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Abstract: In this paper, an improved version of Artificial Cooperative Search (ACS) algorithm is applied on a counter flow wet-cooling 
tower design problem. The Merkel’s method is used to determine the characteristic dimensions of cooling tower, along with empirical 
correlations for the loss and overall mass transfer coefficients in the packing region of the tower.  Basic perturbation schemes of the 
Crow Search Algorithm, a recent developed metaheuristic algorithm inspired by the food searching behaviors intelligent crows, are 
incorporated into ACS to enhance the convergence speed and increase the solution diversity of the algorithm. In order to assess the 
solution performance of the proposed method, fourteen widely known optimization test function have been solved and corresponding 
convergence graphs has been reported.  .Then the improved ACS algorithm (IACS) is applied on six different examples of counter flow 
wet-cooling tower optimization problem. The results obtained by applying the proposed algorithm are compared with the results of some 
other algorithms in the literature. Optimization results show that IACS is an effective algorithm with rapid convergence performance for 
the optimization of counter flow wet-cooling towers. 
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1. Introduction 
A cooling tower is a device that cools the incoming hot water by 
means of heat and mass transfer between air and water, which are 
in direct contact with each other during heat and mass transfer 
process. Cooling towers have large applications in chemical and 
petrochemical industries, electric-power generating stations, 
refrigeration and air conditioning plants [1,2]. The water, utilized 
to maintain large contact area with atmospheric air, can be 
distributed through the cooling tower by spray nozzles, splash 
bars, fills, etc. and the air circulation in the tower can be realized 
by mechanical drafts, natural drafts or the induction effect from 
water sprays [3,4]. Type of packing (distribution) constitutes an 
important part of cooling tower design since it controls the heat 
and mass transfer between the fluids [5].  
In the cooling towers, warm water enters the cooling plant from 
the top and flows downward through labyrinth-like packings 
while air may flow upward (counter-flow) or horizontally (cross 
flow). Afterwards, the water is distributed uniformly in the 
packaging area; as a result, a large direct contact area occurs 
between the air and the water. Since the humidity of saturated air 
is less than the humidity of water at the temperature of the water, 
the air absorbs moist from the water and a portion of the water 
begins to evaporate. Evaporation draws energy from the water, 
therefore, the water is cooled. After the heat and mass transfer 
process completed, the cooled water is collected in a basin below 
the fills and returned to the cooling cycle. The water lost in the 
evaporation and drift processes is replaced with fresh make-up 
water [6].  Induction effect cooling towers use natural buoyancy 
property of air to circulate it across the tower; on the other hand, 

mechanical draft types use an electrically driven fan to circulate 
the air in the tower. There are two types of mechanical draft 
towers in the market. These types include forced draft tower, in 
which fan located at the bottom of the tower, and induced draft, 
in which fan located at the top of the tower. 
In the literature, one of the first studies regarding cooling towers 
is made by Walker et al. [7]. Walker et al. proposed a 
mathematical framework to design cooling towers however, one 
of the first practical usages of the mathematical framework is 
proposed by Merkel [8], which combined the governing 
equations of heat and mass transfer between air and water 
droplets in the tower. Mohiuddin & Kant [9,10] expanded the 
previously mentioned mathematical models and proposed a more 
detailed procedure to mathematically model the cooling towers. 
El-Dessouky et al. [11], described a theoretical investigation for 
the steady-state counter flow cooling towers with modified 
definitions for both the number of transfer units and the tower 
thermal effectiveness. The model described in El-Dessouky et al.  
can be easily compared   with conventional methods such as 
effectiveness-NTU and Logarithmic Mean Enthalpy Method 
(LMED). Lemouari et al. [12] experimentally investigated 
thermal performance of a forced draft counter flow wet cooling 
tower filled with a “VGA” (Vertical Grid Apparatus) type 
packing.  
Other researchers conducted plenty of studies on optimization of 
cooling towers considering different objective functions and 
different optimization algorithms. Zou et al. [13] proposed an 
optimization method for solar enhanced natural draft dry cooling 
tower design. Proposed objective function included capital, 
labour, maintenance, and operation costs of each component in 
the cooling tower. Results showed that optimized cooling tower 
has better performance and cost effective compared to the 
currently used cooling towers. Serna-Gonzalez et al. [1] 
developed an objective function considering the annual operating 
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costs and the required capital cost for a cooling tower to operate 
efficiently. The objective function along with the constraints were 
modelled as a mixed-integer nonlinear programming (MINLP) 
problem and solved with an appropriate optimization algorithm. 
Rao & Patel [2] considered a mechanical draft counter flow wet-
cooling tower and formulated an objective function representing 
operating costs for this particular type of cooling tower. Artificial 
Bee Colony (ABC) algorithm was employed to solve this 
optimization problem and results were compared with the 
solutions given in [1]. Results showed that more preferable 
solutions could be obtained with the ABC algorithm. Castro et al. 
[14] investigated a cooling water system, which supplies a heat 
exchanger network. The authors considered the total operating 
costs as the objective function to be optimized. Soylemez [15] 
utilized the effectiveness-NTU method to model a cooling tower 
and benefited from P1-P2 method for thermo-economic 
optimization of the cooling tower. Kintner-Meyer & Emery 
[16,17] proposed an optimization method for optimum sizing and 
cost of the cooling towers. Kloppers & Kröger [18] described a 
counterflow natural draft wet-cooling tower and optimized the 
geometrical dimension of the cooling tower with Leap-frog 
Optimization Method with Operating Constraints (LFOPC) to 
obtain minimum operating and capital costs.  Smrekar et al. [19] 
examined how efficiency of a natural draft cooling tower can be 
improved by optimizing the heat transfer taking place in the 
cooling tower, packing type and plane area. Ponce-Ortega et al. 
[20] described an optimization model for the simultaneous 
synthesis and design of re-circulating cooling water systems. The 
objective function is modelled as mixed-integer nonlinear 
programming problem and considers the annual cost of the 
cooling tower.  
In the present work, a counter flow cooling tower with different 
possible types of packing and air circulating systems is 
considered. An objective function is comprised of the annual, 
operating and capital costs of the cooling tower. Selecting the 
most convenient type of packing and air circulating system makes 
the objective function a mixed-integer nonlinear programming 
problem. Solving this problem requires an effective and robust 
global optimization algorithm since the objective function 
consists of many local minimums. Artificial Cooperative Search 
(ACS) [21] algorithm is selected as an optimization algorithm to 
thermodynamically design and model this optimization problem. 
ACS is a swarm-intelligence based nature-inspired metaheuristic 
algorithm good at exploring large solution spaces and finding the 
optimum point of any optimization problem, however, it may be 
trapped in local optimum points in the search space. Therefore, 
this study proposes an enhancement on the basic perturbation 
schemes of the ACS by employing the fundamentals of Crow 
Search Algorithm [22]. By this integration, it is aimed to improve 
the solution accuracy and the convergence rate of the simple ACS 
optimizer.  
The paper is organized into four sections. Section.2 gives 
proposed methodology. Section.3 describes results and 
discussion. Section.4 gives conclusion of the work. 

2. Problem Formulation 
When the inlet and outlet temperature of water, the dry- and wet-
bulb temperatures of the entering air, the mass flow rate of air, 
the heat rejection load and the packing type are provided, a 
standard design of a cooling tower, which includes finding of the 
necessary size and cost of the tower can be accomplished. 
However, design of a cooling tower not only requires a detailed 

modelling of the constructional equations but also selection of 
optimum operating conditions such as inlet and outlet 
temperatures of water, mass flow rate of air and packing type 
[23]. Therefore, all of these variables can be regarded as 
independent design variables subjected to given constraints of the 
optimization problem.  
Following assumptions are made to derive the modeling 
equations [24,25]: 
1. The Lewis number related with the simultaneous heat and mass 
transfer is taken as one.  
2.  The cooling tower operates under adiabatic conditions. 
3.  The tower has a uniform cross-sectional area. 
4. Thermodynamic properties of air and water do not change 
across horizontal cross-sections of the cooling tower. 
5.  The air leaving the tower is saturated with water vapor.  
6. The mass flow rate of water through the tower remains 
constant. 
7.  The temperature of the air at the interface is equal to the local 
bulk temperature of the water at any intersection of the tower. 
8. Water waste due to evaporation, drift and blow-down is 
insignificant compared to the total water load. 
The main objective of this present work is to minimize the total 
annual cost of the cooling tower with the proposed improved 
ACS algorithm. Total annual cost can be formulized as follows, 

Minimize f c opTAC K C C= +    (1) 

where fK  is the annualized factor for investment, opC is the 

annual operating cost and cC  is the installed capital cost of the 
cooling tower. Annual operating cost can be mathematically 
described as,  

op Y wat mw Y elC H C m H C P= +
                                        

(2) 

where elC  is the unit cost of electricity, watC is the unit cost of 

make-up water, YH is the yearly operating time, mwm  is the mass 
flow rate of the make-up water and P is the power needed to 
operate the cooling tower. 
The capital cost of cooling tower can be calculated according to 
the formula given in [17], 

c FC CTV fr fi CM aC C C a L C m= + +
                                   

(3) 

where CMC is the incremental cooling tower cost based on air 

mass flow rate, CTVC is the incremental cooling tower cost based 

on tower fill volume and FCC is the fixed cooling tower cost. 

CTVC values varies depending on type of packing. The values it 
could take are 2006.6, 1812.25 and 1606.15 for splash fill, trickle 
fill and film fill respectively [1]. Following constraints are 
considered for the evaluation of the cooling tower optimization 
problem. Theoretically, the lowest temperature water can be 
cooled is the wet-bulb temperature of entering air. However, in 
practice, it is difficult to achieve such level of cooling. Therefore, 
water outlet temperature should be at least 2.8°C above wet-bulb 
temperature of the air [26]. 

2 8out inTW TWB .− ≥          (4) 
In order to avoid fouling, scaling and corrosion effects, an upper 
temperature limit is set on inlet cooling water. Generally, this 
maximum inlet temperature of inlet cooling water is set to above 
50°C [27]. 
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50inTW C≤ °                          (5) 

The outlet water temperature of the cooling tower should be 
lower than the outlet temperature of hot process stream,  

out minTMPO TW T− ≥ ∆                                        (6) 

Likewise, the inlet water temperature of the cooling tower should 
be lower than the inlet temperature of hot process stream, 

in minTMPI TW T− ≥ ∆                         (7) 
From a thermodynamic point of view, the water stream must be 
cooled and the air stream must be heated, 

in outTW TW>                          (8) 

out inTA TA>           (9) 

Merkel number must be a positive non-infinite real number in 
order to identify the cooling tower correctly, 

0Me >                         (10) 
In most of the applications, water to air mass flow rate is limited 
in a certain range [4]. In this paper, air to water mass flow rate 
operating range is taken as, 

                                                                    (11) 

The maximum and minimum water and air loads are reported in 
[28,29], 

2 90 5 96w

fr

m
. .

a
≤ ≤                                                (12) 

1 20 4 25a

fr

m
. .

a
≤ ≤        (13) 

Finally, from a physical point of view, air and water mass flow 
rate must be positive, 

0am >          (14) 

0wm >                                                                      (15) 

Mathematical model of the cooling tower is presented in the next 
section. 

3. Cooling Tower Model 
Fig. 1 shows the general representation of a counter flow cooling 
tower. In Fig. 1, subscripts in and out represent the inlet and 
outlet flows, TW stands for the water temperature, TA symbolize 
the dry-bulb temperature of the air, TWB is the wet-bulb 
temperature of the air, ha represents the enthalpy of bulk air-
water vapor mixture passing through the packing, Lfirefers to 
tower fill height, afr represents the cross-sectional area of the 
tower, and mw and ma show the water and dry air mass flow rates, 
respectively. The amount of heat transferred from the water to the 
air stream can be calculated from energy balance equation given 
below, which contains range of the tower, i.e. ( )in outTW TW− . 

( ) ( )pw w in out a out inQ c m TW TW m ha ha= − = −
                  

(16) 

Merkel number is an important factor in designing of a cooling 
tower. Merkel number indicates the level of difficulty to cool the 
process water. A higher Merkel number value means a greater 
difficulty to cool the water but at the same time it means a more 
economic tower. Merkel number can be calculated as [28-30], 

in

out

TW
p

TW

c dTW
Me

hsa ha
=

−∫                                                                  (17) 

Figure 1. Cooling tower control volume 

where ( )hsa ha−  is the local enthalpy difference between the air 
and the saturated air in any section of the tower. Integration of 
this term along the cooling tower gives the required Merkel 
number. A more preferred way to calculate Eq. (17) is turning the 
equation to an algebraic form by applying Chebyshev’s four point 
integration technique [31,32]. Application of this procedure on 
the cooling towers is presented and shown that Chebyshev 
procedure is an accurate technique compared to some other 
numerical integration techniques in the literature [9,33]. The 
application of four-point Chebyshev procedure on Merkel’s 
equation can be mathematically described as, 

( )
( )

4

1

1
0 25

in

out

TW
pw

pw in out
jjTW

c dTW
Me . c TW TW

hsa ha h=

= = −
− ∆

∑∫
          

(18) 

where j is the temperature increment index, which denotes the 
four points in the Chebyshev’s method and jh∆  is the local 

enthalpy difference given by, 
     j 1 2 4j j jh hsa ha , ,...,∆ = − =       (19) 

The water temperatures and air enthalpies for each Chebyshev 
point can be calculated as, 

( )      j 1 2 4j out j in outTW TW TCH TW TW , ,...,= + − =       (20)
 

( )      j 1 2 4pw w
j in in out

a

c m
ha ha TW TW , ,...,

m
= + − =

         
(21) 

where jTCH  represents the four points used in Chebyshev’s 

technique. Values of jTCH  for each point are 1 0 1TCH .= , 

2 0 4TCH .= , 3 0 6TCH .=  and 4 0 9TCH .= . The saturated air 
enthalpy can be computed by the correlation given in [1], 
 

( )
6 38887667 0 86581791

15 7153617 0 0543977      j 1 2 4

j j

j

hsa . . TW

. exp . TW , ,...,

= − + +

=
                  

(22) 

 
Calculating the value of the Merkel number without prior 
knowledge of the properties of the air and water at the inlet and 
the exit from the cooling tower is called available Merkel 
number. The available Merkel number can be formulated by the 
following equation [3], 

d fi fr fi d fi fi

w w

h a a L h a L
Me

m G
= =                               (23) 

0 5 2 5w

a

m
. .

m
≤ ≤
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where fia  is the surface fill area of the per unit volume of fill, 

fra  is the tower fill area, dh  is the coefficient of mass transfer, 

and wG  is the mass velocity of water. In the above equation, 

values of surface fill area of the per unit volume of fill, fia , and 

coefficient of mass transfer, dh , must be known to calculate the 
cross sectional area and height of the fill by equating the 
“available Merkel” and “required Merkel” equations. However, 
due to the modelling of the two-phase flow in tower fills is quite 
difficult, it is hard to theoretically calculate or empirically obtain 
the exact value of fia . Thus, available Merkel number is an 

indication of packing quality and quantity. In this paper, filling 
types are limited to splash, trickle and film and the correlation to 
determine the available Merkel number is obtained from [29] in 
which splash, trickle and film type of fills are tested for counter 
flow wet cooling towers and the following correlation is given for 
the determination of available Merkel number, 

( ) ( )
2 3

4 5
1

1

C C
C Cw a

fi in
fr fr

m m
Me C L TW

a a
+

=
   
      
   

                   (24) 

Compared with the traditional Merkel number equation, this 
correlation gives a much better fit to experimental data. The 
values of correlation coefficients 1C  to 5C  for each type of fills 
are given in Table 1.               
 
Table 1. The values of correlation coefficients for available 
Merkel number [29]. 

j    

 Splash fill Trickle fill Film fill 

1 0.249013 1.930306 1.019766 

2 -0.464089 -0.568230 -0.432896 

3 0.653578 0.641400 0.782744 

4 0 -0.352377 -0.292870 

5 0 -0.178670 0 
 
Another important parameter to describe the tower fill 
performance is loss coefficient per meter depth of fill, fiK . The 

correlation to calculate this parameter for each type of filling 
types is given in [28] as, 
 

2 3 5 6

1 4

D D D D
w a w a

fi
fr fr fr fr

m m m m
K D D

a a a a
= +
        
        
                     

(25) 

The values of correlation coefficients 1D  to 6D  for each type of 
fills are given in Table 2. Another important factor in the 
modelling of cooling tower is pressure drop. The pressure drop 
through the fill matrix can be determined by, 

2

22
m

f fi fi
mean fr

mav
p K L

aρ
∆ =                      (26) 

where mmav  represents the arithmetic mean air-vapor flow rate 
through the fill, 

2
in out

m
mav mav

mav
+

=                     (27) 

Table 2   Correlation coefficients for fiK  [28]. 

l  lD   

 Splash fill Trickle fill Film fill 

1 3.179688 7.047319 3.897830 

2 1.083916 0.812454 0.777271 

3 -1.965418 -1.143846 -2.114727 

4 0.639088 2.677231 15.327472 

5 0.684936 0.294827 0.215975 

6 0.642767 1.018498 0.079696 

and meanρ  is the moist air harmonic mean density through the 
fill, 

1 1
1mean

i o
/ρ

ρ ρ
= +

 
 
 

                                     (28) 

Following equations are used to calculate the air-vapor flow at 
the fill inlet and outlet inmav  and outmav  in Eq. (27), 

in a in amav m w m= +                       (29) 

out a out amav m w m= +        (30) 

where inw and outw  are the inlet and outlet air humidity, 

respectively and am  is the air mass flow rate. inw  and outw  can 
be calculated by using the following equations, 

( )

( ) ( )

( )

( )

( )

( ) ( )

2501 6 2 3263

2506 1 8577 4 184

0 62509 1 00416

1 005 2506 1 8577 4 184

in

in

in in

wbin in in

tot wbin in in

. . TWB
w

. TA . TWB

. PV . TA TWB

P . PV . TA . TWB

−
=

+ −

−
−

− + −

 
 
 

   
   
   

      (31) 

0 62509
1 005

out
out

tot out

. PV
w

P . PV
=

−
                                                    (32) 

where outPV  is the vapor pressure of water evaluated at 

outT TA=  and totP  is the total pressure of the ambient moist air 
in Pa. The vapor pressure of water can be calculated from the 
correlation given in [34], 

( ) ( )
3

1
6 5459673n

n
n

ln PV c T . ln T
=−

= +∑      (33) 

where PV is the vapor pressure in Pa, T is the absolute 
temperature in K, and the values of the constants are: 

3
1 5 8002206 x 10c .− = , 0 1 3914993c .= , 3

1 4 8640293 x 10c . −= − ,
5

2 4 1764768 x 10c . −=  and 7
3 1 4452093 x 10c . −= − . 

The inlet and outlet density of air-water vapor mixtures in Eq. 
(28) can be calculated from the ideal gas law as, 

[ ]1 1
287 08 0 62198

tot in
i in

in in

P w
w

. TA w .
ρ = − +

+

 
 
                  

(34) 

[ ]1 1
287 08 0 62198

tot out
o out

out out

P w
w

. TA w .
ρ = − +

+

 
 
 

    (35) 

jC
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The miscellaneous pressure losses in some components such as 
drift eliminators, column supports can be calculated as [35], 

2

2
ms ms

ms ms
v

p K
ρ

∆ =                     (36) 

where msK  is the component-loss coefficient, msv  is the air-

vapor velocity and msρ  is the air -vapor density. In the absence 
of component loss coefficient data, miscellaneous pressure losses 
can be described in terms of a miscellaneous component loss 
coefficient miscK , which can also be expressed as 

 misc drift air inlet supportsK K K K ...= + + + . For mechanical draft 

cooling towers, miscK  can be taken as 6.5 [35]. Also, another 
approximation can be made for the velocity of air-vapor flow 

msv   defined as, 
2 2

2
6 5 6 5

2 2
ms ms m

miscl
ms fr

v mav
p . .

a

ρ

ρ
∆ = =                    (37) 

The velocity pressure velp∆  is another source of pressure loss 
that occurs in cooling towers, which should not be higher than 2/3 
of total static pressure drop. In this work, upper limit of the 
permitted velocity pressure is considered as 

( )2
3vel f misclp p p∆ = ∆ + ∆                       (38) 

The total pressure drop of air stream occurring in the cooling 
tower can be expressed as follows, 

( )1 667t f misclP . p p∆ = ∆ + ∆                                   (39) 

The required power to overcome the pressure drop is dependent 
on which draft type is used. Following equations can be used for 
the calculation of required power for mechanical forced and 
mechanical induced draft type cooling towers [26], 

     (mechanical forced draft)in tot

i eff

mav p
P

ρ η

∆
=                   (40) 

     (mechanical induced draft)out tot

o eff

mav p
P

ρ η

∆
=     (41) 

where effη  is the mechanical efficiency of the fan. In the absence 

of manufacturer data, approximately it can be taken as 75% [26]. 
Due to the evaporative, drift and blowdown effects in the cooling 
towers, make-up water is constantly added into the basin to 
compensate the water losses. The rate of water evaporated into 
the air stream can be calculated from the conservation of mass,  

( )wev a out inm m w w= −        (42) 

Dissolved solids and other impurities accumulate in the cooling 
water as the water evaporates. In order to prevent the surplus of 
these solids and impurities, a certain amount of water is 
withdrawn from the system, which is called blow out and can be 
calculated as, 

mw
bw wd

cyc

m
m m

η
= −                                   (43) 

where cycη  is the number of cycles of concentration required to 

limit scale formation in cooling equipment. Generally, this value 
is taken between 2 and 4 [26]. An amount of water loss occurs in 
the form of suspended droplets at the exit air stream, which is 
known as drift loss. The drift loss should not be more than 0.2 
percent of the total circulating water  [36], 

0 002wd wm . m=         (44) 
To compensate the water losses, the make-up water added to 
system must be total of all losses, that is 

mw wev bw wdm m m m= + + . Amount of make-up water can be 
calculated by combining the equations of above-mentioned 
losses,  

1
cyc wev

mw
cyc

m
m

η

η
=

−
       (45) 

4. Artificial Cooperative Search 
Artificial Cooperative Search (ACS) is swarm-intelligence based 
metaheuristic algorithm developed for solving numerical 
optimization problems [21]. The algorithm is based on two 
artificial superorganisms biologically interacting with each other 
to find the global minimum of the optimization problem at hand.  
In   nature, amount of food can be found in an area is very 
sensitive to climate changes. Therefore, many of the species in 
the nature develop migration behavior to find and migrate to 
more productive feeding zones.  Additionally, prior to migration, 
many species in the nature form a superorganism. After some 
time, superorganism starts to move to more productive zones. 
However, it is not known that how the members of the 
superorganism make decisions or when or where to move 
information is known by all members. Also, prior to migration, 
many superorganisms can divide into smaller groups called sub-
superorganisms. In this case, coordination between the sub-
superorganisms determines the overall behavior of the 
superorganism.   
Many living species in nature use explorers to find and explore 
new possible zones rich in food and suitable for nesting. After a 
new place is discovered by the explorer, the explorer informs the 
superorganism about the properties of the newly discovered area 
such as suitability for nesting and amount of food it contains. If 
the social decision making mechanism of the superorganism 
considers this area as a suitable place for migration, then the 
superorganism starts to move towards the area, meanwhile the 
explorers continue to search for possible migration zones and if it 
is considered suitable, the superorganism migrates again. In 
nature, different species develop different kinds of interaction 
with each other to satisfy their feeding and production needs. On 
the other hand, many species may also develop different 
interaction models in different stages of their lives. The 
superorganisms in interaction with each other may develop 
different relationships such as alturation, coevolution, 
coextinction or cooperation.  
In ACS algorithm, two superorganisms, namely α and β, 
consisting of random solutions of the problem at hand migrate to 
more productive feeding areas corresponds to the candidate 
solutions of the problem. Each superorganism consists of 
artificial sub-superorganism, which equals to the dimension of 
the population (N) and each sub-superorganism contains a 
number of individuals, which is equal to the dimension of the 
problem (D). These two superorganisms are used to choose the 
Prey and Predator sub-superorganisms. The Predator sub-
superorganism traces the Prey sub-superorganism for a timeframe 
while they migrate together towards the global minimum of the 
problem.     
The initial values of the individuals of ith sub-superorganism αi,j 
and βi,j can be determined by using the following equations, 

( )
( )

0

0

i , j:g j j j

i , j:g j j j

rnd . up low low

rnd . up low low

α

β

=

=

= − +

= − +
                   (46) 

where ,  and 
.  shows the generation number or 

1 2 3i , , ,...,N= 1 2 3j , , ,...,D=
0 1 2 3g , , , ,...,maxcycle= g
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iteration number,  denotes to a random number chosen from 
a uniform distribution  and  and  represents 

the upper and lower limits of search space for jth dimension of 
the problem. 
Fitness values of the related sub-superorganisms are determined 
by using the following equations, 

( )
( )

i; i

i; i

y f

y f
α

β

α

β

=

=
                       (47) 

Detailed description of Artificial Cooperative Search Algorithm 
is explicitly given in Table 3.   

Table 3.Pseudocode of Artificial Cooperative Search algorithm 
 

1         Input data: Population size (N), Problem Dimension (D),  
                   Maximum iteration number  
                  (maxiter), objective function f(.), probability of biological interaction (p),  
                   upper and lower bounds (up and low) 
       2          Set Globalminimum to 1e20 and initialize Superorganisms (α, β) 
       3          for i = 1 toN 
       4              for j = 1 toD  
       5                     αi,j=lowj + (upj - lowj) x rand1(0,1) 
       6                     βi,j=lowj + (upj - lowj) x rand2(0,1) 
       7              end 
       8              fitness-αi = f(αi) 
       9              fitness-βi = f(βi) 
       10        end 
       11        for    iter = 1 to maxiter 
                         // Selection phase 
       12               if rand3(0,1)<rand4(0,1)then 
       13                      Predator = α, fitness-Predator = fitness-α, key = 1 
       14               else 
       15                      Predator = β, fitness-Predator = fitness-β, key = 2    
       16               end 
       17               ifrand5(0,1)<rand6(0,1)then Prey = α  else  Prey = β  end 
       18               Prey = permute (Prey) 
       19               ifrand7(0,1)<rand8(0,1)then 
       20                        R=4x rand9(0,1)x(rand10(0,1)- rand11(0,1) )  
       21                else 
       22   R ~ Γ( 4x rand12(0,1), 1) 
       23                end  
       24                M1:N,1:D = 1.0 
       25                for i =1 toN 
       26                     for j = 1 toD 
       27                            if rand13(0,1) < ( p x  rand14(0,1)) then   
       28                                  Mrndint(N),rndint(D)= 0 
       29                            end   
       30                   end  
       31                end 
       32                ifrand15(0,1) <( p x rand16(0,1) )then 
       33                        for  i = 1 toN  
      34                               for j = 1 toD 
       35                                     ifrand17(0,1) <( p x rand18(0,1) )then 
       36                                            Mi,j = 1.0 
       37                                     else 

       38                                            Mi,j = 0.0 
       39                                     end 
       40                                end     
       41                         end 
       42                end 
       43                for  i = 1 toN 
       44                       if Σ Mi = Dthen  Mi,rndint(D) = 0 end 
       45                end 
       46                 // Mutation 
       47                 X = Predator + R x (Prey - Predator ) 
       48                 for  i = 1 toN 
       49                        for  j = 1 to D 
       50                             // Crossover 
       51                             if Mi,j> 0 then Xi,j= Predatori,jend 
       52                        end 
       53                 end 
       54                 // Boundary control 
       55                 for   i = 1 to N           
       56                         for  j = 1 to D  
       57                                  if  (Xi,j<lowj)   ||  (Xi,j >upj)    
       58                                          Xi,j = lowj + (upj - lowj) x rand19(0,1) 
       59                                  end 
       60                           end 
       61                  end  
       62                  // Selection (Update)            
       63                  for i = 1 toN 
       64                        iff(Xi)< fitness-Predatori then Predatori = Xi ,fitness-        
                                                          Predatori = f(Xi)end 
       65      end 
       66       if   key = 1  then 
       67                        α = Predator,  fitness-α = fitness-Predator  
       68                  else 
       69                         β = Predator,  fitness- β = fitness-Predator 
       70                  end 
       71                 fitness-best = argmin (fitness - Predator)  { }1, 2, 3, ..,best N∈  

       72                  if  fitness-best < Globalminimum  then 
       73                         Globalminimum = fitness-best 
       74                         Globalminimizer = Predator-best 
       75                  end 
       76         end 
       77         Output data : Globalminimum = f (Globalminimizer) 

 
5. Improvements on Artificial Cooperative 
Search Algorithm 
In this section global search capabilities of Artificial 
Cooperative Search algorithm is enhanced with some of 
perturbation schemes adopted from Crow Search Algorithm 
(CSA). Proposed by Askerzadeh [22], CSA mimics the food 
searching behaviors of the intelligent crows and tries to find the 
global optimum point through the search equations defined to 
simulate the subsistence characteristics of crows.  CSA works 
under the basic principles of the given procedure as the 
following.  When a crow is on its hunt or food search, they 
observe the movements and the manoeuvers of other birds and, 
eventually chase them to find where the flocks of the birds the 
crow chase hide their food. If the crow has the chance to find 
the hiding place of the food resource, it attempts to steal it 
when the keeper (owner) of the food leaves from the area.  The 
crow committed a thievery secure itself such as moving hiding 
places of the food resources to avoid a future victim. The crow 
as its nature has the ability of using its own past experiences of 
being a thief to foresee the behaviors of the pilferer, and able to 
decide the safest way to secure its catched foods from the other 
pilferer birds. CSA has one fundamental perturbation scheme 
used in the iterations to simulate these aforementioned 
intelligent crow characteristics. In this context, assume that at 
the iteration iter crow j is intended to visit its food resource 
place. On this current iteration, crow i decides the follow crow j 

to reach the food hiding place of crow j. For this situation, two 
alternative cases may happen that could occur as given below: 
Case 1: Crow j is not aware of the state that crow iis on the 
pursuit of it. As a result of this, crow i has the chance to visit 
the food hiding place of crow j. For this case, crow i is 
positioned as the equation given in the following  

( )1 , ,(0,1)iter iter iter i iter i iterx x rand fl m x+ = + × × −          (48) 

Where rand(0,1) is a Gaussian random number generated 
between 0 and 1, and fliter stands for the flight length of the 
crow i at the iteration iter. This value is generally set to 2.0 
following the suggestion given in [22]. The term mi,iter 
represents the food hiding place of crow i. The parameter flight  
characteristic plays an important role in designing the search 
capabilities of the algorithm. Small values of fl improve the 
local search mechanism while the corresponding large values 
give rise to local search capacity of the algorithm. 
Case 2: Crow j is conscious of being chased by crow i. 
Therefore, it misdirects the crow i in order to protect the food it 
possesses to avoid being pilfered by crow i.  As a result, the 
crow i finds itself another place in the solution space. If it is to 
combine the both cases in a simple mathematical expression 
 

rnd
[ ]0 1U ~ , jup jlow
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Where rand(0,1) is uniform number defined between 0 and 1, 
and the awareness probability (AP)   decides the tendencies of 
intensification and diversification phases of the algorithm,  
While lower values of AP leads algorithm  to conduct searches 
in local areas, higher values of AP maintains an effective global 
search mechanism. As it was previously mentioned before, the 
scheme given in Eq.(49), is efficient in balancing the 
exploration and exploitation phase. Therefore, this perturbation 
scheme is incorporated into the fundamentals of ACS algorithm 
with a bit modification. Modified equation can be defined as  
 

( )( )
1

rnd int

(0.1, 0.5)

Pr edator

iter iter

iter
N

X X rnd

X

+ = + ×

−
                                          (50) 

Where rnd(0.1,0.5) generates random real numbers between 0.1 
and 0.5, Predator denotes the predator individuals in ACS 
algorithm, and rndint(N) generates random integers between 1 
and N those of which are different from each other.  By this 
equation, algorithm randomly accesses the unvisited paths of 
the promising areas of the solution space and maintains 
solution diversity. The whole hybrid algorithm, thereinafter 
named as IACS algorithm, is summarized in a nutshell in a 
pseudo-code form given in Table 4.  Optimization performance 
of the algorithm has been assessed with fourteen widely 
reputed 30 dimensional benchmark test function, which are 
explicitly formulated in Table 5. Dimension size is set to 30 for 
all benchmark problems and maximum numbers of function 
evolutions are fixed to 40000. 30 consecutive algorithm runs 
have been completed due to the stochastic nature of 
metaheuristic algorithms. All algorithms mentioned in Table 5 
have been programmed in Java and run on Intel CoreTM with 
2.50 GHz CPU with 6.0 GB RAM. Table 6 shows the 
optimization results of ACS and IACS algorithms with respect 
to statistical analysis obtained after 30 algorithm evaluations. 
Table 6 reveals that IACS algorithm surpasses ACS algorithm 
for each optimization case in terms of the statistical results it 
attains. Fig 2 to Fig 6 correspondingly shows the convergence 
behaviors of ACS and IACS algorithms for Ackley, Levy, 
Rastrigin, Salomon, and Schfewel 2.22 optimization test 
functions. As seen from the figures, IACS algorithm reaches its 
optimum point faster than ACS algorithm for each optimization 
test case. 
 

 
Figure 2. Convergence graphs of ACS and IACS algorithms 

for Ackley test function 

 
Figure 3. Evolution graphs of ACS and IACS algorithms for 

Levy test function 
 

 
Figure 4. Convergence  process of ACS and IACS algorithms 

for Rastrigin test function 
 

 
Figure 3. Evolution graphs of ACS and IACS algorithms for 

Levy test function 
 

 
Figure 6. Evolution process of ACS and IACS algorithms for 

Schfewel  2.22  test function 
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Table 4. Pseudo-code of the hybrid IACS algorithm  

1                    Initialize algorithm parameters: Population size (N), problem dimension (D), Upper (up) and lower (low) bounds of the search space, probabilit  

of  biological interaction (p),  the objective function (f), and maximum number of iteration (maxiter) 

2                    Initialize the sub-superorganism of  α and  β randomly with Eq.(46) 

3                    Determine  respective fitness values of  α and  β  with Eq.(47) 

4                     While (iter <  maxiter) 

5                                 Determine   Predator individuals with the procedure given in the lines between 12 and 16 in Table 3 

6                                 Determine   Prey individuals with the methodology given in the lines between 17 and 18 in Table 3  

7                                 Calculate scale factor according to the perturbation equations defined in the lines between  19 and 22 in Table 3 

8                                 Determine M passive individuals in accordance with the equations expressed in the lines between 24 and 45 in Table 3 

9                                 Decide the biological interaction location (X) with the mutation equation expressed in the line 47 in Table 3 

10                               Generate  integers those are different from each other defined between 1 and N (rndint(N)) 

11                               Increase the population diversity with applying  Eq.(50) 

12                               Determine the population individuals that have violated predefined search space and restrict them within the extreme bounds  

13                               Update the current population by means of active individuals using the procedure defined in the lines between 48 and 53 in Table 3 

14                               Apply boundary check on the current population individuals through the mechanism given in the lines between 55 and 61 in Table 3 

15                               Update the Predator sub-superorganism with the procedure given in the lines between 63 and 65 in Table 3  

16                               Determine the new sub organisms for next generations with using  the selection scheme detailed in the lines 66 and 70 in Table 3 

17                               Determine the best solution among the Predator individuals  

18                               Update the current best solution 

19                  end 

20 Output the global best vector 
 

Table 5. Formulations of the optimization test functions 

 Function D Range fopt 

Ackley ( ) ( )2
1

1 1

1 1
20 exp 0.2 exp cos 2 20 exp(1)

D D

i i
i i

f x x x
D D

π
= =

= − − − + +
   
       

∑ ∑  30 [-100,100]D 0 

Alpine ( )2
1 1

DD

i i
i i

f x x x
= =

= +∑ ∏  30 [-10,10]D 0 

Griewank ( ) ( ) ( )( )1 2 22
3 1

1

100 1
D
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f x x x x
−

+
=

= − + −∑  30 [-30,30]D 0 

Levy ( ) ( )2
4

1

0.5
D

i
i

f x x
=

= +  ∑  30 [-100,100]D 0 

Pathological ( ) 4
5

1
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D

i
i

f x ix random
=
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1
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1

1
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Rastrigin ( ) ( )( )2
7

1

10 cos 2.0 10
D

i i
i

f x x x Dπ
=

= − +∑  30 [-5.12,5.12]D 0 

Rosenbrock ( ) ( ) ( )( )1 2 22
8 1

1

100 1
D

i i i
i

f x x x x
−

+
=

= − + −∑  30 [-2.048, 2.048]D 0 
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Table 6. Statistical results obtained after 30 algorithm runs for ACS and IACS algorithms 
 Ackley Alpine Griewank 
 Min. Max. Std. dev. Min. Max. Std.dev Min. Max. Std.dev. 
 ACS 5.05E-06 3.35E-05 7.10E-06 1.05E-02 4.03E-02 6.97E-03 4.23E-09 6.04E-07 1.51E-07 
IACS 7.93E-12 6.72E-11 1.48E-11 2.23E-04 1.87E-03 3.31E-04 0.00E+00 2.62E-13 5.71E-14 
 Levy Pathological Penalized 
 Min. Max. Std. dev. Min. Max. Std. dev. Min. Max. Std. dev. 
 ACS 1.11E-07 1.71E-06 3.61E-07 5.11E-02 9.67E-02 1.24E-02 1.91E-10 1.91E-09 3.59E-10 
IACS 3.86E-09 3.86E-09 1.51E-15 3.40E-02 8.20E-02 1.32E-02 9.01E-11 9.01E-11 3.91E-18 
 Rastrigin Rosenbrock Salomon 
 Min. Max. Std. dev. Min. Max. Std. dev. Min. Max. Std. dev. 
 ACS 6.78E+00 1.46E+01 1.83E+00 2.49E+01 2.65E+01 8.82E-01 2.99E-01 4.99E-01 5.18E-02 
IACS 2.15E-02 9.12E-01 2.32E-01 2.26E+01 2.59E+01 7.14E-01 1.99E-01 2.99E-01 4.63E-02 
 Schaffer Schfewel 2.22 Sphere 
 Min. Max. Std. dev. Min. Max. Std. dev. Min. Max. Std. dev. 
 ACS 6.02E-03 1.96E-02 2.34E-03 2.01E-04 1.38E-03 2.78E-04 1.78E-09 1.41E-07 3.01E-08 
IACS 3.12E-03 1.04E-02 1.35E-03 3.32E-09 4.31E-08 6.38E-09 1.53E-16 1.78E-15 3.79E-16 

Step Zakharov 
 Min.        Max. Std. dev. Min. Max. Std. dev. 
 ACS 3.74E-09 1.41E-07 2.32E-08 2.02E-01 3.26E+00 5.46E-01 
IACS 2.18E-17 4.63E-16 1.11E-16 1.03E-03 2.45E-01 2.33E-02 
 
6. Results and discussion 
 
Effectiveness of the proposed algorithm is tested by evaluating 
six different examples presented in [1]. Design specifications 
and constraints for the examples are given in Table 7. Example 
1 is treated as the main example. Other examples are variations 
of the first example with different design specifications and 
constraint values. The dry bulb temperature of air, process inlet 
and outlet temperatures, minimum allowable temperature 
difference, wet-bulb temperature of air and heat load of the 
cooling tower are considered as design specifications. Whereas, 
mass velocity of water, mass velocity of air, water-to-air mass 
ratio, type of packing and type of draft is handled as design 
variables. Values of some parameters used in the modelling of 
the cooling tower are taken as accordingly for all examples, the 
total air pressure Ptot as 101325 Pa., cpw value of the water as 
4.187 kJ/kg°C, annualizing factor for the capital cost Kf as 
0.2983/year and the values of HY, Cwat, Cel, CFC, CCM, ηeff, ηcyc 
are taken as 2.934 x 107 s/year, US$5.283 x 10-4/kg, 
US$0.085/kWh, US$31.185, US$1097.5/(kg of dry air/s), 0.75 
and 4, respectively. In the present work, improved ACS and 
ACS algorithms are implemented on the six different examples 
of the cooling tower design problem. Solutions obtained with 
the proposed and ACS algorithms are given and compared with 
other results in the literature in Table 8 to Table 10. Maximum 

iteration number and population size are taken as 10,000 and 50 
respectively. The algorithm is implemented in Java 
programming language and all experiments are done on a 2.8 
GHz Core 2 Duo machine. 
In the base example, results of the proposed algorithm given in 
Table 8 show that around 6.32% increase in mass flow rate of 
air with significant reduction in dry bulb temperature of the air 
at outlet lead to fewer mass of mass of blow-down water and 
mass of evaporated water, thus, less mass of make-up water 
compared to ABC [2] results. Lesser mass of make-up water 
reduces the cost of make-up water greatly. Higher loss 
coefficient per meter depth of fill (Kfi) increases the pressure 
drop through fill matrix. Therefore, greater total pressure drop 
is obtained. To compensate the higher pressure drop, around 
81% greater power cost is required. However reduction in the 
make-up water cost is greater than the increase in power costs, 
therefore, lower total cost is obtained compared to other results. 
Lower Merkel number compared to [2] results in reduced tower 
size, thus, reduces the total cost. The effect of the dry bulb 
temperature of  
 
air at inlet to the total cost is studied in example 2. As can be 
seen from Table 8, 5°C drop in inTA  resulted 4.1% increase of 
total annualized cost comparing to the main example. 
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Therefore, it can be said that total annualized cost is sensitive 
to the dry bulb temperature of air at inlet of the cooling tower. 
In example 3, wet bulb temperature of air at the inlet is reduced 
by 5°C while other design specifications and constraints are 
held constant. As can be seen from the results of the proposed 
algorithm in Table 9, drop in inTWB  resulted 8.1% decrease in 
total annualized cost compared to the base example. Also, the 
proposed algorithm found more desirable results than other 
algorithms. The effect of minimum process inlet temperature 
(TMPI) is studied in example 4. 10°C decrease in TMPI results 
in 2.6% increase in total annualized cost compared to the 
preliminary design. Higher Merkel number caused greater 
tower length; therefore, higher total annualized cost is obtained 
compared to the main example. It can be seen that the proposed 
algorithm gave better results than other algorithms. The results 
obtained by different algorithms for cooling water design 
concerning example 5 and example 6 are given in Table 10.  
Example 5 demonstrates effect of the minimum outlet 
temperature (TMPO) decrement to the cooling tower system. 
5°C decrement in TMPO resulted in sharp increase of total 

annualized cost. Compared to the total cost result obtained by 
ABC [2], the proposed algorithm gave more desirable results. 
Also, it should be noted that, reduction of the value of TMPO, 
decreases the value of optimal tower approach. And it can be 
said that reduction of the value of tower approach is 
responsible for sharp increase in total annualized cost. 
Additionally, larger value of Merkel number results in greater 
tower size. Example 6 demonstrates the effect of minimum 
allowable temperature difference ( minT∆ ) decrement to the 
cooling tower system. It can be seen that approach increases 
and cooling range decreases as the value of minT∆  drops.  It 
was found that as the cooling range decreases, water 
temperature at outlet increases and Merkel number, thus tower 
size, becomes smaller. Smaller tower size results in lower total 
cost. Out of all examples, most desirable total cost is obtained 
in this example. Therefore, it can be said that total tower cost is 
very sensitive to cooling range.  
 

Table 7. Design specification and constraints for the examples [1]  
 

 

 

 
 

 

 

 

Table 8. Comparison of the best results obtained from different algorithms for examples 1 and 2 
 Example 1 Example 2 

GAMS [1] ABC [2] ACS IACS GAMS [1] ABC [2] ACS IACS 
mw/ma 0.829 0.987 0.976 0.927 0.82 0.9798 0.976 0.927 
ma (kg/s) 31.014 26.07 27.729 27.72 31.443 26.252 27.729 27.729 
mw (kg/s) 25.72 25.72 25.72 25.72 25.72 25.72 25.72 25.72 
mmw (kg/s) 1.541 1.512 1.067 0.900 1.456 1.439 1.067 1.067 
mwev (kg/s) 1.156 1.078 0.800 0.675 1.092 1.025 0.800 0.800 
mbw (kg/s) 0.334 0.327 0.212 0.170 0.312 0.308 0.214 0.212 
mwd (kg/s) 0.051 0.051 0.054 0.054 0.052 0.051 0.054 0.054 
TWin (°C) 50 50 50 50 50 50 50 50 
TWout (°C) 20 20 20 20 20 20 20 20 
TAout (°C) 37.077 39.000 37.000 37.000 36.871 38.900 37.000 37.587 
Range (°C) 30 30 30 30 30 30 30 30 
Approach(°C) 8 8 8 8 8 8 8 8 
Lfi (m) 2.239 2.418 2.403 2.300 2.239 2.397 2.395 2.385 
afr (m2) 8.869 8.869 7.394 7.419 8.894 8.869 7.320 7.345 
Kfi 21.95 22.07 23.19 23.17 21.95 22.07 23.24 23.23 
Δpf(Pa) 280.331 211.350 360.984 348.116 277.727 211.200 369.206 351.149 
ΔPmisc(Pa) 36.19 25.75 42.15 42.45 36.74 25.96 43.00 42.71 
ΔPt(Pa) 527.64 395.26 672.03 651.08 524.22 395.36 687.16 656.57 
P (hp) 24.637 15.500 21.098 20.941 24.474 15.400 21.573 20.613 
Type of 
packing Film Film Film  Film Film Film Film Film 

Type of draft Forced Forced Forced Forced Forced Forced Forced Forced 
Me 3.083 3.72 3.75 3.905 3.055 3.703 3.786 3.872 
Cmw 23885.19 23449.11 16551.96 13955.48 22566.366 22302.01 16551.96 16551.96 
Cpower 12737.54 8013.02 14616.00 14507.33 12653.677 7960.02 14945.00 14279.84 
Cop 36622.73 31462.13 31167.96 28462.82 35220.043 30262.03 31496.96 30831.81 
KfCcap 29442.66 28110.04 26883.52 26557.01 29384.60 28081.90 26798.84 26475.32 
TAC 66065.39 59572.17 58051.49 55019.83 64604.64 58343.93 58295.80 57307.13 

 

 
 

 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 
Q (kW) 3400 3400 3400 3400 3400 3400 

inTWB (°C) 12 12 7 12 12 12 

inTA (°C) 22 17 22 22 22 22 
TMPI  (°C) 65 65 65 55 65 65 
TMPO  (°C) 30 30 30 30 25 30 

minT∆ (°C) 10 10 10 10 10 5 
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Table 9. Comparison of the best results obtained from different algorithms for examples 3 and 4 

 Example 3 Example 4 
GAMS [1] ABC [2] ACS IACS GAMS [1] ABC [2] ACS IACS 

mw/ma 0.911 1.096 1.072 1.019 0.838 0.9924 1.024 1.091 
ma (kg/s) 28.199 23.465 25.23 25.23 36.95 31.10 28.72 28.37 
mw (kg/s) 25.72 25.72 25.72 25.72 30.975 30.975 30.975 30.975 
mmw (kg/s) 1.564 1.535 1.140 0.819 1.547 1.514 1.088 0.918 
mwev (kg/s) 1.173 1.100 0.855 0.614 1.16 1.079 0.816 0.688 
mbw (kg/s) 0.34 0.335 0.231 0.15 0.325 0.316 0.218 0.164 
mwd (kg/s) 0.051 0.051 0.054 0.054 0.062 0.062 0.064 0.064 
TWin (°C) 50 50 50 50 45 45 45 45 
TWout (°C) 20 20 20 20 20 20 20 20 
TAout (°C) 36.998 40.700 39.126 37.549 34.511 36.400 36.654 36.730 
Range (°C) 30 30 30 30 25 25 25 25 
Approach(°C) 13 13 13 13 8 8 8 8 
Lfi (m) 1.858 1.793 1.895 1.812 2.154 2.242 2.178 2.145 
afr (m2) 8.862 8.869 6.94 6.836 10.68 10.644 7.521 7.546 
Kfi 21.93 22.07 23.51 23.61 21.94 22.07 24.10 24.08 
Δpf(Pa) 186.621 126.470 281.555 346.026 254.540 191.400 382.368 363.62 
ΔPmisc(Pa) 29.78 20.79 39.90 41.41 35.01 25.14 42.96 42.67 
ΔPt(Pa) 360.74 245.47 535.87 645.86 482.68 360.99 709.03 677.29 
P (hp) 14.205 8.600 15.310 18.904 26.852 16.890 23.255 22.214 
Type of 
packing Film Film Film  Film Film Film Film Film 

Type of draft Forced Forced Forced Forced Forced Forced Forced Forced 
Me 2.466 3.016 3.142 3.253 2.923 3.533 3.743 3.852 
Cmw 24239.785 23798.27 17683.69 12699.98 23983.449 23478.40 14230.77 14230.77 
Cpower 7861.037 4447.80 10606.21 13096.27 13882.754 8727.42 16110.16 15389.09 
Cop 32100.822 28246.07 28289.90 25796.26 37866.203 32205.80 30340.93 29619.86 
KfCcap 26616.00 24602.10 24057.04 25097.76 32667.71 30919.10 27208.02 26876.15 
TAC 58716.817 52848.17 52346.94 50894.03 70533.909 63123.9 57548.95 56496.02 

Table 10   Comparison of the best results obtained from different algorithms for examples 5 and 6 
 Example 5    Example 6    

GAMS [1] ABC [2] ACS IACS GAMS [1] ABC [2] ACS IACS 
mw/ma 0.682 0.704 0.627 0.599 1.13 1.343 1.171 1.513 
ma (kg/s) 32.428 31.31 36.96 36.91 27.205 22.984 27.729 20.317 
mw (kg/s) 22.127 22.127 22.127 22.127 30.749 30.749 30.749 30.749 
mmw (kg/s) 1.542 1.514 1.142 1.085 1.54 1.514 1.086 0.795 
mwev (kg/s) 1.157 1.079 0.856 0.814 1.155 1.079 0.814 0.596 
mbw (kg/s) 0.341 0.335 0.239 0.225 0.323 0.317 0.206 0.133 
mwd (kg/s) 0.044 0.044 0.046 0.046 0.061 0.0617 0.064 0.064 
TWin (°C) 50 50 50 50 50 50 50 50 
TWout (°C) 15 15 15 15 25 25 25 25 
TAout (°C) 36.411 36.980 39.501 36.467 39.083 41.000 39.000 39.134 
Range (°C) 35 35 35 35 25 25 25 25 
Approach(°C) 3 3 3 3 13 13 13 13 
Lfi (m) 6.299 6.722 6.723 6.541 1.48 1.174 1.154 1.163 
afr (m2) 7.63 7.6 8.869 8.869 9.296 10.644 8.019 6.109 
Kfi 22.07 22.07 21.54 21.54 22.64 22.07 23.72 25.32 
Δpf(Pa) 1139.529 1139.000 1001.733 1009.927 131.908 55.970 154.046 145.454 
ΔPmisc(Pa) 53.29 49.91 52.66 52.54 25.60 14.05 36.69 33.94 
ΔPt(Pa) 1988.43 1982.10 1757.67 1771.14 262.56 116.70 317.96 299.05 
P (hp) 97.077 93.400 75.356 75.933 10.754 4.040 10.227 7.047 
Type of 
packing Film Film Film  Film Film Film Film Film 

Type of draft Forced Forced Forced Forced Forced Forced Forced Forced 
Me 7.335 7.679 7.712 7.856 1.858 2.235 2.431 2.854 
Cmw 23901.657 23481.2 17705.44 16833.11 23865.877 23474.16 16835.40 12335.053 
Cpower 50190.495 48265.1 52203.28 52603.11 5559.875 2086.32 7084.88 4882.18 
Cop 74092.153 71746.3 69908.730 69436.23 29425.752 25560.48 23920.28 17217.23 
KfCcap 43186.53 44040.40 45796.39 46051.21 25030.27 22810.40 22799.23 19173.82 
TAC 117278.68 115786.7 115705.121 115487.44 54456.026 48370.88 46719.52 36391.06 

 

7. Conclusion 
In this study, an improved version of ACS algorithm is applied 
on the optimization of counter flow wet-cooling tower problem. 

ACS algorithm is a swarm-intelligence based metaheuristic 
algorithm effective at global search. Four design variables are 
optimized to reach the minimum total annualized cost under 
given set of constraints.  Perturbation scheme of ACS 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 105-116  |116 IJISAE, 2013        

algorithm is incorporated with the CSA’s to improve the 
solution accuracy of the whole hybrid optimizer. Efficiency of 
the hybrid algorithm is tested with fourteen optimization test 
problem available in literature. Following this, effectivity of the 
proposed algorithm is benchmarked against six different 
examples of counter flow wet cooling tower optimization 
problem. Each example is based on demonstrating the effects 
of design specification and constraints on the total cost. The 
results obtained by implementing the proposed algorithm on 
this design problem are compared with the results of GAMS [1] 
and ABC algorithm [2]. The outcomes of the optimization 
results show that the proposed algorithm gives more desirable 
results with rapid solution convergence and proves the 
suitability of the hybrid method for the optimization of thermal 
systems.   
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