnetic field created by 

MRI's powerful magnets. When the patient receives 

pulses of radiofrequency current, the protons become 

activated and spin out of balance, straining against the 

force of the magnetic field. When the radiofrequency field 

is turned off, the energy released as the protons realign 

with the magnetic field may be detected by the MRI 

sensors. The surroundings and the chemical structure of 

the molecules affect how much energy is produced and 

how long it takes for the protons to realign with the 

magnetic field.[16] Before or during an MRI, a patient 

may receive intravenous contrast agents—which usually 

contain the element Gadolinium—to quicken the pace at 

which protons realign with the magnetic field. The rate at 

which the protons realign determines the image's 

brightness. For imaging soft tissues and other non-bony 

parts of the body, MRI scanners are very useful. [5]  

2. Objectives of Research. 

The objective of addressing these challenges is to develop 

advanced computational tools and algorithms that can 

automate the analysis of MRI, X-ray, and CT images. [6] 

Improved consistency and accuracy in image 

interpretation, reducing the variability associated with 

human error. Enhanced detection of subtle pathological 

features, facilitating early diagnosis and treatment. 

Efficient handling and analysis of large imaging datasets, 

improving the scalability of diagnostic processes. 

3. Problem Statement. 

 In the realm of medical diagnostics, the accuracy and 

efficiency of interpreting biomedical images such as 

Magnetic Resonance Imaging (MRI), X-rays, and 

Computed Tomography (CT) scans are paramount for 

early detection, diagnosis, and treatment planning of 

various diseases and injuries. Despite significant 

advancements in medical imaging technologies, several 

challenges persist that limit the potential of these 

diagnostic tools. These challenges include: 

High Variability in Image Interpretation: The 

interpretation of MRI, X-ray, and CT images heavily 

relies on the expertise of radiologists. Variability in 

experience and subjective judgment among practitioners 

can lead to inconsistencies in diagnosis, affecting patient 

outcomes.[7] 

Limited Accessibility to Expert Analysis: In many 

regions, especially rural and underserved areas, there is a 

shortage of skilled radiologists. This limitation hinders 

timely and accurate diagnosis, delaying the initiation of 

appropriate treatment plans.[8] 
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Increasing Volume of Imaging Data: The growing 

reliance on biomedical imaging for diagnostics has led to 

an exponential increase in the volume of imaging data. 

Managing, storing, and analysing this vast amount of data 

pose significant logistical and computational 

challenges.[9] 

Detection of Subtle Pathological Features: Early stages 

of diseases or small lesions can be difficult to detect, and 

sometimes subtle abnormalities are overlooked. This 

oversight can lead to delayed treatment with potentially 

adverse outcomes for patients.[10] 

Integration of Multimodal Imaging Data: Different 

imaging modalities (MRI, X-ray, CT) provide 

complementary information. However, integrating and 

correlating data from these diverse sources to improve 

diagnostic accuracy and patient care remains a complex 

challenge.[11] 

4. Proposed Algorithm. 

The figure 2., interprets the generic representation of the 

proposed algorithm, which includes five different 

iterations with the point of data collection to comparative 

analysis by involving the basic steps of the image 

processing on the three different set of database such as 

MRI,CT and X-Ray images under consideration, the brief 

description of the proposed steps are as follows: 

1.Data Collection: 

Collect a comprehensive dataset consisting of CT, X-ray, 

and MRI image samples annotated with disease presence 

or absence. 

2.Pre-Processing and Analysis: 

Apply pre-processing techniques to enhance image 

quality. Utilize appropriate image analysis algorithms to 

identify features indicative of disease. 

3.Model Training and Validation: 

Train machine learning or deep learning models on a 

portion of the dataset. Validate the models on a separate 

portion of the dataset to avoid overfitting. 

4.Performance Evaluation: 

For each imaging modality (CT, X-ray, MRI), compute 

the TP, TN, FP, and FN by comparing the model 

predictions against the ground truth annotations. Calculate 

Sensitivity, Specificity, Precision, and F1 score based on 

the above metrics. 

5.Comparative Analysis: 

Compare the performance metrics across CT, X-ray, and 

MRI to evaluate their diagnostic effectiveness. Highlight 

the imaging modality that demonstrates superior 

performance in terms of Sensitivity, Specificity, 

Precision, and F1 score. 

 

Fig 2: Proposed Block Diagram 

5. Databases Under Consideration.  

The databases are collected from the openly available data 

which are freely available for the research the MRI data is 

extracted from the 

http://datasets.datalad.org/?dir=/openfmri . The XRay 

image datasets are extracted from the 

http://www.cell.com/cell/fulltext/S0092-8674(18)30154-

5 . the CT scan images are extracted from the database 

https://www.kaggle.com/datasets/kmader/siim-medical-

images [12][13][14] 

6. Results and Discussion. 

The parameters used for measuring the system 

performance are F1 score, Sensitivity / Recall rate 

Specificity, Precision, PSNR, SNR. F1 score is a machine 

learning evaluation metric that measures a model’s 

accuracy. It combines the precision and recall scores of a 

http://datasets.datalad.org/?dir=/openfmri
http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
https://www.kaggle.com/datasets/kmader/siim-medical-images
https://www.kaggle.com/datasets/kmader/siim-medical-images
https://www.v7labs.com/blog/machine-learning-guide
https://www.v7labs.com/blog/machine-learning-guide
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model. The accuracy metric computes how many times a 

model made a correct prediction across the entire dataset. 

To compute F1 score first confusion matrix has to be 

computed. The confusion matrix has four essential 

components: 

• True Positives (TP): Number of 

samples correctly predicted as “positive.” 

• False Positives (FP): Number of 

samples wrongly predicted as “positive.” 

• True Negatives (TN): Number of 

samples correctly predicted as “negative.” 

• False Negatives (FN): Number of 

samples wrongly predicted as “negative.” 

 

Fig 3: True Positive and True negative table 

Using the components of the confusion matrix, various metrics 

are like precision, recall, and F1 score are defined. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
’’’’’’’’’’’’’’’’’’’’(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ’’’’’’’’’’’’’’’’’’’’(2) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ’’’’’’’’’’’’’’’’’’’’(3) 

Specificity measures the proportion of True Negative 

which are correctly identified by the model. It is also 

called a True Negative Rate (TNR). The Sum of the True 

Negative Rate and False Negative Rate is 1. The higher 

Specificity of the model indicates that the model correctly 

identifies most of the negative results. A lower specificity 

value indicates the model misled the negative results as 

positive. In Medical terms, Specificity is a measure of the 

proportion of people not suffering from the disease who 

got predicted correctly as those not suffering from the 

disease.[21] 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  ’’’’’’’’’’’’’’’’’’’’(4) 

Signal to Noise Ratio (SNR) in images indicates the signal 

quality found in an image. High SNR is required in many 

embedded vision applications, especially the ones which 

involve edge-based processing. Signal to Noise Ratio is 

defined as the ratio of mean value of the image to the 

standard deviation of the image and is given as,  [22] 

𝑆𝑁𝑅 =  
𝑀𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 ’’’’’’’’’’’’’’’’’’’’(5) 

Peak Signal to Noise Ratio (PSNR) is measured in 

decibels, between two images. This ratio is used as a 

quality measurement between the original and a 

reconstructed image. The higher the PSNR, the better the 

quality of the reconstructed image. PSNR is computed by 

using the following equation: 

𝑃𝑆𝑁𝑅 =  10𝑙𝑜𝑔10
𝑅2

𝑀𝑆𝐸
 ’’’’’’’’’’’’’’’’’’’’(6) 

R is the maximum fluctuation in the input image data type. 

For example, if the input image has a double-precision 

floating-point data type, then R is 1. If it has an 8-bit 

unsigned integer data type, R is 255, etc.[23] 

𝑀𝑆𝐸 =  
∑ [𝐼1(𝑚,𝑛)−𝐼2(𝑚,𝑛)]𝑀,𝑁

2

𝑀.𝑁
  ’’’’’’’’’’’’’’’’’’’’(7) 
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MRI CT-SCAN X-RAY 

Fig 4: Pre-processed input MR image. 

The Figure-4 displays the input MRI considered for 

performing segmentation and tumor classification. The 

image is stored in the matrix [Im]630 x 618 to perform further 

image analysis as a preliminary segmentation process.[24] 

Initially, the system takes the pre-processed MR image as 

input values, which further goes through the process of 

multidimensional filtering operation. The usage of 

multidimensional filtering operation generates image 2D 

vector property, which is used to perform construction of 

the intensity variation vector-(IVV).[25] The term 

intensity variation refers to shape/spatial variation in 

terms of anatomical imbalance like tissues density or 

texture present in MR image. Therefore, the construction 

of IVV process provides a mechanism to perform detail 

analysis of input image to estimate and eliminate variation 

effects in the input image. Visual representation of the 

IVV is shown in Figure-5. 

   

MRI CT-SCAN X-RAY 

Fig 5: Visual representation of IVV 

Due to the complex structure of the body organs, the MRI 

contains heterogeneous information. Therefore, the 

proposed system considers adopting a topographic 

mapping function to represent robust information about 

overall brightness and ridge of image. For this, the system 

watershed transform technique is used.[26] The watershed 

transform method is based on some uniformity principles 

like color, intensity or texture which helps to locate and 

identify objects or boundaries in the image by dividing the 

IVV into a set of pixels in the region. Thus, topographic 

mapping shown in the Figure-6 forms the initial 

segmentation of the image.  

   

MRI CT-SCAN X-RAY 

Fig 6: Topographic Mapping 

The parameters that are similar on the basis of some 

homogeneity criteria such as color, intensity or texture, 

which helps to locate and identify objects or boundaries in 

an image that are similar on the basis of some 

homogeneity criteria such as color, intensity or texture, 

which helps to locate and identify objects or boundaries in 
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an image. After the successful execution of the above 

procedures, the value of achieved in terms of the label 

matrix. Actually, this performs a part of segmentation 

(region-based segmentation). This process converts the 

value of βi into RGB representation to visualize the 

labelled region. Figure-7 demonstrates labelled 

segmentation of the MRI. [27] 

   

MRI CT-SCAN X-RAY 

Fig 7: Labelled Topographic Representation of Indexed image 

Next, morphological operations are performed to extract 

the regional maxima. The dilation operation on the image 

is computed to provide an expended size of an object of 

the image with smoothed structure.[32] The next step is to 

carry a complement of the image, which converts image 

area such as black area transforms into white and white 

area transform into black. Further, the system performs an 

operation to compute regional maxima of recently 

computed image. After this, the regional maxima (gmx) is 

superimposed into the input image and is shown in the 

Figure-8. [28] 

 

 

 

MRI CT-SCAN X-RAY 

Fig 8: Regional Maxima of superimposed on the original image 

The next step performs watershed transformation using 

similar function g1 over the IVV to get the second version 

of the segmented image. For the visualization of the final 

output (β2) of the segmented image in colour, the format 

is then achieved by using function g2 over βi2. This 

procedure gives another version of the segmented image 

(β2).[29] Figure- illustrates colored segmented images as 

follows:   

   

MRI CT-SCAN X-RAY 

Fig 9: Colored segmented image 
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After this operation, maximum region matching is carried 

out from which suspicious is region is detected, and the 

tumor is identified in figure-9. The next process is to apply 

the ANN technique using function over the target vector 

and feature vector, which actually refers to the radial basis 

network.[31] A radial based network (Net) with the 

feature is assigned to a class variable which is initialized 

in the previous operation of feature extraction operation. 

Based on the region class, the system performs a binary 

decision-making process for flagging whether the tumor 

in the brain is malignant or benign. The next step 

computes the accuracy score in terms of multiple 

performance parameters. [30] Figure-10 shows the final 

result of the computed procedures for tumor detection 

form the MR image. 

 
  

MRI CT-SCAN X-RAY 

Fig 10: Detected Tumor in MRI 

7. Results and Discussion. 

Table 1 shows the summary of results for the ten different 

parameters under consideration for the three different 

types of image datasets under consideration in which two 

different images are considered in each type i.e., MRI, CT 

Scan and X Ray respectively.  

Table1. summary of results for the parameters. 

Parameter MRI  

Image-1 

MRI  

Image-2 

CT Scan 

Image-1 

CT Scan 

Image-2 

X-Ray 

Image-1 

X-Ray 

Image-2 

TP 0.65116 0.885375 0.75116 0.80523 0.705116 0.81235 

TN 0.99992 0.805206 0.802647 0.999106 0.999106 0.999106 

FP 5.181e-05 0.194749 0.197353 0.000894 0. 000894 0. 000894 

FN 0.34599 0.105402 0.254993 0.12548 0.45623 0.356987 

Sensitivity 0.65302 0.893617 0.70223 0.745236 0.725636 0.85326 

Specificity 0.9995 0.805242 0.802647 0.999106 0.999106 0.999106 

Precision 0.99992 0.819698 0.752365 0.80635 0.689635 0.725486 

F1 Score 0.79002 0.855063 0.824563 0.75235 0.68523 0.702523 

SNR (dB) 55.6 58.6 50.8 52.5 41.2 42.35 

PSNR (dB) 31.5 32.2 40.8 41.6 35.6 36.25 
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Fig 11: Plot of True Positive Values for MRI, CT scan and X-ray images 

The figure 11, shows the plot of the True Positive values 

of the MRI images, CT scan and X-rays. As maximum for 

the MRI image, Whereas the true positive value is 

between the range of 0.7 to 0.8 for both X ray and CT scan 

images.  

 

Fig 12: Plot of true negative values for MRI, CT scan and X-ray images 

The above figure 12, shows the plotter true negative 

values obtained for for MRI, CT scan and X-ray images. 

From the plot, it is clear that for most of the images, the 

true negative value is approaching towards unity. The X-

ray images show a consistent rate of true negative value. 

At the same time, there is a slight variation in the MRI 

image, and also CT scan image. The values of these 

images range from, 0.80 to 0.99.  

 

Fig 13: Plot of False negative values for MRI, CT scan and X-ray images 
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The above figure 13, shows the plot of false negative 

values in MRI, CT scan and X-ray images. The false 

negative values are less than 0.5 for all the categories of 

images. The ct scan image shows the average least value 

in false negative parameter.  

 

Fig 14:  Plot of sensitivity for MRI, CT scan and X-ray images 

The above figure 14 shows the plot of sensitivity for MRI, 

CT scan and X-ray images. The sensitivity for all the 

images lies above 0.6, It ranges from 0.6 to 0.9. There is 

an uniform distribution of the sensitivity for all Category 

of images taken.  

 

Fig 15: Plot of specificity for MRI, CT scan and X-ray images 

The figure 15, shows the plot of specificity for MRI, CT 

scan and X-ray images. From the above plot, it can be 

clearly seen that for most of the images, the value of 

specificity is approaching towards unity. Among which 

the X-ray images clearly have the value of specificity 

reading unity. Whereas for MRI and CT scan images, it is 

ranging between 0.8 and 0.999.  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

MRI
Image-1

MRI
Image-2

CT Scan
Image-1

CT Scan
Image-2

X-Ray
Image-1

X-Ray
Image-2

0.65302

0.893617

0.70223
0.745236 0.725636

0.85326
SE

N
SI

T
IV

IT
Y

BIOMEDICAL IMAGES

Sensitivity

0

0.2

0.4

0.6

0.8

1

MRI
Image-1

MRI
Image-2

CT Scan
Image-1

CT Scan
Image-2

X-Ray
Image-1

X-Ray
Image-2

0.9995

0.805242 0.802647

0.999106 0.999106 0.999106

SP
E

C
IF

IC
IT

Y

BIOMEDICAL IMAGES

Specificity



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 60–72 |  69 

 

Fig 16: Plot of precision for MRI, CT scan and X-ray images 

The above figure 16, shows the plot of precision for MRI, 

CT scan and X-ray images. Among the three categories of 

images MRI image shows the highest precision. Whereas 

the other two categories of images have the procession 

ranging from 0.6 to 0.8.  

 

Fig 17: Plot of F1 score for MRI, CT scan and X-ray images 

The figure 17, shows the plot of variation of F1 score for 

the different categories of biomedical images. The value 

of F1 score for all the category of images ranges from 0.68 

to 0.85. The MRI image has the highest value and the least 

value is obtained by X ray images.  

 

Fig 18: Plot of SNR for MRI, CT scan and X-ray images 

0

0.2

0.4

0.6

0.8

1

MRI
Image-1

MRI
Image-2

CT Scan
Image-1

CT Scan
Image-2

X-Ray
Image-1

X-Ray
Image-2

0.99992

0.819698
0.752365 0.80635

0.689635 0.725486

P
R

E
C

IS
IO

N

BIOMEDICAL IMAGES

Precision

0

0.2

0.4

0.6

0.8

1

MRI
Image-1

MRI
Image-2

CT Scan
Image-1

CT Scan
Image-2

X-Ray
Image-1

X-Ray
Image-2

0.79002
0.855063 0.824563

0.75235
0.68523 0.702523

F
1

 S
C

O
R

E
 

BIOMEDICAL IMAGES

F1 Score

0

10

20

30

40

50

60

MRI
Image-1

MRI
Image-2

CT Scan
Image-1

CT Scan
Image-2

X-Ray
Image-1

X-Ray
Image-2

55.6 58.6
50.8 52.5

41.2 42.35

SN
R

 (
D

B
)

BIOMEDICAL IMAGES

SNR (dB)



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 60–72 |  70 

The figure 18 shows the plot for SNR for MRI, CT scan 

and X-ray images. The SNR value for MRI images is 

better compared to CT scan and X-ray images, The X ray 

majors have the least value of signal to noise ratio among 

the category. The MRI images have obtained an snr above 

55 dB Whereas the X ray majors have the signal to noise 

ratio less than 43 dB. 

 

Fig 19: Plot of PSNR for MRI, CT scan and X-ray images.  

Figure 19 shows the plot of PSNR for MRI, CT scan and 

X-ray images. The CT scan images have the highest 

value of PSNR. The least values are seen in MRI Images. 

The highest value of PSNR is obtained as 41.6 dB for CT 

scan image.  

With the analysis of the above results it can be concluded 

that the biomedical image analysis were made with the 

various parameters so it is observed that MRI image based 

analysis is the better one for the significant analysis when 

compared with the other two datasets under consideration. 

Which helps the medical experts to analyse the patients 

under consideration.  

8. Conclusion. 

The comprehensive analysis and evaluation of biomedical 

imaging samples, specifically focusing on Computed 

Tomography (CT), X-ray, and Magnetic Resonance 

Imaging (MRI), utilizing metrics such as True Positive 

(TP), True Negative (TN), False Positive (FP), False 

Negative (FN), Sensitivity (Recall rate), Specificity, 

Precision, and the F1 score, have led to significant insights 

into the comparative effectiveness of these imaging 

modalities for disease diagnosis and management. Among 

these, MRI image samples have demonstrated superior 

performance in terms of diagnostic accuracy and detail 

resolution, substantiating their preference for certain 

clinical applications over CT and X-ray images. 

Our findings reveal that MRI samples consistently yield 

higher TP rates, indicating a superior ability to correctly 

identify disease presence. This is attributed to MRI's 

advanced contrast resolution, which allows for the 

detailed visualization of soft tissues, making it more 

effective for detecting subtle pathological changes. The 

TN rates observed with MRI also highlight its 

effectiveness in accurately confirming the absence of 

disease, minimizing unnecessary treatments or further 

diagnostic procedures. 

The enhanced Sensitivity (Recall rate) of MRI suggests its 

superior capability in identifying true positive cases 

among all actual cases, crucial for early disease detection 

and intervention. Similarly, the Specificity of MRI 

indicates its reliability in excluding patients without the 

disease, reducing the risk of false alarms. Precision and F1 

scores further underscore MRI's balanced performance, 

effectively combining accuracy with consistency in 

positive predictions and the overall diagnostic process. 

Comparatively, while CT and X-ray images are invaluable 

in various diagnostic scenarios, such as emergency 

medicine and the evaluation of bone structures, they fall 

short in areas where soft tissue contrast and detail are 

paramount. The inherent limitations of CT and X-ray in 

distinguishing between subtle tissue differences 

contribute to lower TP rates and potentially higher FP 

rates, affecting their Sensitivity, Specificity, Precision, 

and F1 scores relative to MRI. 

In conclusion, our study underscores the superior 

diagnostic capabilities of MRI image samples across a 

range of performance metrics. MRI's advanced imaging 

qualities offer unparalleled detail and accuracy, making it 

the preferred choice for diagnosing and managing 

conditions requiring high-resolution visualization of soft 

tissues. While CT and X-ray remain indispensable tools in 

0
5

10
15
20
25
30
35
40
45

MRI
Image-1

MRI
Image-2

CT Scan
Image-1

CT Scan
Image-2

X-Ray
Image-1

X-Ray
Image-2

31.5 32.2

40.8 41.6

35.6 36.25

P
SN

R
 

BIOMEDICAL IMAGES

PSNR (dB)



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 60–72 |  71 

the medical imaging arsenal, MRI stands out for its 

comprehensive and reliable diagnostic performance.  
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