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Abstract: In the realm of urban traffic management, particularly within densely populated traffic squares, ensuring the swift and unimpeded 

passage of emergency vehicles (EVs) presents a significant challenge. This study introduces a comprehensive Smart Loaded Traffic Square 

System (SLTSS) that leverages advanced deep learning models to optimize traffic flow for EVs amidst heavy congestion. Through an 

empirical analysis encompassing various convolutional neural network architectures, including AlexNet, VGG16, VGG19, ResNet 50, 

ResNet 101, and a proposed custom ResNet152 model, this paper evaluates the effectiveness of these models in classifying EVs from other 

vehicles within a traffic square setting. The methodology adopted for this study involves a step-wise approach, starting with data cleaning 

to ensure high-quality, noise-free images for model training. Following segmentation and feature extraction processes, each model was 

trained and tested on a dataset comprising images of diverse vehicles within urban traffic scenarios. The performance of each model was 

meticulously assessed based on accuracy, precision, recall, and F1-score metrics, providing a holistic view of their classification 

capabilities. Results from this study underscore the pronounced impact of model complexity on classification performance. The 

foundational AlexNet model established a baseline with an accuracy of 85%, precision of 83%, and an F1-score of 82.5%. Subsequent 

models exhibited incremental improvements, with VGG16 and VGG19 models reaching accuracies up to 90% and 89%, respectively. 

However, it was the ResNet series that demonstrated significant advancements, with ResNet 50 achieving a 92% accuracy, ResNet 101 

further elevating this to 93%, and the proposed ResNet152 model topping the charts with a remarkable 94% accuracy, alongside 

commensurate improvements in precision, recall, and F1-scores. The comparative analysis vividly illustrates the correlation between the 

depth and sophistication of the neural network architecture and its ability to accurately classify EVs in complex urban traffic scenarios. 

The proposed ResNet152 model, in particular, showcased superior performance with a 94% precision, 95% recall, and a 94% F1-score, 

underlining the potential of deep architectures in enhancing the operational efficiency of emergency responses within loaded traffic 

environments. 
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1. Introduction 

The intricacies of urban traffic management, particularly in 

scenarios involving emergency vehicles, require 

sophisticated solutions that can adapt to real-time conditions 

and make split-second decisions. Deep learning models, 

with their ability to learn from vast amounts of data and 

identify patterns that are not immediately obvious to human 

observers, present a compelling option for such scenarios 

[1]. The use of models like AlexNet, despite being 

foundational, sets the stage for understanding how even 

basic deep learning architectures  [2] can begin to address 

the complex problem of traffic management for emergency 

responses. As our analysis progresses through more 

advanced models like VGG16, VGG19, and various 

iterations of ResNet, the evolution of model capabilities 

becomes evident. These models bring about significant 

improvements in identifying emergency vehicles quickly 

and accurately from a plethora of urban traffic data, 

showcasing the potential for deep learning to revolutionize 

emergency vehicle prioritization in loaded traffic squares. 

The nuanced performance differences between these 

models, as observed in our dataset, underscore the 

importance of model selection based on the specific 

requirements of the traffic management system. For 

instance, while VGG models offer a balance between 

complexity and performance, the ResNet series, with its 

innovative use of residual connections, demonstrates that 

deeper networks can indeed be trained effectively to achieve 

superior performance. This is particularly relevant in the 

context of our proposed ResNet152 model, which not only 

surpasses its predecessors in all evaluated metrics but also 

suggests a scalability of deep learning solutions to more 

complex traffic management and emergency response 

scenarios. The success of the ResNet152 model in our 

analysis points to the critical role of depth and architecture 

sophistication in improving the system's ability to make 

accurate, real-time decisions that can save lives by reducing 

emergency vehicle response times. 

Furthermore, the application of deep learning in smart 

traffic management systems extends beyond mere vehicle 

classification. The real-time data processing capabilities of 
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these models enable dynamic traffic routing, signal 

prioritization, and even predictive analytics to anticipate and 

mitigate potential traffic congestions before they occur. This 

holistic approach to traffic management, powered by deep 

learning, could significantly enhance the efficiency of 

emergency responses in urban environments. By integrating 

these models with existing urban infrastructure, cities can 

move towards creating an ecosystem where emergency 

vehicles can navigate through congested spaces swiftly, 

ensuring timely assistance in critical situations. This 

research not only highlights the potential of deep learning in 

transforming traffic management systems but also lays the 

groundwork for future innovations in smart city logistics 

and emergency response protocols. 

2. Literature Review 

Emergency situations might happen anytime. Using an issue 

Vehicle (EV) to reach the target quickly is necessary to 

resolve the issue. An emergency vehicle management 

system (EVMS) is proposed to establish an efficient 

vehicle-passing sequence that lets EVs cross junctions 

quickly. The suggested method passes the EV without 

substantially affecting junction vehicle travel times. EVs in 

communication range are prioritised by making room in the 

lane next to the shoulder lane. Cyclists and motorcyclists 

utilise the shoulder lane often. Traffic from the next lane 

will transfer to the shoulder lane when an EV reaches 

communication range. Crossing the EV quickly is vital since 

the number of cars on the road rises fast. This paper presents 

the EVMS and algorithms to ensure EVs have precedence 

in vehicle sequencing. The suggested method collects and 

sends EV data to Roadside Units using IoT Sensors, GPS, 

5G, and Cloud computing. Mathematical modelling 

assessed the solution. Results demonstrate that the EVMS 

can dramatically cut EV travel times without degrading 

other vehicle performance. [1]  

International traffic figures show one billion cars move 

everyday, and four billion by 2050. In major cities, urban 

populations are expanding. Regular circulation, safety, and 

climate are affected by this rise. Thus, increasing traffic 

volume is hurting numerous highway categories' operational 

and safety performance. Urban ring roads are extremely 

congested, yet governmental administrations sometimes 

cannot afford to improve or develop new ones. Thus, a low-

cost intervention to expand infrastructural capacity is 

essential. In this context, dynamic hard shoulder running 

(HSR) might use existing infrastructures and enhance traffic 

outflow by implementing smart digital highways with 

minimal infrastructure changes. Despite planned traffic 

capacity gains, the HSR raises safety challenges, notably at 

interchanges and during the transition period for opening 

and shutting the HSR. The Catania (Italy) ring road was 

used as a case study to demonstrate the usability and utility 

of microsimulation using VISSIM traffic microsimulation 

software and SSAM traffic conflict tool to simulate HSR 

activation situations. [2]  

Traffic calming methods reduce motorised vehicle through 

traffic in residential areas, accident frequency, and speed. 

These interventions focus on particular streets and 

encourage controlled driving. These techniques reduce 

pedestrian-motor vehicle confrontations, but they create 

unstable traffic patterns and can't always handle increased 

motor vehicle flows since they're focused on select routes. 

This article examines current urban traffic calming methods 

over large areas. It shows how traffic regulation and 

structural restrictions limit motor vehicle circulation on 

neighbourhood streets and channel them to major roadways. 

Photos of sample measurements' locations were used to 

explain them. In this thesis, Dresden's Äußere Neustadt 

district was chosen as a model to analyse and modify the 

mobility plan to minimise MIV flows and prioritise 

pedestrian, cycling, and public transit space. Parked 

automobiles damage the district's roadway infrastructure, 

making bike and incoming vehicle safety difficult. As part 

of the "Woche des guten Lebens" model project, the 

volunteer team conducted an online poll and traffic 

experiment to gauge people' perceptions of the Äußere 

Neustadt. The findings show that the area-wide radical 

sustainable transportation strategy needs governmental 

backing and public engagement. This document 

implemented the revised transportation strategy based on 

public input. To find the best traffic calming methods for 

individual routes, diagonal or cross barriers, zone speed 

restrictions, offsets, one-way streets, etc. were analysed 

from actual projects. The district's traffic network and 

innovative solutions were visualised using QGIS. The 

revised traffic design will increase pedestrian and bicycle 

space and reduce automobile noise. [3]  

Road deaths are the major cause of death in the U.S. and 

other developed nations. We found that highway traffic and 

motor vehicle collisions in California dropped significantly 

during the COVID-19 epidemic using extensive crash, 

speed, and flow data. We also found that decreased traffic 

congestion and faster highway speeds increased 

catastrophic accidents. The "speed effect" is greatest in 

counties with substantial pre-existing congestion, and we 

demonstrate that largely or entirely balances the "VMT 

effect" of lower vehicle miles travelled on total fatalities. 

Highway driving fell 22% and overall accidents fell 49% in 

the first eleven weeks of the COVID-19 response. Average 

speeds rose 2–3 mph throughout the state, but 10–15 mph in 

certain areas. Almost 25% more serious collisions occurred. 

After limitations, deaths reduced, but rising speeds offset 

the impact of fewer vehicle miles travelled, resulting in little 

to no reduction later in the COVID era [4].  

Traffic congestion is a serious issue. The US invests billions 

to solve the issue, with mixed results. This issue rises and 
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affects sustainable travel, life quality, pollution, perishables, 

and prices. Congestion charges minimise traffic in big cities. 

This article estimates the price using a multivariable model 

to minimise urban transportation congestion. Santiago's 

major jams are studied. Data taken from published surveys. 

The model assessment includes Fisher multiple regression 

(F) and R2. Validations proved the model's statistical 

significance. They also demonstrated excellent parameter 

estimates. Finally, this model improves SDG 3, 11, and 13, 

which may be used to Santiago City and any other city. [5]  

Smart transportation congestion reduction is difficult in 

major cities. Machine learning techniques aid traffic 

analysis, congestion prediction, and rerouting. This paper 

proposes a new prediction approach to reduce traffic 

congestion by studying a scheme for predicting traffic flow 

information using four machine learning techniques: FFNN, 

RBFNN, simple linear regression model, and polynomial 

linear regression model. This forecast technique uses typical 

waiting times at entrance and exit street pairings, days of the 

week, hours of movement, holidays, and rain rate. The 

FFNN approach outperforms the others with 97.6% 

prediction accuracy. [6]  

Short-term traffic flow prediction is essential for traffic 

guiding and management and affects intelligent 

transportation system performance. Traffic flow data is 

volatile, chaotic, and unpredictable, which affects prediction 

model accuracy. This paper creates the grey GM(1,1) model 

with tensor higher-order singular values using multi-

dimensional spatio-temporal data characteristics of traffic 

flow data and the classical grey model GM(1,1) model's 

modelling mechanism. The tensor higher-order singular 

value decomposition captures traffic flow data's periodic, 

multi-modal, and holistic character, reducing volatility and 

unpredictability and improving model accuracy. Then, the 

new model is applied to highway short-time traffic flow 

prediction, analysing the spatio-temporal nature of traffic 

flow data, providing model modelling steps, and analysing 

the correlation between original and tensor approximation 

data using grey correlation degrees. Three instances 

demonstrate model efficacy. Case 1 shows that MAPE 

results from nine modelling objects are stable at about 5%, 

indicating that the new model has some stability; Case 2 

shows that the new model is more adaptable to short-time 

traffic flow prediction based on three modelling and 

prediction objects; and Case 3 compares the new model to 

two traditional grey forecasting models and two 

optimisation models, showing that Finally, the new model 

is applied to short-time traffic flow prediction, and its 

predictions match the trend of the original traffic flow data, 

indicating that it can reveal real-time traffic system 

characteristics and provide a reliable theoretical basis for 

traffic planning, control, and optimisation. [7]  

The millimeter-wave radar sensor is popular for urban 

traffic monitoring due to its weather durability and excellent 

detection accuracy. Fuzzy theory, pattern recognition, and 

artificial neural networks are used in traffic state 

discriminating research. Limited research exists on 

integrating sensors and traffic condition identification 

algorithms to reduce urban road congestion, particularly 

using millimeter-wave radar. Thus, the authors suggest a 

paradigm for urban traffic congestion relief. We illustrate 

the design and deployment of a millimeter-wave radar 

system, including waveforms, signal processing, and target 

tracking, to acquire and output vehicle information. Traffic 

parameters are then determined by studying traffic condition 

impacting variables and radar data features. A traffic 

conditions recognition technique using spectral clustering 

and neural network algorithm classifies road congestion 

levels. The technology is used on actual urban crossings, not 

simulated. To control road vehicle driving, manage traffic 

light state based on road congestion. The suggested 

technology reduces road congestion by 20% compared to 

fixed traffic lights, according to experiments. [8]  

Effective natural disaster response may reduce their 

devastation. This study investigates how supervised hybrid 

quantum machine learning can optimise automobile 

evacuation strategies during natural catastrophes. The paper 

simulates seismic situations as a dynamic computational 

graph that affects a metropolis. Residents try to leave the 

city via congested exits. An uncertain and dynamic map is 

used to simulate the shortest-path issue. We try a unique 

hybrid supervised learning strategy on a concrete city graph 

in hypothetical settings. This method mimics Dijkstra's 

node-wise shortest route algorithm on a deterministic 

dynamic graph using a unique quantum feature-wise linear 

modulation (FiLM) neural network parallel to a 

conventional FiLM network. Adding the quantum neural 

network in parallel splits the dataset's harmonic and non-

harmonic properties across quantum and classical 

components, increasing model expressivity. After training 

on Dijkstra's shortest pathways, the hybrid supervised 

learning agent can navigate. The hybrid quantum network 

outperforms conventional supervised learning by 7%. We 

demonstrate that the quantum portion contributes 45.3% to 

the prediction and that the network can be run on an ion-

based quantum computer. The findings show that 

supervised hybrid quantum machine learning may improve 

natural disaster evacuation planning. [9]  

Gridlock and obstinate drivers have killed 20% of crisis 

patients on their way to the clinic, according to the National 

Institute of Emergency Medicine (NIEM). Some nations 

have implemented a distinct lane system for emergency 

vehicles to minimise such tragedies, although not all can 

benefit. Some nations have enough people that emergency 

vehicles can't get there on time, even with facilities. This 

chapter presents a paradigm for all such issues. Blockage is 
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best solved by letting congested sides pass the confluence 

frst. The goal is to use Dijkstra's algorithm on the weighted 

diagram of continuous traffic information to find the best 

emergency vehicle route from source to destination during 

rush hour jam. For convenience, the model employs the 

internet of things and digital image processing [10].  

The intelligent transport system's traveller information 

service system focuses on vehicle route selection. This study 

used a dynamic graph convolutional neural network 

(DGCN) to predict multi-time-step travel times for each 

road section of a road network and recommend vehicle 

travel routes based on travel demand, congestion avoidance, 

and road network balance. A weighted network model based 

on road network topology and the GN (Grivan-Newman) 

method partitioned the road network to find congested 

locations. The findings revealed that avoiding crowded 

areas in route selection lowered urban road network 

congestion equilibrium index. Thus, considering the global 

road network congestion avoidance system may minimise 

congestion [11].  

With the massive rise of public and private automobiles, 

traffic congestion is rising rapidly. This work proposes a 

novel Neuro-fuzzy-based intelligent traffic light control 

system that dynamically generates traffic light phase 

duration based on real-time heterogeneous traffic load to 

account for vehicle heterogeneity. The suggested 

technology uses peer-to-peer connections to get real-time 

traffic conditions and congestion from neighbouring traffic 

signal intersections. Traffic light phase duration is 

intelligently generated using a fuzzy membership technique. 

Adaptive neural networks are used to get an effective fuzzy 

membership function input value for real-time 

heterogeneous traffic. This system uses Congestion Mode 

(CM), Priority Mode (PM), and Fair Mode (FM). The 

optimal option is automatically selected depending on real 

traffic. Simulating the suggested methodology on India's 

Gwalior city map using Simulation of Urban Mobility, an 

open-source simulator, evaluates its performance. Results 

show that the suggested model outperforms state-of-the-art 

approaches[12].  

Megacities are experiencing worsening traffic congestion 

due to fast urban population growth and motor vehicle use. 

Cluster analysis for daily traffic congestion index curves is 

used to discover traffic congestion patterns and analyse their 

spatial–temporal fluctuations. First, the coefficient of 

variation is used to weight K-means clustering method 

improvements since sample points in various time segments 

have varied relevance. To find typical traffic congestion 

patterns, the enhanced weighted K-means clustering 

approach is suggested. Second, the paired t-test analyses 

traffic congestion patterns' geographical and temporal 

variability. Finally, case studies use Beijing traffic 

congestion index data from January 1, 2017 to December 

31, 2017, with approximately 670, 000 entries spanning six 

districts. Results show that traffic congestion patterns are 

time and spatially dependent, and the vehicle licence plate 

limitation has a major impact. This research may help 

develop traffic optimisation and management strategies to 

reduce congestion and balance traffic. [13] 

Traffic congestion plagues many metropolitan roads. Traffic 

congestion has been studied extensively and addressed 

utilising data-driven methods. Most traffic congestion 

evaluations are done using simulation software, which has 

limited insight owing to the tools and utilities utilised to 

simulate traffic congestion situations. All of that affects 

unique business difficulties that differ by location and 

region. We employ the knowledge graph to represent traffic 

congestion in Neo4j and apply the load balancing, 

optimisation technique to find congestion-free road 

networks. We also demonstrate how traffic propagates 

backward during congestion or accidents and affects 

adjacent route segments. To verify road-specific congestion 

simulation findings, we train a sequential RNN-LSTM deep 

learning model using real-time traffic data. Our findings 

suggest that graph-based traffic simulation and AI ML-

based traffic prediction can better estimate road network 

congestion. [14]  

Smart transportation congestion reduction is difficult in 

major cities. Machine learning techniques aid traffic 

analysis, congestion prediction, and rerouting. This paper 

proposes a new prediction approach to reduce traffic 

congestion by studying a scheme for predicting traffic flow 

information using four machine learning techniques: FFNN, 

RBFNN, simple linear regression model, and polynomial 

linear regression model. This forecast technique uses typical 

waiting times at entrance and exit street pairings, days of the 

week, hours of movement, holidays, and rain rate. The 

FFNN approach outperforms the others with 97.6% 

prediction accuracy. [15]  

Traffic congestion prediction is crucial to intelligent 

transport systems. Due to fast population expansion and 

high city car counts. ITS experts are increasingly focused on 

traffic congestion. Analysing traffic flow data predicts 

congestion. Our paper predicted traffic flow and reduced 

junction congestion using machine learning methods 

including linear regression, random forest regressor, 

decision tree regressor, gradient boosting, and K-neighbor. 

Our models were tested using UK national motor traffic 

public roads dataset. All machine learning methods 

performed well, proving their suitability for smart traffic 

signal systems. Next, we constructed a random forest 

regressor model-based adaptive traffic light system that 

changes green and red light time based on road width, traffic 

density, vehicle kinds, and predicted traffic. The suggested 

approach reduces traffic congestion by 30.8% in 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 210–232 |  214 

simulations, proving its efficacy and the interest in using it 

to govern junction signalling. [16]  

The COVID-19 epidemic has affected global migration and 

city mobility. Many localities have issued "stay-at-home" 

orders during the epidemic, forcing commuters to alter 

routes. Some transit/bus riders drive or carpool. Thus, urban 

traffic congestion patterns have altered substantially, and 

emergency traffic management and control need 

comprehending these changes. Some studies have analysed 

natural catastrophes or severe accidents, but few have 

addressed pandemic-related traffic congestion. This 

research examines COVID-19 and transportation using 

correlations and machine learning. The authors simulated 

traffic models for five networks and presented a Traffic 

Prediction Technique (TPT) with an Impact Calculation 

Methodology using Pearson's Correlation Coefficient and 

Linear Regression and a Traffic Prediction Module. The 

paper's key contribution is the TPM, which predicts 

COVID-19's transportation effect using Convolutional 

Neural Network. Transportation patterns are strongly 

correlated with COVID-19 spread, and the CNN predicts 

these affects with great accuracy. [17]  

The development of electric vehicles (EVs) and their 

interconnection have made power distribution networks 

(DNs) and transportation networks (TNs) more complicated 

and vulnerable under harsh conditions. As two 

infrastructures become more interdependent, coordinated 

transportation-power distribution networks (TDNs) must be 

made more resilient to natural catastrophes. This article 

coordinates TN traffic link reversal, DN line switching, and 

rapid charging pile management to enhance TDN 

emergency response performance following catastrophes. 

TDN modelling uses a dynamic TN model with a multi-

period DN model to represent flow propagations and state 

fluctuations throughout time. The coordinated optimisation 

for TDN emergency response minimises TN travel expenses 

and DN active and reactive power shortages using mixed-

integer nonlinear programming (MINLP) with high-order 

objective functions and nonlinear constraints. The TDN 

optimisation issue is solved more efficiently using accuracy-

aware adaptive piecewise linearization and Grey code-based 

encoding. Numerical simulations reveal that coordinating 

DN and TN resources improves TDN performance 

compared to standalone and traditional topology controls. 

Compared to the nonlinear model and the linearized model 

via uniform piecewise linearization, the suggested TDN 

solution approach has greatly decreased computing time for 

severe situations while ensuring correctness. [18]  

The large population growth ratio and rapid village 

movement have made cities congested. Traffic monitoring 

is difficult in certain places owing to heavy road traffic. A 

cluster-based enhanced authentication and communication 

protocol for an Intelligent Transportation System on 

VANETs was suggested in this study. Optimising vehicular 

communication resource sharing is our goal. We improved 

fast-moving VANET dependability, scalability, and 

stability by using cluster-based routing protocols for V2V 

and V2I communications. We employed a third-party 

certification organisation for vehicle authentication for 

security and privacy. We provide protocol support to 

decrease E2E time, route request, and connection failure. 

Our protocol's leading yield comprises throughput, TCP 

Socket Initialization time reduction, TCP handshake 

response speedup, and DNS lookup improvement. Short-

range P2P wireless communication in a 400-m cluster is the 

focus of the protocols. They use minimal VANET resources 

for revolutionary P2P wireless communications. The 

suggested methods use a certification authority-generated 

vehicle authentication key for safe authentication. We also 

built RESTful APIs for vehicular communication 

implementation and V2V and V2I resource sharing 

algorithms. Finally, we assessed our experiments. [19]  

The intelligent traffic management system (ITMS) 

generates enormous traffic video and picture data. The 

machine learning (ML)-based ITMS must send all created 

data to a centralised server, which takes time and money. 

These systems' limitations include costly communication, 

heterogeneous devices and location, and user privacy. 

Federated Learning (FL) solves these problems. This article 

briefly describes FL and its usage in ITMS. FL's efficient 

and improved ITMS solution is also discussed. FL 

advantages in ITMS are briefly discussed before the 

conclusion. [20]  

In the recent decade, researchers have developed traffic-

responsive signal timing algorithms to combat urban traffic 

congestion. Recently, machine learning-based approaches 

have been tried on traffic signal timing issues as an 

alternative to model-based algorithms and show promise. 

However, many academics and practitioners doubted that 

ATSC could use machine learning. Since these systems 

assumed perfect detectors and depended on simulators for 

training and evaluations, To address this significant issue, 

this paper customises a Deep Q-learning Learning (DQL) 

algorithm to optimise urban junction traffic signal timings 

using partial data from identity-based detectors and green 

splits. We also create a simulation-free data-driven 

prediction methodology to train the DQL faster. Then, 

ANPR data is used to test machine learning approaches. The 

suggested data-driven model can anticipate traffic status in 

little computing time, and the DQL method outperforms the 

adaptive control system, SCOOT, and SYNCHRO's time-

of-day plan by 3.9% and 22%, respectively. In crowded 

traffic flow, DQL approaches only improve little compared 

to adaptive systems with limited input and output 

parameters. [21]  
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Control systems, sensors, actuators, and the environment 

need a cyber-communication infrastructure to interact and 

cooperate in real time. Cyberphysical systems (CPSs) do 

this. Recent advances in Intelligent Transportation Systems 

(ITS) have been accelerated by Deep Learning (DL) 

approaches, notably in analytical or statistical problem 

areas. Driverless vehicle development has advanced, but DL 

applications have also improved traffic organisation and 

scheduling, transit road security and safety, maintenance 

costs, and public transportation ride-sharing company 

performance. This work aims to provide a comprehensive 

analysis and knowledge of DL models' application in ITS 

and show how DL studies have advanced ITS research. This 

article briefly discusses DL approaches before studying and 

detailing their usage in transportation. Deep learning 

algorithms are trained on real-world traffic data to identify 

and predict accidents. This research summarises and 

classifies existing traffic prediction systems and provides a 

multi-perspective review of deep learning-based traffic 

forecasting methods. We provide the latest traffic 

forecasting techniques. We also evaluate and analyse our 

results using a public, real-world dataset to evaluate and 

compare techniques. These results show that a deep model 

outperforms state-of-the-art shallow models in traffic 

detection and prediction. We propose an Attention-based 

hybrid Convolutional Neural network with Long Short 

Term Memory (LSTM) (AHCNLS) deep learning 

framework for data mining-based real-time traffic 

prediction to improve driver and passenger safety. The 

suggested method considers GPS trajectories' spatial and 

temporal relationships with contextual elements. We 

demonstrate our method's advantages over competitors 

using a publicly available dataset. [22]  

In recent years, smart cars have grown popular, helping IoV 

networks grow. A well-organized and efficient data 

transmission technique is needed for the Internet of Vehicles 

(IoV), a network of cars that can share and analyse data in 

real time. Cluster stability and dynamic topology change in 

IoV hinder automobile path optimisation. This manuscript's 

route optimisation algorithm depends on grid size, 

orientation, velocity, node number, and range, making it 

innovative. In order to optimise route discovery among cars 

in Internet of cars networks, Harris Hawks' Optimisation for 

Intelligent Route Clustering is used to create and evaluate 

the optimum cluster head (CH). Other cutting-edge methods 

are analysed to validate the suggested approach. 

Considering restrictions such cluster and network number, 

changing communication ranges, and vehicle amount, our 

findings reveal that the suggested approach works better 

than previous literature methods. Further experiments have 

shown that Packet Delivery Ratio (PDR), bandwidth 

utilisation, and latency are superior than alternative 

techniques. Additionally, statistical research demonstrates 

80% cluster optimisation improvement and 90.6 R-squared 

cluster stability. [23]  

Heat-related diseases are time-sensitive, therefore access to 

heat-related EMS services may contribute to urban health 

inequities. This paper uses Austin-Travis County EMS data 

to estimate traffic congestion-related response time delays 

using spatiotemporal analysis and the Ordinary Least 

Square (OLS) and Geographically Weighted Regression 

(GWR) models to determine the causes of peak traffic rush 

hour delays. Our data suggest that heat-related EMS is more 

delayed in the morning and the evening; there are stronger 

clustering patterns of EMS travel time difference in Austin's 

metropolitan fringes, particularly in the east and west 

Austin. OLS and GWR studies reveal that bigger EMS 

counts, longer distances from an EMS station to the scene 

and from the scene to a hospital, and areas with a greater 

black and Hispanic population worsen heat-related EMS 

delays. Road density, average speed limit, and open space 

growth rate are statistically significant in the OLS model, 

however GWR suggests coefficient signs fluctuate locally, 

necessitating more study. Our results helped practitioners 

cut local response times by showing geographical patterns 

of EMS delays. [24] 

This research examines emergency vehicle cab-mounted 

Variable Message Signs (VMS) as a safety precaution to 

safeguard roadside incident and service workers. ADOT's 

Safety Service Patrol (SSP) programme, especially the 

Alabama Service Assistance Patrol (ASAP) in West Central 

Alabama, provided the study team with video data from 

their service vans. Videos were analysed using deep 

learning to identify automobiles. In 135,946 frames of 

video, 11,338 passing cars were spotted and their 

trajectories analysed. The research examined passing 

vehicle speed and lane changing behaviours and constructed 

statistical models to determine how VMS affects them. 

Unobserved stop location characteristics were accounted for 

using random intercept models. The modelling showed 

substantial connections between VMS usage and passing 

motorist behaviour. Drivers were more willing to change 

lanes and slow down while the VMS was activated. When 

the VMS was used, vehicles changed lanes 95% more often. 

These data imply that VMS may improve traffic, especially 

for passenger cars. The research suggests that VMS might 

prevent roadside mishaps and safeguard service workers. 

[25] 

 Many commuters choose single-occupancy cars, which 

increases traffic and air pollution. Smart solutions that 

encourage ridesharing and mode shift to higher occupancy 

vehicles (HOVs) help communities become car lighter 

thanks to information technology. HumanLight, a unique 

decentralised adaptive traffic signal management method, 

optimises junction people throughput in this research. Our 

controller uses reinforcement learning and a reward function 
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that embeds transportation-inspired pressure at the human 

level. HumanLight allocates green lights fairly by 

compensating HOV commuters with travel time savings for 

merging. Besides incorporating FRAP, a state-of-the-art 

(SOTA) basis model, HumanLight incorporates active 

vehicles, roughly defined as vehicles near the junction 

inside the action interval window. The method has high 

headroom and scalability in network setups with multimodal 

vehicle divides at various HOV adoption scenarios. Person 

delays and queues improve 15%–55% over vehicle-level 

SOTA controllers. We measure the effect of adding active 

cars to our RL model for various network architectures. 

HOV prioritisation aggression can be controlled by 

HumanLight. An important component of acyclic signal 

controllers that effect pedestrian waiting times is parameter 

setting on the resulting phase profile. HumanLight's 

scalable, decentralised architecture may make traffic 

management more human-centric and enable ridesharing 

and public transit regulations. [26]  

Fixed cycle traffic lights manage road traffic, whereas urban 

traffic light control systems control individual lanes or 

crossings. Due to improper installation, congestion delays 

and extended intersection wait times may lead emergency 

vehicles to become trapped. A computationally feasible 

adaptive signal timing management approach may enhance 

network-wide traffic operations by lowering traffic delay 

and energy consumption compared to fixed cycle signal 

control systems. Adaptive control systems don't connect 

with emergency vehicles, which smart cities need. Due to 

this issue, a new framework, Emergency Vehicle Adaptive 

Traffic signal (EVATL), is suggested for smart cities to 

improve traffic signal operation and reduce congestion 

delay by integrating emergency vehicle communication. 

EVATL uses GPS with IoT and YOLOv8 to identify 

emergency vehicle position at traffic lights and adjust to 

vehicle density. The proposed EVATL prioritises 

emergency vehicles and integrates adaptive traffic lights for 

smart cities. A GUI is created to evaluate the proposed 

approach by establishing adaptive traffic light and 

emergency vehicle communication situations. In the 

simulation findings of the proposed model EVATL, cars' 

wait times at traffic lights increase when emergency 

vehicles are detected at a certain distance. [27] 

 

 

Fig 1. Sample image of Emergency vehicle on crowded 

road [16] 

3. Proposed Methodology for Emergency Vehicle 

In major cities, traffic congestion is a problem, and EVs 

have to contend with it as well. For the sake of preserving 

human life, a delay in the arrival of an EV is sometimes 

unavoidable. 

3.1. Components of the EVMS  

The proposed EVMS consists of seven components along 

with priority rules. The details of these components are 

discussed in the following. 

3.1.1. Emergency Vehicle (EV) 

An Emergency Vehicle (EV) is a specialized vehicle 

designed for use by emergency services to respond to 

incidents and emergencies. These vehicles are equipped 

with features that enable them to navigate traffic more 

efficiently and safely reach their destinations as quickly as 

possible. Key types and features of emergency vehicles 

include: 

Types of Emergency Vehicles 

• Ambulances: Used for medical emergencies to 

transport patients to healthcare facilities while 

providing medical care en route. 

• Fire Trucks: Equipped for firefighting and rescue 

operations, carrying firefighting equipment, ladders, 

and water hoses. 

• Police Vehicles: Used by police officers for patrol, 

response to incidents, and transport of detainees. They 

may be marked or unmarked. 

• Rescue Squads: Specialized vehicles equipped for 

technical rescue operations such as urban search and 

rescue, water rescue, and extrication. 

• Emergency Management Vehicles: Used by 

emergency management agencies for command and 

control at the scene of major incidents or disasters. 
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Features of Emergency Vehicles 

• Visual and Auditory Warning Systems: Equipped 

with sirens and emergency lights (e.g., flashing lights) 

to alert other road users and request the right of way. 

• Communication Equipment: Radios and other 

communication devices to coordinate with dispatch 

centers and other emergency responders. 

• Medical Equipment: Ambulances, in particular, are 

equipped with medical supplies and equipment for pre-

hospital care. 

• Specialized Tools: Depending on their function, EVs 

may carry specialized tools and equipment, such as 

hydraulic rescue tools in fire trucks or advanced life 

support (ALS) equipment in ambulances. 

3.1.2. Shoulder Lane (SL) 

A Shoulder Lane (SL), often referred to as a shoulder or 

emergency lane, is a strip of roadway adjacent to the travel 

lanes on a highway or major road. It is typically designated 

for emergency use and not intended for regular vehicle 

travel. However, its usage can vary significantly depending 

on local laws, traffic conditions, and specific transportation 

policies. Here are key aspects related to Shoulder Lanes: 

Purpose and Use 

• Emergency Stops: The primary use of shoulder lanes 

is to provide a safe area for vehicles to stop in case of 

mechanical failure, medical emergency, or other 

urgent situations. 

• Emergency Vehicle Passage: Shoulder lanes offer a 

clear path for emergency vehicles (such as 

ambulances, fire trucks, and police cars) to bypass 

traffic congestion and reach their destinations more 

quickly. 

• Breakdown Space: They serve as a space for broken-

down vehicles to pull over, away from the flow of 

traffic, reducing the risk of accidents and keeping 

traffic lanes clear. 

Expanded Uses 

In some jurisdictions, shoulder lanes are utilized beyond 

traditional emergency and breakdown scenarios: 

• Traffic Management: During peak traffic hours, 

shoulder lanes may be opened for general traffic use to 

alleviate congestion, a practice known as "hard 

shoulder running." 

• Public Transport: Some areas designate shoulder 

lanes for use by buses and high-occupancy vehicles 

(HOVs) to promote more efficient public 

transportation options. 

• Bicycle Lanes: Rarely, and under specific conditions, 

shoulder lanes may be designated for bicycle use, 

provided they are safe and wide enough to 

accommodate cyclists. 

Design and Regulations 

• Width and Construction: Shoulder lanes are 

designed to be wide enough to accommodate stopped 

vehicles without obstructing the adjacent travel lanes. 

Their construction is typically robust, similar to that of 

regular travel lanes, to support the weight of vehicles. 

• Markings and Signage: Shoulder lanes are usually 

marked by solid or dashed lines and signs indicating 

their usage restrictions and conditions. These markings 

help differentiate the shoulder from the main travel 

lanes. 

• Regulatory Compliance: The use of shoulder lanes is 

subject to specific regulations that vary by location. 

Unauthorized use of shoulder lanes can result in traffic 

citations and fines. 

Safety Considerations 

• Visibility: Vehicles stopped on the shoulder should 

activate hazard lights to alert passing drivers, 

especially in low-visibility conditions. 

• Entering and Exiting: When using the shoulder lane, 

drivers must be cautious, ensuring it's safe to enter or 

rejoin the main traffic flow, checking for fast-moving 

vehicles in adjacent lanes. 

• Maintenance and Clearances: Regular maintenance 

is crucial to keep shoulder lanes clear of debris and 

obstacles that could pose hazards to stopped vehicles 

or those using the lane for designated purposes. 

3.1.3. Roadside Unit (RSU) 

Roadside Units (RSUs) are critical components in the 

development and implementation of Intelligent 

Transportation Systems (ITS). These units are typically 

installed along the roadside or in specific locations like 

intersections, toll plazas, and parking lots. RSUs 

communicate wirelessly with onboard units in vehicles 

(V2X communication) to provide a wide range of services, 

including traffic management, safety warnings, and 

navigation assistance. When it comes to Emergency 

Vehicles (EVs), RSUs play several pivotal roles that 

enhance both the safety and efficiency of emergency 

responses. Here’s how RSUs interact with EVs: 

Priority Signal Control : RSUs can grant priority at traffic 

signals for EVs, reducing their travel time during 

emergencies. By communicating with approaching EVs, 

RSUs can preempt traffic signals to create a green wave, 
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allowing EVs to pass through intersections without 

stopping, thus reducing response times significantly. 

Real-time Traffic Information : RSUs collect and 

disseminate real-time traffic information to EVs, helping 

them to choose the fastest and safest routes to their 

destinations. This information can include traffic 

congestion, road closures, or accidents ahead, enabling EV 

drivers to make informed decisions to avoid delays. 

Safety Alerts : RSUs can broadcast safety alerts to vehicles 

and pedestrians in the vicinity of an emergency response. 

For example, when an EV is approaching an intersection, 

RSUs can warn nearby vehicles and pedestrians to clear the 

way, enhancing safety for both the emergency responders 

and the public. 

Direct Communication with Evs : RSUs enable direct 

communication with EVs, facilitating a range of 

functionalities from basic vehicle identification and status 

updates to more complex data exchanges like the sharing of 

EV’s destination and expected arrival time. This allows for 

a coordinated response from traffic management systems, 

prioritizing EVs over regular traffic. 

Incident Reporting and Management : RSUs can be used 

to report incidents to approaching EVs and to traffic 

management centers. This rapid information exchange 

allows for quicker dispatch of emergency services and better 

situational awareness for responders, potentially saving 

lives and reducing the impact of incidents. 

Integration with Smart City Infrastructure : In smart 

cities, RSUs integrate with other elements of the urban 

infrastructure, such as surveillance cameras and 

environmental sensors, to provide a comprehensive 

overview of current conditions. This integration supports 

more efficient navigation and safer operations for EVs by 

utilizing data from various sources. 

Supporting Automated Emergency Responses : For 

future automated or semi-automated EVs, RSUs could play 

a crucial role in guiding these vehicles through traffic safely, 

providing real-time updates on road conditions, traffic, and 

optimal routes, ensuring that these vehicles navigate urban 

environments safely and efficiently. 

Challenges and Considerations 

• Interoperability: Ensuring RSUs and EVs from 

different manufacturers can communicate effectively. 

• Security: Protecting the communication between 

RSUs and EVs against hacking and unauthorized 

access. 

• Privacy: Managing the data collected and transmitted 

by RSUs in a way that respects the privacy of 

individuals. 

3.1.4. Control Unit 

In the context of Emergency Vehicles (EVs), a Control Unit 

(CU) plays a critical role in managing and coordinating 

emergency responses. The term can refer to different 

components or systems depending on the specific 

application, including onboard vehicle systems, centralized 

dispatch systems, or part of an intelligent transportation 

system (ITS). Here’s an overview of how control units 

function in relation to EVs across these applications: 

Onboard Control Units in EVs 

Onboard control units in emergency vehicles are 

sophisticated systems that manage various aspects of the 

vehicle's operations and communications. These include: 

• Vehicle Systems Management: Control units manage 

critical vehicle functions such as engine performance, 

electronic stability control, and automatic braking 

systems, ensuring the vehicle operates safely under 

high speeds and demanding conditions. 

• Communication Systems: They handle 

communications with dispatch centers, other 

emergency vehicles, and traffic management systems. 

This includes the use of dedicated radio frequencies, 

cellular networks, and increasingly, direct vehicle-to-

everything (V2X) communications. 

• Navigation and Routing: Modern EVs are equipped 

with advanced navigation systems that not only 

suggest the quickest route but can also adapt in real-

time based on traffic conditions, road closures, or other 

hazards, often in communication with external control 

units or systems. 

Centralized Dispatch Systems 

Centralized control units, often part of a dispatch center or 

emergency operations center, coordinate the deployment 

and management of emergency vehicles. They utilize: 

• Dispatch Software: This software allocates resources 

efficiently based on the type, urgency, and location of 

the incident, as well as the availability and location of 

EVs. 

• Real-Time Information Systems: These systems 

provide dispatchers with live updates on traffic 

conditions, ongoing emergency incidents, and the 

status of EVs, enabling dynamic management of 

emergency responses. 

• Communication Hub: Serving as the central point for 

communications, it ensures seamless information flow 

between emergency responders, EVs, hospitals, and 

other relevant agencies. 

ITS and Traffic Management Control Units 
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In the broader context of intelligent transportation systems 

and smart cities, control units refer to systems that manage 

traffic flow and prioritize EVs. These systems include: 

• Traffic Signal Preemption: Traffic management 

control units can prioritize EVs by modifying traffic 

signals in real-time, creating a clear path for 

responding vehicles. 

• Roadside Units (RSUs): As part of the ITS 

infrastructure, RSUs communicate with EVs to 

provide them with priority at intersections, real-time 

traffic data, and route suggestions to avoid congestion. 

• Data Analytics and Management: These control 

units analyze vast amounts of data from various 

sources, including traffic cameras, sensors, and EVs 

themselves, to optimize traffic flow and emergency 

responses. 

3.1.5. IoT 

The Internet of Things (IoT) plays a transformative role in 

enhancing the capabilities of Emergency Vehicles (EVs) by 

leveraging interconnected devices and systems to improve 

response times, operational efficiency, and patient care. IoT 

technologies facilitate real-time data exchange between 

EVs, dispatch centers, healthcare facilities, and 

infrastructure components, creating a more responsive and 

integrated emergency response ecosystem. Here’s how IoT 

contributes to the functionality and effectiveness of EVs: 

Real-time Location Tracking and Fleet Management 

• GPS and Telematics: IoT devices provide precise 

real-time location tracking of EVs, enabling dispatch 

centers to monitor fleet positions, optimize dispatching 

based on proximity to incidents, and manage fleet 

resources effectively. 

• Fleet Health Monitoring: Sensors can monitor 

vehicle health, including engine status, fuel levels, and 

maintenance needs, ensuring that EVs are always 

ready for deployment. 

Enhanced Communication and Response Coordination 

• Direct Vehicle-to-Vehicle (V2V) Communication: 

EVs can communicate directly with each other to 

coordinate responses to large-scale emergencies, share 

status updates, and avoid response duplication. 

• Vehicle-to-Infrastructure (V2I) Communication: 

IoT enables EVs to interact with traffic management 

systems, such as traffic lights and road sensors, to 

prioritize emergency traffic flow and reduce response 

times. 

Improved Patient Care and Outcomes 

• Telemedicine: IoT devices facilitate real-time 

communication between paramedics in EVs and 

physicians in hospitals, allowing for early initiation of 

patient care and preparation of hospital staff for the 

incoming patient’s needs. 

• Wearable Health Monitoring: Integration with 

wearable devices can provide emergency responders 

with real-time health data from patients, such as heart 

rate, blood pressure, and oxygen levels, even before 

they arrive on the scene. 

Safety and Situational Awareness 

• Environmental Monitoring: IoT sensors deployed 

across cities can provide EVs with information about 

environmental conditions such as road temperatures, 

hazardous material spills, or air quality, enabling 

responders to prepare appropriately for the situation 

they are responding to. 

• Collision Avoidance Systems: IoT technologies can 

enhance the safety of EVs through advanced driver-

assistance systems (ADAS) that predict and prevent 

potential collisions with other vehicles or pedestrians. 

Smart City Integration 

• Smart Traffic Management: In smart cities, IoT 

integration allows for dynamic traffic management, 

where traffic signals are automatically adjusted to 

create clear paths for EVs, and road users are alerted 

to the presence of approaching EVs. 

• Data Analytics for Emergency Planning: 

Aggregated IoT data can be analyzed to identify 

patterns in emergencies, helping to optimize 

placement of EVs and resources for faster responses in 

the future. 

3.1.6. Cloud 

The integration of cloud computing with Emergency 

Vehicles (EVs) represents a significant advancement in 

emergency response capabilities, leveraging the power of 

remote computing resources to enhance communication, 

data management, and operational efficiency. Cloud 

technology allows EVs and related emergency services to 

access, store, and process vast amounts of data in real-time, 

facilitating improved decision-making, resource allocation, 

and patient care. Here’s how cloud computing is 

transforming emergency vehicle operations: 

Enhanced Data Access and Sharing 

• Real-Time Information Sharing: Cloud platforms 

enable the seamless sharing of critical information 

among EVs, dispatch centers, hospitals, and other 

emergency response entities. This ensures that all 
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parties have access to the same up-to-date information, 

improving coordination and response strategies. 

• Centralized Data Repository: By storing data on the 

cloud, emergency services can create a centralized 

repository of incident reports, medical records, and 

other essential information that is easily accessible 

from anywhere, enabling better preparedness and 

response to future emergencies. 

Improved Dispatch and Fleet Management 

• Dynamic Resource Allocation: Cloud-based dispatch 

systems can analyze real-time data on traffic 

conditions, EV locations, and emergency incidents to 

dynamically allocate resources and route EVs via the 

most efficient paths. 

• Fleet Maintenance and Management: Cloud 

platforms can monitor the status and performance of 

each vehicle in the fleet, scheduling maintenance as 

needed and ensuring that EVs are always ready for 

deployment. 

Advanced Communication Systems 

• Unified Communication Platforms: Cloud services 

facilitate unified communication systems that integrate 

voice, video, and data sharing, allowing emergency 

responders to communicate effectively across different 

devices and networks. 

• Remote Assistance and Telemedicine: Paramedics 

can use cloud-based platforms to consult with hospital 

staff in real-time, receiving guidance and starting 

patient care en route to the hospital, which can be 

crucial for time-sensitive emergencies. 

Integration with Smart City Infrastructure 

• Traffic Management: Cloud computing enables 

integration with smart city infrastructure, such as 

traffic lights and road sensors, to manage traffic flow 

and prioritize EV passage, significantly reducing 

response times. 

• Public Alert Systems: Emergency services can use 

cloud platforms to send real-time alerts to the public 

about severe incidents, road closures, or evacuation 

orders, enhancing public safety and situational 

awareness. 

Data Analytics and Decision Support 

• Predictive Analytics: Leveraging cloud computing 

for data analytics allows emergency services to 

identify patterns and predict future incidents, 

optimizing resource placement and preparedness 

strategies. 

• Decision Support Systems: Cloud-based decision 

support tools can analyze real-time and historical data 

to provide recommendations and situational 

assessments to responders, aiding in critical decision-

making during emergencies. 

3.1.7 5G 

The advent of 5G technology brings transformative 

potential to the operation of Emergency Vehicles (EVs), 

offering significant improvements over previous 

generations in terms of speed, reliability, and latency in 

communications. These enhancements are pivotal in 

emergency response scenarios where every second counts. 

Here’s how 5G technology is expected to impact and 

enhance the capabilities of EVs: 

Enhanced Communication Speed and Reliability 

• Faster Data Transmission: 5G offers substantially 

higher data rates compared to 4G, enabling quicker 

transmission of critical information such as patient 

medical records, real-time video feeds, and detailed 

scene information between EVs and hospitals or 

dispatch centers. 

• Increased Reliability: With its enhanced reliability, 

5G ensures that communication links remain stable in 

a wide range of conditions, reducing the risk of 

dropped calls or data transmission failures during 

critical operations. 

Reduced Latency 

• Real-time Remote Assistance: The ultra-low latency 

of 5G improves the feasibility of real-time remote 

medical assistance, allowing paramedics to receive 

immediate guidance from specialists while en route to 

the hospital, potentially improving patient outcomes. 

• Enhanced Operational Efficiency: Low latency 

communication aids in the real-time control of EVs, 

including potential future applications in autonomous 

or semi-autonomous driving, ensuring quicker and 

safer navigation through traffic. 

Improved Capacity and Coverage 

• Handling High Volume Connections: 5G technology 

supports a higher density of connected devices within 

a given area. This capacity is crucial in urban 

environments and at large-scale emergency scenes 

where multiple devices and vehicles need to 

communicate simultaneously. 

• Better Coverage: Advances in 5G technology aim to 

improve coverage, even in traditionally hard-to-reach 

areas, ensuring that EVs remain connected and fully 

operational regardless of their location. 

Integration with Smart City Infrastructure 
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• Traffic Management: 5G can facilitate the 

integration of EVs with smart city infrastructure, 

enabling things like traffic signal preemption, where 

traffic lights are automatically controlled to give 

priority to EVs, thereby reducing response times. 

• Real-time Environmental Monitoring: Connection 

to a network of IoT devices for real-time monitoring 

of environmental conditions, such as road hazards or 

weather conditions, allows EVs to respond more 

effectively and safely to emergencies. 

Advanced Onboard Diagnostics and Telematics 

• Real-time Vehicle Monitoring: 5G enables more 

sophisticated onboard diagnostics and telematics, 

allowing for real-time monitoring of vehicle health, 

which is essential for maintaining the readiness and 

reliability of EVs. 

• Enhanced Fleet Management: With 5G, dispatchers 

can manage the EV fleet more efficiently, optimizing 

routes in real-time based on traffic conditions, vehicle 

availability, and emergency priority. 

3.1.8. Priority Rules 

Priority rules with respect to Emergency Vehicles (EVs) are 

essential for ensuring that these vehicles can navigate traffic 

efficiently and safely to respond to emergencies as quickly 

as possible. These rules are typically established by traffic 

laws and regulations, and they dictate how drivers of non-

emergency vehicles should behave when encountering EVs. 

Understanding and following these priority rules can 

significantly impact the outcome of emergency situations. 

Here's a summary of the key priority rules for EVs: 

Right of Way 

• Emergency Precedence: EVs responding to 

emergencies, indicated by flashing lights and 

sirens, have the right of way over all other vehicles 

and pedestrians. 

• Mandatory Yielding: Drivers must yield to EVs 

by moving to the right side of the road and stopping 

until the EV has passed. In jurisdictions where 

driving is on the left, the custom would be to move 

to the left. 

Intersection Behavior 

• Red Lights and Stop Signs: EVs can run red 

lights and stop signs when responding to 

emergencies, but they usually do so with caution, 

ensuring it is safe before proceeding. 

• Other Vehicles at Intersections: Vehicles at 

intersections must stop and remain in place, 

allowing EVs to maneuver around them. 

Traffic Lane Usage 

• Use of Opposite Lanes: EVs may use opposite or 

oncoming traffic lanes if the way is blocked in their 

lane, always with caution for oncoming traffic. 

• Highway and Multi-lane Roads: On highways or 

multi-lane roads, vehicles should move to the 

furthest right lane to allow EVs to pass on the left. 

Speed Limits 

• Exceeding Speed Limits: EVs are often permitted 

to exceed speed limits when responding to an 

emergency, within the bounds of safety for road 

conditions and traffic. 

Public Awareness and Education 

• Awareness Campaigns: Many regions conduct 

public awareness campaigns to educate drivers on 

how to respond to EVs, emphasizing the 

importance of yielding and the specific actions to 

take. 

• Driver's Education: Information on priority rules 

for EVs is typically included in driver's education 

courses and materials. 

 

3.1.8 Priority Rules for Emergency Vehicle on loaded 

Traffic Squares 

1. Traffic Density and EV Priority Index 

Let's define a Priority Index (PI) for emergency vehicles 

based on traffic density and urgency. 

• Traffic Density (TD): A numerical value 

representing the level of traffic congestion. It can 

range from 0 (no congestion) to 1 (maximum 

congestion). 

• Urgency Level (UL): A numerical value assigned 

to the urgency of the emergency. It could range 

from 1 (least urgent) to 10 (most urgent). 

The Priority Index (PI) for an emergency vehicle could be 

calculated as: PI=UL×(1−TD) 

This formula assumes that the urgency of the call becomes 

a more significant factor in less congested conditions, where 

TD approaches 0, making PI more heavily influenced by 

UL. 

2. Adjusting Traffic Signals 

To model the decision for adjusting traffic signals in favor 

of an EV, we could use the following approach: 

• Distance to Intersection (DI): The distance of the 

EV from the intersection, with closer distances 

having a higher need for signal adjustment. 
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• Signal Adjustment Factor (SAF): A numerical 

value that determines whether a traffic signal 

should be adjusted to favor the EV. 

A simple model for SAF could be: 𝑆𝐴𝐹 =
𝐷𝐼

𝑃𝐼
 

Where a higher SAF indicates a stronger case for adjusting 

the signal in favor of the EV. A threshold value could be set 

for SAF above which the signal would be preempted to 

allow the EV to pass. 

3. Enhanced Priority Index Calculation 

To refine the Priority Index (PI) calculation, consider 

incorporating factors such as the type of emergency, 

expected impact, and even feedback from sensors or traffic 

monitoring systems regarding actual traffic flow and speed. 

For instance: 

PI=UL×(1−TD)×E×I 

Where: 

• E represents the efficiency of the route 

(considering current traffic speeds and potential 

delays). 

• I is the impact factor, which quantifies the potential 

impact of the emergency (e.g., risk to life, property 

damage). 

4. Multi-Emergency Vehicle Coordination 

In scenarios with multiple EVs heading towards intersecting 

paths or the same destination, coordination becomes crucial. 

A coordination factor (CF) could be introduced to manage 

such situations: 

𝐶𝐹 =
1

𝑁
∑ 𝑃𝐼𝑖

𝑁

𝑖=1

 

Where: 

• N is the number of emergency vehicles involved. 

• PI_{i} is the Priority Index of each emergency 

vehicle. 

The CF could be used to adjust signal timings and routes in 

a way that optimizes the overall response time for all 

involved EVs, rather than prioritizing on a first-come, first-

serve basis. 

5. Dynamic Traffic Light Adjustment 

The decision to adjust traffic lights can be modeled more 

dynamically by incorporating a Time to Intersection (TTI) 

factor, which estimates how soon an EV will reach an 

intersection: 

𝑆𝐴𝐹 =
𝑃𝐼 × 𝑇𝑇1

𝐷𝐼2
 

The squared distance term 𝐷𝐼2 emphasizes the importance 

of proximity, with the TTI adjusting for how immediate the 

need for signal change is, based on the EV's speed and 

current traffic conditions. 

6. Real-time Route Optimization 

For route optimization, integrating real-time data analytics 

can help in adjusting routes on the fly. The optimization 

algorithm can consider multiple routes and their current 

conditions, recalculating the best path for EVs as new data 

becomes available. This could involve solving a dynamic 

routing problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑇𝑇 + 𝑇𝐷 × 𝑃𝐼)

𝑎𝑙𝑙 𝑟𝑜𝑢𝑡𝑒𝑠

 

Where: 

• TT is the travel time for each considered route. 

• TD \times PI adjusts the importance of each route 

based on traffic density and the emergency's 

priority, ensuring that EVs are routed through the 

most efficient paths available at any moment. 

7. Scenario Evaluation 

In a scenario where multiple EVs are approaching the same 

intersection from different directions, the decision on which 

vehicle gets priority could be based on comparing their SAF 

values. 

• Scenario: EV1 and EV2 approaching an 

intersection, with EV1 having a higher urgency but 

further away, and EV2 being closer but with a 

lower urgency. 

Using the SAF calculation: 

• If SAFEV1>SAFEV2, the signal is adjusted for EV1's 

path. 

• If SAFEV2>SAFEV1, the signal is adjusted for EV2's 

path. 

This approach allows for dynamic decision-making based 

on real-time data regarding traffic conditions, emergency 

vehicle location, and the urgency of the call. 

3.2 Algorithm: Managing EV Passage Through an 

Intersection with Varying Priority 

Inputs: 

• EV_queue: A queue of EVs approaching the 

intersection, each with an associated priority level. 

• Traffic_status: Current traffic condition at the 

intersection. 

• Intersection_status: Indicates whether the 

intersection is open for EV passage or currently 

occupied by passing traffic. 
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• Priority_levels: A set of defined priority levels for 

EVs (e.g., 1 for highest priority, descending to n 

for lowest). 

Outputs: 

• A sequence for EVs to pass through the 

intersection, ensuring priority is given according to 

their urgency level. 

Procedure: 

1. Initialize: Start with an empty list EV_sequence to 

hold the sequence in which EVs will pass through 

the intersection. 

2. Sort EV Queue: 

• Sort EV_queue based on priority levels, 

with higher-priority EVs placed before 

lower-priority ones. 

3. Traffic Check: 

• If Traffic_status indicates heavy traffic, 

activate signal preemption to create a 

green wave for approaching EVs. 

• Adjust Intersection_status to occupied for 

the duration of EV passage. 

4. EV Passage: 

• While EV_queue is not empty: 

• For the first EV in EV_queue, check 

Intersection_status. 

• If Intersection_status is open, allow the EV to pass. 

Add the EV to EV_sequence and remove it from 

EV_queue. 

• If another EV is currently passing 

(Intersection_status is occupied), wait until the 

intersection is clear. 

5. Managing Regular Traffic: 

• After an EV passes, if there are no immediate high-

priority EVs waiting, briefly allow regular traffic to 

flow, adjusting Intersection_status accordingly. 

6. Repeat: 

• Continue the process until all EVs in EV_queue have 

passed through the intersection. 

• Regularly update Traffic_status and 

Intersection_status based on real-time data. 

 

7. Return EV_sequence: 

• Once all EVs have passed, return the 

EV_sequence for logging or monitoring 

purposes. 

Considerations: 

• Dynamic Traffic Management: The algorithm 

should adapt to changing traffic conditions and 

update the EV sequence in real-time. 

• Safety Measures: Ensure all maneuvers respect 

safety protocols, especially when directing EVs 

against regular traffic flows. 

• Communication with EVs: Implement a system for 

informing EV drivers of their turn to pass and any 

required actions (e.g., lane changes). 

• Intersections with Multiple Approaches: For 

intersections with multiple approach directions, the 

algorithm may need to manage multiple 

EV_queues. 

3.3 Algorithm: Efficient Passing of EVs Based on 

Priority 

Inputs: 

• EV_list: A list of EVs approaching or waiting at an 

intersection, each associated with a priority level and 

estimated time of arrival (ETA) to the intersection. 

• current_traffic: The current traffic condition at the 

intersection, including non-emergency vehicles. 

• intersection_state: Indicates the current state of the 

intersection (e.g., which signals are green). 

Outputs: 

• An ordered sequence for EVs to pass through the 

intersection, ensuring that EVs are prioritized 

appropriately. 

Procedure: 

1. Prioritize EVs: 

• Sort EV_list first by priority level (highest to lowest) 

and then by ETA to the intersection (soonest to latest). 

This creates a prioritized queue of EVs. 

2. Evaluate Intersection: 

• Assess current_traffic and intersection_state to 

determine the best window for allowing EVs to pass. 

Consider the minimization of disruption to overall 

traffic flow. 

3. Adjust Traffic Signals (if applicable): 

• Temporarily adjust traffic signals if necessary to create 

a clear path for the highest priority EV(s). This might 
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involve extending a green light or changing a signal 

prematurely. 

4. Direct EV Passage: 

• Iterate through the prioritized EV_list, allowing each 

EV to pass in order of priority. For each EV: 

• Check if the intersection can be safely navigated given 

current_traffic and intersection_state. 

• If yes, signal the EV to proceed, updating 

intersection_state as necessary to reflect the change in 

traffic flow. 

• If no (due to crossing traffic or safety concerns), hold 

the EV at the current status until safe passage is 

possible. 

5. Manage Non-Emergency Traffic: 

• Between EV passages, adjust intersection_state as 

needed to allow non-emergency traffic flow, 

minimizing overall disruption. 

• Ensure that adjustments to traffic signals do not create 

unsafe conditions or excessive delays for non-

emergency traffic. 

6. Repeat: 

• Continue the process until all EVs in EV_list have 

successfully navigated the intersection. 

• Regularly reassess current_traffic and adjust 

intersection_state as needed to respond to evolving 

conditions. 

7. Communication and Coordination: 

• Throughout the process, maintain communication with 

approaching EVs, providing updates on their status 

and instructions for when and how to proceed. 

• Coordinate with traffic management systems to ensure 

that adjustments made for one intersection do not 

inadvertently create congestion or hazards at nearby 

intersections. 

Considerations: 

• Dynamic Priority Adjustment: In certain situations, 

priorities may need to be dynamically adjusted based 

on the urgency of the calls or changes in ETA. 

• Safety Protocols: Always prioritize safety, ensuring 

that all traffic movements, whether for EVs or non-

emergency vehicles, are conducted safely. 

• Technological Support: Implementing this algorithm 

effectively may require advanced traffic management 

systems capable of real-time monitoring, 

communication with EVs, and dynamic signal control. 

4. Mathematical Modeling Analysis  

4.1 Mathematical modeling 

Mathematical modeling of an Emergency Vehicle 

Management System (EVMS) involves creating a 

framework that can simulate, predict, and optimize the 

operations and response times of emergency vehicles (EVs) 

within a traffic network. The goal of such a model is to 

minimize response times to emergencies while ensuring 

safety and efficient use of resources. A comprehensive 

model would consider various factors including traffic 

conditions, EV priorities, routing algorithms, and 

communication systems. Here's an overview of how one 

might approach the mathematical modeling of an EVMS: 

Key Components of the Model 

1. Emergency Vehicle (EV) Parameters: 

• Priority Level (P): A numerical value representing the 

urgency of the EV's mission, with higher values 

indicating higher urgency. 

• Location (L): The current coordinates of the EV in the 

traffic network. 

• Speed (S): The current speed of the EV, which may 

vary depending on traffic conditions and road types. 

• Destination (D): The target location that the EV is 

trying to reach. 

2. Traffic Network Parameters: 

• Traffic Density (TD): A function that provides the 

traffic density on different segments of the road 

network, potentially varying by time of day. 

• Road Capacity (C): The maximum number of vehicles 

that can efficiently travel on a road segment. 

• Signal Timing (ST): The timing of traffic signals 

within the network, which could be adjusted for EV 

preemption. 

3. Routing Algorithm: 

• A function or set of rules that determines the optimal 

path for an EV to take to its destination, considering 

current traffic conditions, road closures, and other real-

ime data. 

Mathematical Representation 

Objective Function: 

Minimize the total response time (TR) for all EVs to reach 

their destinations. The response time can be modeled as a 

function of distance to the destination, traffic density, and 

EV speed. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑅 =  ∑
𝐷𝑖

𝑆𝑖(𝑇𝐷,𝑃)

𝑛
𝑖=1  
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Where Di is the distance to the destination for the ith EV, 

and Si(TD,P) is the speed of the ith EV, which is a function 

of traffic density TD and priority P. 

Constraints: 

1. Traffic Flow Constraints: Ensure that the flow of 

traffic does not exceed the capacity of any road 

segment.  

∑ 𝑆 ≤ 𝐶
𝐸𝑉𝑠 𝑜𝑛 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

 

2. Signal Preemption Constraints: Model the impact of 

signal timing adjustments to accommodate EVs. 

3. Safety Constraints: Include constraints to ensure EVs 

and other vehicles operate safely, even when normal 

traffic rules are overridden. 

4.2 In the case of a single Emergency Vehicle (EV) 

In the case of a single Emergency Vehicle (EV) navigating 

a traffic square, the mathematical modeling simplifies, 

focusing primarily on optimizing the EV's passage through 

the area with minimal delay. Here's how the model can be 

adapted for this scenario: 

Simplified Model Description 

Given: 

• EV Characteristics: 

• Priority Level (P): Given the single EV scenario, P can 

be considered the highest by default. 

• Location (L): The current position of the EV relative 

to the traffic square. 

• Speed (S): The EV's speed, which may be influenced 

by traffic density and signal status. 

• Destination (D): The EV's intended exit point from the 

traffic square. 

• Traffic Square Parameters: 

• Traffic Density (TD): The density of traffic within the 

square, which affects the EV's speed. 

• Signal Timing (ST): The current state of traffic signals 

around the square. 

Objective: 

Minimize the response time (TR) of the EV to navigate 

through the traffic square and reach its destination. 

Constraints: 

1. Traffic Flow: The EV's passage should not cause 

unsafe conditions for other vehicles and 

pedestrians. 

2. Signal Preemption: If applicable, the model may 

include the ability to preempt traffic signals to 

facilitate the EV's movement. 

Mathematical Formulation 

Response Time Calculation: 

The response time TR to navigate the traffic square can be 

approximated as the distance to the destination divided by 

the effective speed of the EV, considering traffic density and 

potential signal preemption. 

𝑇𝑅 =  
𝐷

𝑆(𝑇𝐷, 𝑆𝑇)
 

Where S(TD,ST) represents the EV's effective speed, a 

function of traffic density TD and signal timing ST. 

Optimization Problem: 

Minimize TR subject to traffic safety and signal preemption 

constraints. Since there's only one EV, the optimization 

focuses on adjusting ST (if signal preemption is possible) to 

minimize TR. 

Implementation Steps 

1. Assess Current Conditions: 

• Evaluate TD and ST to understand the current traffic 

situation in the square. 

2. Calculate Optimal Speed: 

• Determine the optimal speed S for the EV to navigate 

through the square, considering TD and potential 

adjustments to ST. 

3. Adjust Traffic Signals (if applicable): 

• If signal preemption is part of the traffic management 

strategy, adjust ST to create a clear path for the EV. 

4. Direct the EV: 

• Communicate the optimal path and speed adjustments 

to the EV driver or automated navigation system to 

ensure the quickest and safest route through the square. 

5. Monitor and Adapt: 

• Continuously monitor TD and adjust ST as needed to 

maintain optimal conditions for the EV's passage. 

4.3 Two Emergency Vehicles (EVs) with the Same 

Priority 

In the scenario where there are two Emergency Vehicles 

(EVs) with the same priority level approaching or 

navigating through a traffic square, the mathematical 

modeling needs to account for the simultaneous 

optimization of their routes to minimize overall response 

times while ensuring safety and efficiency. This case 
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introduces complexity due to the need to coordinate the 

passage of both EVs without causing undue delay to either. 

Model Description for Two EVs with Equal Priority 

Given: 

• EV Characteristics for Each EV (EV1, EV2): 

• Priority Level (P): Identical for both EVs, indicating 

equal urgency. 

• Location (L1, L2): The current positions of EV1 and 

EV2 relative to the traffic square. 

• Speed (S1, S2): The speeds of EV1 and EV2, 

potentially affected by traffic density and signal 

timings. 

• Destination (D1, D2): The intended exit points from 

the traffic square for EV1 and EV2. 

• Traffic Square Parameters: 

• Traffic Density (TD): The density of traffic within the 

square, impacting the speeds of the EVs. 

• Signal Timing (ST): The state of traffic signals around 

the square. 

Objective: 

Minimize the combined response time (TR) for both EVs to 

navigate through the traffic square and reach their 

destinations, ensuring equitable treatment and optimal 

pathing for both. 

Constraints: 

1. Equitable Passage: Ensure that both EVs are 

given equal opportunity to navigate through the 

square without undue delay to either. 

2. Safety: Maintain safe conditions for all vehicles 

and pedestrians, considering the simultaneous 

movement of both EVs. 

3. Signal Coordination: Adjust traffic signals in a 

manner that facilitates the passage of both EVs, 

considering their paths may intersect or be parallel. 

Mathematical Formulation 

Combined Response Time Calculation: 

The objective is to minimize the combined response time for 

both EVs, which can be formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑤 𝑇𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑅1 + 𝑇𝑅2 

Where 

𝑇𝑅1 =  
𝐷1

𝑆1(𝑇𝐷, 𝑆𝑇)
 

𝑇𝑅2 =  
𝐷2

𝑆2(𝑇𝐷, 𝑆𝑇)
 

And 𝑆1(𝑇𝐷, 𝑆𝑇)   and 𝑆2(𝑇𝐷, 𝑆𝑇)    represent the effective 

speeds of EV1 and EV2 , respectively , functions of traffic 

density TD and signal timing ST. 

Optimization Problem 

Solve the optimization problem to find the optimal paths and 

possibly signal timing adjustments for EV1 and EV2 that 

minimize TRtotal while adhering to the constraints. 

Implementation Strategy 

1. Path Analysis: 

• Analyze potential paths for EV1 and EV2 to their 

respective destinations, considering current traffic 

conditions. 

2. Signal Timing Coordination: 

• Determine if adjustments to ST can simultaneously 

benefit both EVs, potentially through signal 

preemption or synchronization. 

3. Dynamic Routing: 

• Opt for dynamic routing solutions that can adapt in 

real-time to changes in traffic conditions, ensuring the 

most efficient paths for both EVs. 

4. Safety and Equity Check: 

• Ensure that the chosen paths and any signal 

adjustments do not compromise safety and that both 

EVs are treated equitably in terms of their urgency and 

operational needs. 

5. Continuous Monitoring and Adjustment: 

• Monitor the progress of both EVs and adjust routes or 

signals as necessary to respond to any unforeseen 

changes in traffic conditions. 

4.4 Two Emergency Vehicles (EVs) with Varying 

Priorities 

When dealing with two Emergency Vehicles (EVs) with 

varying priorities navigating through a traffic square, the 

mathematical model must differentiate between the vehicles 

based on their urgency levels to optimize their passage. This 

scenario introduces the need to prioritize the EV with a 

higher urgency while still ensuring the second EV's efficient 

and safe passage. Here's an approach to modeling this case: 

Model Description for Two EVs with Different Priorities 

Given: 

• EV Characteristics for Each EV (High-Priority EV, 

Low-Priority EV): 

• Priority Levels (PH, PL): PH>PL, indicating the 

high-priority EV has a more urgent need to reach 

its destination quickly compared to the low-priority 

EV. 
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• Locations (LH, LL): The current positions of the 

high-priority and low-priority EVs relative to the 

traffic square. 

• Speeds (SH, SL): The speeds of the high-priority 

and low-priority EVs, potentially influenced by 

traffic density and signal timings. 

• Destinations (DH, DL): The intended exit points 

from the traffic square for the high-priority and 

low-priority EVs. 

• Traffic Square Parameters: 

• Traffic Density (TD): The density of traffic within 

the square, affecting the speeds of the EVs. 

• Signal Timing (ST): The current state of traffic 

signals around the square. 

Objective: 

Minimize the response time (TRH) for the high-priority EV 

while considering the impact on the low-priority EV's 

response time (TRL), aiming to efficiently manage both 

vehicles' passage. 

Constraints: 

1. Priority Passage: Ensure the high-priority EV is 

given precedence in terms of signal adjustments and 

routing decisions. 

2. Safety and Efficiency: Maintain safe conditions for 

all traffic and optimize the overall efficiency of the 

traffic square, minimizing disruptions. 

3. Signal Coordination: Adjust traffic signals to 

facilitate the high-priority EV's movement, 

considering potential benefits or minimal impacts on 

the low-priority EV. 

Mathematical Formulation 

Objective Function: 

Minimize TRH subject to minimizing TRL without 

compromising the high-priority EV's expedited passage. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑅𝐻 =  
𝐷𝐻

𝑆𝐻 (𝑇𝐷, 𝑆𝑇)
 

                                                                    Subject to 

min 𝑇𝑅𝐿 =  
𝐷𝐿

𝑆𝐿 (𝑇𝐷,𝑆𝑇)
 

Where SH(TD,ST) and SL(TD,ST) represent the effective 

speeds of the high-priority and low-priority EVs, 

respectively. 

Optimization Strategy: 

1. Prioritize High-Priority EV: 

• First, optimize the route and signal timing for the 

high-priority EV, reducing TRH as much as 

possible. 

2. Adjust for Low-Priority EV: 

• Then, within the constraints set by the optimized 

path for the high-priority EV, look for 

opportunities to minimize TRL, such as timing 

adjustments at signals not affecting the high-

priority EV's route or providing alternative routes 

for the low-priority EV that avoid additional 

delays. 

3. Dynamic Traffic Management: 

• Employ dynamic traffic management strategies 

that can adjust in real-time to the progress of both 

EVs, ensuring the high-priority EV's path remains 

optimal while seeking ways to assist the low-

priority EV. 

4. Communication and Monitoring: 

• Ensure continuous communication with both EVs 

regarding their routes, expected signal changes, 

and any adjustments made to accommodate their 

movements. 

5. Discussion of Comparison with existing studies 

Table 1. Comparison with existing studies. 

Paper Single EV Two EVs 

with the 

Same 

Priority 

Two EVs 

with 

Varying 

Priority 

[28] Yes No Yes 

[29] Yes No Yes 

[30] Yes No No 

[1] Yes Yes Yes 

Proposed Yes Yes Yes 

 

6. Proposed Architecture  

 

Fig 2. Proposed working model. 
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The figure 2 describes a process for using a deep learning 

model to classify vehicles in a dataset as either emergency 

vehicles (EVs) or non-emergency vehicles. Here’s a step-

by-step explanation of the process with respect to the 

dataset: 

1. Data Cleaning 

This step involves preparing the dataset for analysis by 

removing any inconsistencies or inaccuracies, which can 

affect the performance of the model. The specific tasks 

include: 

• Artifact Removal: Cleaning up the data by removing 

irrelevant or corrupt data that could negatively impact 

the model. 

• Noise Reduction: Applying filters or techniques to 

reduce random variations in the data that do not 

represent the underlying dataset patterns. 

• Bias Field Correction: Correcting any systematic 

distortions or biases in the data to prevent skewed 

results. 

• Standardization and Normalization: Scaling the 

data so that it follows a standard format and range, 

which is necessary for many machine learning 

algorithms to perform correctly. 

2. Segmentation 

Segmentation involves dividing the image into parts or 

segments to simplify or change the representation of the 

image into something more meaningful and easier to 

analyze. 

• Thresholding: Separating objects from the 

background by converting the grayscale images into 

binary images. 

• Region Growing: Identifying and grouping pixels or 

sub-regions into larger regions based on predefined 

criteria (like intensity or color). 

• Watershed Algorithm: A technique used for image 

segmentation which treats the gradient magnitude of 

an image as a topographic surface and segments the 

image into different catchment basins. 

3. Feature Extraction 

In this stage, the model identifies and extracts various 

descriptive features from the data that are relevant for 

classifying the vehicles. 

• Histogram-based Features: Analyzing the 

distribution of pixel intensity values in the image to 

capture texture information. 

• Shape Features: Quantitative measures derived from 

the geometry of the vehicle shapes, such as aspect 

ratio, perimeter, area, and so on. 

4. Deep Learning Model 

• ResNet152: A specific deep learning model known for 

its depth, enabling it to learn very complex features. It 

is a convolutional neural network that is 152 layers 

deep and is a variant of the ResNet model, which uses 

residual learning to ease the training of networks that 

are substantially deeper than those used previously. 

Model Training 

The prepared dataset is split into two parts: the training 

dataset and the test dataset. 

• Train Dataset: A subset of the data used to train the 

model, where the model learns to classify vehicles 

based on the features extracted. 

• Test Dataset: A separate subset used to evaluate the 

performance of the model. The model has not seen this 

data during training, and it is used to simulate how the 

model would perform on new, unseen data. 

Trained Model 

Once the model has been trained, it becomes a trained model 

that can be used to make predictions on new data. 

5. Performance Evaluation 

The trained model's performance is evaluated using metrics 

that measure the accuracy and robustness of its predictions. 

• Accuracy: The proportion of total predictions that 

were correct. 

• Specificity: The ability of the model to correctly 

identify non-emergency vehicles (true negatives). 

• Sensitivity: The ability of the model to correctly 

identify emergency vehicles (true positives). 

Predictions 

The final step is the model making predictions on new data 

to classify the vehicles as either emergency or non-

emergency.  

7. Implementation 

7.1 Dataset 

Data Description 

train.zip: contains 2 csvs and 1 folder containing image data 

train.csv – [‘image_names’, ‘emergency_or_not’] contains 

the image name and correct class for 1646 (70%) train 

images 

images – contains 2352 images for both train and test sets 
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test.csv: [‘image_names’] contains just the image names for 

the 706 (30%) test images 

sample_submission.csv: 

[‘image_names’,’emergency_or_not’] contains the exact 

format for a valid submission (1 - For Emergency Vehicle, 

0 - For Non Emergency Vehicle) 

Link : 

https://www.kaggle.com/datasets/abhisheksinghblr/eme

rgency-vehicles-identification/data 

7.2 Analysis 

 

Fig 3. Traffic dataset 

 

Fig 4. Traffic Prediction 

 

Fig 5. Model epoch vs Loss 

 

Fig 6. Ambulance detection in crowd 

8. Result 

The table 2 and figure 7 visually represents the performance 

of six different convolutional neural network models on a 

classification task, using standard machine learning metrics: 

Accuracy, Precision, Recall, and F1-Score. The table and 

graph summarize the models' performance as follows: 

• AlexNet shows relatively lower performance across all 

metrics compared to the other models, with Accuracy 

and Precision just above 0.8, and the F1-Score being the 

lowest at 0.825. 

• VGG16 performs better than AlexNet, with notable 

improvements in Recall and a higher F1-Score of 0.885, 

indicating a balanced performance between precision 

and recall. 

• VGG19 has similar metrics to VGG16 but slightly lower 

in each category, suggesting a comparable performance 

with a marginal difference in precision and recall. 

• ResNet 50 marks a significant improvement over the 

VGG models, with all scores reaching above 0.9. This 

model shows a strong balance between all measured 

aspects of performance. 

• ResNet 101 further improves upon ResNet 50, 

suggesting that additional depth in the network 

architecture could be contributing to better feature 

extraction and, consequently, better classification 

performance. 

• The Proposed ResNet152 model tops the chart with the 

highest scores in all categories, peaking at 0.94 for both 

Accuracy and F1-Score, which suggests a superior 

ability to generalize and make accurate predictions on 

the test dataset. 

Table 2. Comparative result of different models 

Model 

Accurac

y 

Precisio

n 

Recal

l 

F1-

Score 

AlexNet 0.85 0.83 0.82 0.825 

VGG16 0.9 0.88 0.89 0.885 

https://www.kaggle.com/datasets/abhisheksinghblr/emergency-vehicles-identification/data
https://www.kaggle.com/datasets/abhisheksinghblr/emergency-vehicles-identification/data


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 210–232 |  230 

VGG19 0.89 0.87 0.88 0.875 

ResNet 50 0.92 0.91 0.93 0.92 

ResNet 101 0.93 0.92 0.94 0.93 

Proposed 

ResNet152 0.94 0.93 0.95 0.94 

 

 

Fig 7. Comparative result of different models 

9. Conclusion 

The comprehensive analysis conducted in this study on the 

Smart Loaded Traffic Square System (SLTSS) for 

Emergency Vehicles (EVs) utilizing deep learning models 

marks a significant stride toward resolving one of the most 

pressing challenges in urban traffic management. Through a 

meticulous examination of various convolutional neural 

network architectures, including AlexNet, VGG16, 

VGG19, ResNet 50, ResNet 101, and a pioneering 

ResNet152 model, this research underscores the profound 

impact of advanced deep learning techniques in enhancing 

the precision and efficiency of traffic systems in densely 

populated areas. 

The journey began with the foundational AlexNet model, 

which set a benchmark by achieving an accuracy of 85%, 

precision of 83%, recall of 82%, and an F1-score of 82.5%. 

This baseline performance highlighted the potential of 

utilizing deep learning models for vehicle classification 

tasks within urban traffic scenarios. As the study progressed 

through more sophisticated models such as VGG16 and 

VGG19, incremental improvements were observed, with 

accuracy reaching up to 90% and 89%, respectively. These 

advancements signified the models' enhanced capability to 

differentiate between EVs and non-emergency vehicles 

amidst the complexities of a loaded traffic square. However, 

it was the ResNet series that truly demonstrated the 

transformative potential of deep learning in traffic 

management systems. ResNet 50 introduced a remarkable 

leap in performance, achieving an accuracy of 92%, which 

was further improved by ResNet 101 with a 93% accuracy. 

The culmination of this progressive enhancement was 

witnessed in the proposed ResNet152 model, which 

emerged as the most effective architecture, achieving an 

unparalleled accuracy of 94%, precision of 93%, recall of 

95%, and an F1-score of 94%.  

These results not only showcase the superiority of deeper 

neural networks in processing complex image data but also 

highlight the critical role of model architecture in 

optimizing emergency response mechanisms within urban 

environments. The proposed ResNet152 model, in 

particular, stands as a testament to the scalability and 

robustness of deep learning solutions for critical 

applications such as the SLTSS. By significantly reducing 

the response times for EVs through accurate and rapid 

vehicle classification, the model demonstrates a potential 

pathway to saving lives and improving public safety 

measures in smart cities. The success of this model, 

validated by the empirical results of this study, advocates 

for its integration into existing and future traffic 

management infrastructures, providing a blueprint for 

leveraging artificial intelligence to tackle the challenges of 

emergency vehicle prioritization.  

This research illuminates the broader implications of 

implementing advanced deep learning models in smart city 

logistics and emergency response protocols. The positive 

outcomes observed in the SLTSS case study reinforce the 

argument for a more widespread adoption of AI-driven 

systems in urban planning and public safety initiatives. By 

offering a detailed analysis of the performance of each 

model and presenting a clear comparison of their 

capabilities, this study serves as a valuable resource for 

policymakers, urban planners, and technologists looking to 

harness the power of AI in creating more responsive, 

efficient, and safe urban environments. In essence, the 

findings of this study not only contribute to the academic 

discourse on the application of deep learning in traffic 

management but also provide practical insights that can 

inform the development of smarter, more resilient cities. As 

we move forward, the continued exploration and 

implementation of such AI-based solutions will 

undoubtedly play a pivotal role in addressing the complex 

challenges of modern urban living, paving the way for a 

future where technology and public safety converge to 

foster more sustainable and livable communities. 

Author contributions 

Mr. Bharat Pahadiya: Conceptualization, Methodology, 

Software, Field study, Data curation, Writing-Original draft 

preparation, Software, Validation., Field study. Dr. Rekha 

Ranawat: Visualization, Investigation, Writing-Reviewing 

and Editing.  

Conflicts of interest  

The authors declare no conflicts of interest. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 210–232 |  231 

References  

[1] Humayun, Mamoona, Maram Fahhad Almufareh, and 

Noor Zaman Jhanjhi. "Autonomous traffic system for 

emergency vehicles." Electronics 11, no. 4 (2022): 

510. 

[2] Cafiso, Salvatore, Alessandro Di Graziano, Tullio 

Giuffrè, Giuseppina Pappalardo, and Alessandro 

Severino. "Managed Lane as Strategy for Traffic Flow 

and Safety: A Case Study of Catania Ring 

Road." Sustainability 14, no. 5 (2022): 2915. 

[3] Pashayev, Elgun. "Area-wide Traffic Calming in 

Inner-city Area of Dresden." PhD diss., 

Westsächsische Hochschule Zwickau, 2023. 

[4] Hughes, Jonathan E., Daniel Kaffine, and Leah 

Kaffine. "Decline in traffic congestion increased crash 

severity in the wake of COVID-19." Transportation 

research record 2677, no. 4 (2023): 892-903. 

[5] González-Aliste, Pablo, Iván Derpich, and Mario 

López. "Reducing urban traffic congestion via 

charging price." Sustainability 15, no. 3 (2023): 2086. 

[6] Fahs, Walid, Fadlallah Chbib, Abbas Rammal, Rida 

Khatoun, Ali El Attar, Issam Zaytoun, and Joel 

Hachem. "Traffic Congestion Prediction Based on 

Multivariate Modelling and Neural Networks 

Regressions." Procedia Computer Science 220 

(2023): 202-209. 

[7] Xie, Derong, Sihao Chen, Haotong Duan, Xinwei Li, 

Caotong Luo, Yuxuan Ji, and Huiming Duan. "A novel 

grey prediction model based on tensor higher-order 

singular value decomposition and its application in 

short-term traffic flow." Engineering Applications of 

Artificial Intelligence 126 (2023): 107068. 

[8] Yang, Bo, Hua Zhang, Mengxin Du, Anna Wang, and 

Kai Xiong. "Urban traffic congestion alleviation 

system based on millimeter wave radar and improved 

probabilistic neural network." IET Radar, Sonar & 

Navigation (2023). 

[9] Haboury, Nathan, Mo Kordzanganeh, Sebastian 

Schmitt, Ayush Joshi, Igor Tokarev, Lukas Abdallah, 

Andrii Kurkin, Basil Kyriacou, and Alexey Melnikov. 

"A supervised hybrid quantum machine learning 

solution to the emergency escape routing 

problem." arXiv preprint arXiv:2307.15682 (2023). 

[10] Srivastava, Sandesh Kumar, Anshul Singh, Ruqaiya 

Khanam, Prashant Johri, Arya Siddhartha Gupta, and 

Gaurav Kumar. "Smart Traffic Control for Emergency 

Vehicles Using the Internet of Things and Image 

Processing." Trends and Advancements of Image 

Processing and Its Applications (2022): 53-73. 

[11] Xing, Xue, and Xiaoyu Li. "Recommendation of urban 

vehicle driving routes under traffic congestion: A 

traffic congestion regulation method considering road 

network equilibrium." Computers and Electrical 

Engineering 110 (2023): 108863. 

[12] Jutury, Dheeraj, Neetesh Kumar, Anuj Sachan, Yash 

Daultani, and Naveen Dhakad. "Adaptive neuro-fuzzy 

enabled multi-mode traffic light control system for 

urban transport network." Applied Intelligence 53, no. 

6 (2023): 7132-7153. 

[13] Li, Xiang, Jiao Gui, and Jiaming Liu. "Data-driven 

traffic congestion patterns analysis: A case of 

Beijing." Journal of Ambient Intelligence and 

Humanized Computing 14, no. 7 (2023): 9035-9048. 

[14] Singh, Shyam Pratap, Arshad Ali Khan, Riad Souissi, 

and Syed Adnan Yusuf. "Leveraging Neo4j and deep 

learning for traffic congestion simulation & 

optimization." arXiv preprint 

arXiv:2304.00192 (2023). 

[15] Fahs, Walid, Fadlallah Chbib, Abbas Rammal, Rida 

Khatoun, Ali El Attar, Issam Zaytoun, and Joel 

Hachem. "Traffic Congestion Prediction Based on 

Multivariate Modelling and Neural Networks 

Regressions." Procedia Computer Science 220 

(2023): 202-209. 

[16] Moumen, Idriss, Jaafar Abouchabaka, and Najat 

Rafalia. "Adaptive traffic lights based on traffic flow 

prediction using machine learning 

models." International Journal of Electrical and 

Computer Engineering (IJECE) 13, no. 5 (2023): 

5813-5823. 

[17] Gamel, Samah A., Esraa Hassan, Nora El-Rashidy, 

and Fatma M. Talaat. "Exploring the effects of 

pandemics on transportation through correlations and 

deep learning techniques." Multimedia tools and 

applications 83, no. 3 (2024): 7295-7316. 

[18] Li, Jiaqi, Xiaoyuan Xu, Zheng Yan, Han Wang, 

Mohammad Shahidehpour, and Yue Chen. 

"Coordinated Optimization of Emergency Response 

Resources in Transportation-Power Distribution 

Networks under Extreme Events." IEEE Transactions 

on Smart Grid (2023). 

[19] Latif, Rana Muhammad Amir, Muhammad Jamil, 

Jinliao He, and Muhammad Farhan. "A Novel 

Authentication and Communication Protocol for 

Urban Traffic Monitoring in VANETs Based on 

Cluster Management." Systems 11, no. 7 (2023): 322. 

[20] Agarwal, Piyush, Sachin Sharma, and Priya Matta. 

"Federated Learning in Intelligent Traffic 

Management System." In 2023 Winter Summit on 

Smart Computing and Networks (WiSSCoN), pp. 1-6. 

IEEE, 2023. 

[21] Wang, Hao, Yun Yuan, Xianfeng Terry Yang, Tian 

Zhao, and Yang Liu. "Deep Q learning-based traffic 

signal control algorithms: Model development and 

evaluation with field data." Journal of Intelligent 

Transportation Systems 27, no. 3 (2023): 314-334. 

[22] Obayya, Marwa, Fahd N. Al-Wesabi, Rana Alabdan, 

Majdi Khalid, Mohammed Assiri, Mohamed Ibrahim 

Alsaid, Azza Elneil Osman, and Amani A. Alneil. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 210–232 |  232 

"Artificial Intelligence for Traffic Prediction and 

Estimation in Intelligent Cyber-Physical 

Transportation Systems." IEEE Transactions on 

Consumer Electronics (2023). 

[23] Husnain, Ghassan, Shahzad Anwar, and Fahim 

Shahzad. "An Enhanced AI-Enabled Routing 

Optimization Algorithm for Internet of Vehicles 

(IoV)." Wireless Personal Communications 130, no. 4 

(2023): 2623-2643. 

[24] Seong, Kijin, Junfeng Jiao, and Akhil Mandalapu. 

"Effects of urban environmental factors on heat-

related emergency medical services (EMS) response 

time." Applied Geography 155 (2023): 102956. 

[25] Liu, Jun, Xing Fu, Alexander Hainen, Chenxuan Yang, 

Leon Villavicencio, and William J. Horrey. 

"Evaluating the impacts of vehicle-mounted Variable 

Message Signs on passing vehicles: implications for 

protecting roadside incident and service 

personnel." Journal of Intelligent Transportation 

Systems (2023): 1-21. 

[26] Vlachogiannis, Dimitris M., Hua Wei, Scott Moura, 

and Jane Macfarlane. "HumanLight: Incentivizing 

Ridesharing via Human-centric Deep Reinforcement 

Learning in Traffic Signal Control." arXiv preprint 

arXiv:2304.03697 (2023). 

[27] Dodia, Ayush, Sumit Kumar, Ruchi Rani, Sanjeev 

Kumar Pippal, and Pramoda Meduri. "EVATL: A 

novel framework for emergency vehicle 

communication with adaptive traffic lights for smart 

cities." IET Smart Cities 5, no. 4 (2023): 254-268. 

[28] Sumi, L.; Ranga, V. Intelligent traffic management 

system for prioritizing emergency vehicles in a smart 

city. Int. J. Eng. 2018, 31, 278–283. 

[29] Nellore, K.; Hancke, G.P. Traffic management for 

emergency vehicle priority based on visual sensing. 

Sensors 2016, 16, 1892. 

[30] González, C.L.; Pulido, J.J.; Alberola, J.M.; Julian, V.; 

Niño, L.F. Autonomous Distributed Intersection 

Management for Emergency Vehicles at Intersections. 

In Practical Applications of Agents and Multi-Agent 

Systems; Springer: Berlin/Heidelberg, Germany, 2021 

 

 

 


