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Abstract: A research integrated Long Short-Term Memory (LSTM) networks with symmetric key encryption techniques in remote 

situations to improve IoT device security. The research evaluates machine learning algorithms, including the innovative Proposed Deep 

LSTM model, and compares them on accuracy, precision, recall, specificity, FPR, FNR, and NPV. The Proposed Deep LSTM model 

surpasses its competitors with 98% accuracy, 98% precision, and 97% recall. It has the best specificity and NPV of 97% and the lowest 

FPR and FNR of 2% and 8%. These data show the Proposed Deep LSTM's strong prediction skills and its significant advantage over 

standard models like Radial Basis Function Networks (RBFN), which have an 81% specificity and 83% NPV score. The research compares 

encryption techniques' encryption and decryption speeds and processing efficiency across file sizes. IoT situations where fast data 

processing are needed may benefit from Enhanced Elliptic Curve Cryptography (EECC), the fastest technique for encryption and 

decryption. Blowfish encryption takes longer to complete, making it less efficient for time-sensitive applications. These detailed studies 

help choose models and algorithms that optimise IoT security, including accuracy, efficiency, and performance scalability. This study leads 

the application of advanced deep learning models and encryption strategies to secure IoT networks. 
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1. Introduction 

In the era of ubiquitous computing, the Internet of Things 

(IoT) has become an integral part of our daily lives, with a 

vast network of interconnected devices that communicate 

and exchange data. However, this interconnectivity also 

presents a substantial security risk, making IoT systems 

vulnerable to a variety of cyber threats. The study titled 

"Elevating IoT Security: Integrating LSTM with Symmetric 

Key Protocols in Distributed Environments" seeks to 

address these concerns by proposing a novel security 

framework that synergizes the predictive strength of Long 

Short-Term Memory (LSTM) networks with the encryption 

robustness of symmetric key protocols. 

This introduction sets the stage by first outlining the current 

challenges faced in IoT security, emphasizing the need for 

advanced techniques to counteract sophisticated cyber- 

attacks. It then transitions into an overview of the existing 

security measures, highlighting their limitations in 

distributed environments where scalability and real-time 

response are crucial. 

The core of this study introduces a hybrid model that 

employs LSTM, a deep learning technique known for its 

excellence in sequence prediction and anomaly detection, to 

accurately identify potential security breaches. To 

complement this, symmetric key cryptographic methods are 
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integrated to ensure data integrity and confidentiality, 

forming a dual-layered defense mechanism. 

An in-depth analysis of various machine learning algorithms 

is presented, with a specific focus on the performance of the 

Proposed Deep LSTM model in comparison to other 

established models like RNN, DNN, DBN, and RBFN. The 

methodology of evaluating these models on the basis of 

accuracy, precision, recall, and other relevant metrics is 

thoroughly explained, justifying the selection of the 

Proposed Deep LSTM model based on its superior 

performance. 

The introduction explores the encryption aspect of the 

proposed framework, analyzing the efficiency of different 

encryption algorithms. This includes a discussion on the 

implications of encryption and decryption times and 

processing efficiency, which are critical for the seamless 

operation of IoT devices. 

The current research contributes significantly to enhancing 

the security of Internet of Things (IoT) devices through 

several key innovations: 

1. Improved Cryptography Algorithm and Malware 

Detection: The research introduces an enhanced 

cryptography algorithm alongside a sophisticated 

malware detection mechanism. This dual approach 

significantly bolsters the security of IoT devices by both 

encrypting data more effectively and identifying 

malicious software before it can cause harm. 

2. Contextual Anomaly Detection for Node Classification: 

Utilizing contextual anomaly detection, the study 

http://www.ijisae.org/
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effectively classifies nodes within a network as either 

normal or attack nodes. This method relies on analyzing 

the data collected from the network to discern patterns 

that indicate potential security threats, thereby 

improving the network's overall resilience against cyber 

attacks. 

3. Attack Prediction with Deep LSTM Classifier: A deep 

LSTM (Long Short-Term Memory) classifier is 

employed to predict various types of cyber attacks. This 

advanced machine learning technique allows for the 

accurate identification of potential threats by learning 

from sequential data, enabling preemptive security 

measures to safeguard against these attacks. 

4. Enhanced ECC Algorithm for Edge Node Security: The 

research introduces an improved version of the Elliptic 

Curve Cryptography (ECC) algorithm, designed 

specifically for enhancing the security of edge nodes. 

This improved ECC algorithm facilitates dynamic key 

generation, ensuring robust encryption and secure data 

transmission across the network. 

5. Hybrid MA-BW Algorithm for Optimal Key Selection: 

A novel hybrid algorithm combining Mayfly algorithm 

(MA) and the Black Widow (BW) algorithm is utilized 

for selecting the optimal key in the key generation 

process. This innovative approach optimizes the security 

of encrypted communications by ensuring that the keys 

used are both strong and suitably matched to the security 

requirements of the network. 

The manuscript is structured as follows: Section 2 reviews 

existing research articles on malware detection approaches 

in IoT networks and the development of security strategies 

employing various cryptography algorithms. Section 3 

outlines the proposed approach for IoT device security, 

which utilizes malware detection through deep LSTM and 

EECC for secure data transfer. The outcomes and 

performance metrics of the proposed framework are 

discussed in Section 4, while Section 5 provides a 

comprehensive summary of the entire research project from 

inception to conclusion. 

2. Literature Review 

Shahidinejad et al. (2024) state that Authentication and 

Session Key Generation Protocols (SKGPs) secure IoT 

device communication channels. Scholars are using 

blockchain to improve SKGP security and applicability. 

Blockchain, a distributed ledger system, offers 

immutability, transparency, and accountability without 

trusted intermediaries. Blockchain-assisted authentication 

and SKGPs are critically reviewed in this study for IoT 

domains including IoV, IoD, and IIoT. Our study classifies 

schemes by IoT application fields, security, and blockchain 

components. We attempt to identify important difficulties 

by providing an impartial critical evaluation and protocol 

taxonomy. Our evaluation will detail what writers gained or 

lost from blockchain integration. This survey is the only one 

that covers all blockchain-integrated SKGP requirements, 

including security features and assaults, attack models, 

verification tools, blockchain kinds, platforms, consensus 

processes, and more. Our study also highlights blockchain- 

assisted SKGP research needs. We want to direct future 

study in this subject and offer researchers with crucial 

information. [1] 

Kommineni et al. (2024), A Mobile Ad hoc Network 

(MANET) connects mobile devices without a fixed 

infrastructure. It helps when fixed infrastructure is 

unavailable, impracticable, or costly. They are useful in 

disaster recovery, military communication, vehicle 

networks, outdoor events, and remote areas. MANETs 

struggle with routing, resource management, security, and 

scalability. MANETs, or Mobile Adhoc Networks, are 

groups of mobile nodes that dynamically construct brief- 

lived networks without a fixed infrastructure or centralised 

administration. [1] These networks face energy 

conservation and security issues due to attacks. SDN, a 

modern communication system, separates the system 

information plane from the control plane. It manages and 

controls wireless and wired network topologies in an 

energy-efficient, layered, scalable, and dynamic manner. 

MANET was integrated with the SDN controller to 

overcome security issues.[2] SDN MANET architecture is 

tailored to a certain operational requirement, ecosystem, and 

equipment. The SDN controller is vital to the network's 

numerous tasks, including network administration, 

bandwidth control, increased security, and energy 

management while routing. Multiple methods exist to 

maintain trust and security in MANETs. If the network has 

different numbers of nodes or attackers, these models may 

function poorly. Network performance changes include 

higher power consumption, latency, packet loss, and lower 

throughput. These factors need improved MANET security 

models and performance measurements. We propose to use 

hybrid models in SDN MANET to improve performance. 

[2] 

Plageras et al. (2024), World altered. Civilised nations have 

adopted new technologies, trends, protocols, efficient 

algorithms, and systems to improve their quality of life. This 

study introduced several new words, technologies, and 

methods. In this work, threats, assaults, and vulnerabilities 

have been analysed, and a new scenario has been offered to 

overcome these violations. Based on a security model 

established for vital sectors like hospitals, factories, etc., the 

scenario seeks to enhance people's safe and efficient living 

and treatment. This study aimed to analyse IoT security 

concerns and suggest solutions based on the best security 

algorithms. The complexity, throughput, power 

consumption, strength, and memory utilisation of the 
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algorithms analysed have shown promising findings for 

further study and testing. [3] 

Cloud computing might transform healthcare, according to 

Selvakumar et al. (2024). Data centralization on the cloud 

raises security and privacy concerns for patients and 

healthcare professionals. Cryptography is needed to keep 

medical data exchanges private. DNA cryptography and 

Huffman coding are used in this article to encrypt and 

decipher digital health care private data. The important thing 

is that our technique yields the same cypher size as the 

character set of provided data. Security investigation shows 

cloud data storage and transmission security. Cryptographic 

requirements, key space analysis, key and plain text 

sensitivity, sensitive score analysis, sensitivity and 

specificity, optimal threshold, randomness analysis, 

uniqueness of implementation, entropies of binary bits, 

DNA bases, Huffman-coded DNA bases, Huffman-encoded 

binary bits, and cloud service provider risk are examined. 

Comparing the proposed cryptographic approach to others 

shows that it is more secure and stronger. [4] 

Data science drives the technical and operational advances 

in cyber security in the computer world, according to 

Addimulam (2024). An automated and intelligent safety 

system requires identifying cyber security data patterns and 

constructing a data-driven model that corresponds with 

them. Data from relevant cyber security sources and 

analytics to enhance current patterns are needed. The essay 

also discusses critical elements that impact ICS control, 

communication, redundancy, and reliability design choices, 

which are vital to system security. Security procedures 

include network segmentation, access control, patch 

management, and security monitoring. The research also 

examines how machine learning might enhance ICS cyber 

security. After that, we discuss how to secure industrial 

control systems (ICSs) and implement additional security 

measures like risk assessment methodologies, identify 

unresolved security research issues related to ICSs, and 

suggest future directions in ICS security research. [5] 

New business paradigms and the digital economy allow 

value chain networks to process operations, services, 

products, and software across many areas and communities 

(Khaleefah et al., 2024) Integration of all data networks, 

computing models, and distributed software provides a 

broader cloud computing solution, but the security solution 

is missing or inadequate. More work is needed to strengthen 

security requirements like mutual entity trustworthiness, 

access controls, identity management, and data protection, 

all aspects of detecting and preventing attacks or threats. 

Many international organisations, academic universities, 

institutions, and organisations are establishing cybersecurity 

frameworks to address cybersecurity threats. Based on ISO 

CSF, NIST CSF, and various researcher-proposed 

frameworks, this document briefly examines CSFs' 

characteristics and features. This research may assist create 

a CSF model with its shared concepts. [6] 

According to Hseiki et al. (2024), the growth of IoT, Smart 

Grids, and renewable energy sources has increased the 

demand for cybersecurity. Maintaining continuity and 

operation requires protecting these systems from any 

attacks. Smart grids use data transmission between linked 

units. Every module has cybersecurity risks that might 

undermine the whole system. This research addressed smart 

energy metre (SEM) security and data integrity challenges, 

which are crucial to smart grid networks. A security-focused 

SEM design was presented after a thorough assessment of 

current products and features. A multi-level architecture 

secures SEM hardware, communication, and data. The 

system reduces DDoS assaults, data integrity concerns, 

privacy difficulties, and energy theft. Two-way data 

connection, processing, and integrity are key to smart metre 

security. To guarantee network security and resilience, the 

authors used LoRaWAN in smart grid communications and 

unidirectional data transfer. [7] 

According to Sami et al. (2024), the Internet of Things (IoT) 

is a major technical achievement. Organisations, companies, 

and scholars worldwide have followed its progress. The IoT 

collects and processes distant data, boosting dispersed 

system and individual productivity. Secure hash algorithms 

(SHAs) are essential for IoT ecosystem security. Security 

applications benefit from these algorithms' fixed-size hash 

values. A novel multi-level hashing algorithm (MLHA) 

might improve IoT security, according to this article. The 

suggested MLHA was thoroughly examined and controlled 

to improve IoT security without affecting device 

performance or efficiency. The new hashing technique 

works for all IoT devices, from tiny battery-powered 

devices to huge ones with steady electrical supply and 

abundant resources. This project aims to create an IoT- 

specific hashing algorithm. Better hashing methods are used 

in this study to increase IoT data security. Examining IoT 

devices, evaluating algorithms, and creating efficient and 

secure solutions will accomplish this goal. Additionally, the 

algorithm offers a fresh approach to IoT data security. This 

study examines bitwise-based SHA algorithms. These 

algorithms were adapted for IoT devices to improve 

efficiency and scalability. The algorithm has eight tiers for 

different IoT devices. The first level is simple and designed 

for devices with little RAM, CPU, and battery capacity. 

Each iterative iteration stage adapts to IoT device 

capabilities. Higher tiers of the algorithm include 

complicated equations, functions, output lengths, additional 

words, arithmetic and logical operations, and iterations. 

Advanced layers of the algorithm were built for bigger, 

more complicated IoT devices [8]. 

An essential virtual network, the Internet of Things (IoT) 

lets distant users access connected multimedia equipment 

(Cherbal et al., 2024) The emergence of IoT and its 
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widespread use in daily life have spurred study. IoT 

researchers worry about security since it's crucial to the 

adoption of new technologies. To secure an IoT network, 

several research projects have focused on IoT security on a 

method, application, or vulnerability category. This study 

reviews new and established IoT security technologies 

including blockchain, machine learning, encryption, and 

quantum computing. A comparison of linked studies' 

strengths and downsides is presented in this research. It 

classifies suitable solutions by security needs met. Also 

highlighted are the pros and cons of each of the four 

methods. [9] 

Nadhan & Jacob (2024), The Internet of Things connects 

medical imaging equipment to the healthcare data 

backbone. The IoT enabled this invention, which will speed 

up medical diagnosis and treatment. The growing use of 

interconnected devices and cloud-based systems creates 

potential entry points for cyberattacks and unauthorised 

access to sensitive medical data, which threatens patient 

privacy, safety, and healthcare system trust. Healthcare 

relies on medical imaging' confidentiality, integrity, and 

availability for proper diagnosis, treatment planning, and 

patient care. Medical image security research in IoT 

healthcare began. For this, we examined a cryptography- 

based network for picture encryption and decryption and its 

potential for secure medical image transfer using deep 

learning. We map visual representations using a ResNet-50- 

based key learning network in the proposed study. Due to 

these “hidden properties” in the learning model, the 

encryption approach may be tailored to each domain. 

Reconstructing networks turn encrypted images into 

“plaintext” as a first step in decryption. After uncovering 

hidden entities, a Return on Investment (ROI) framework 

may be created and data mining simplified by using the 

user's local information context. Using the suggested 

approach, therapeutic imaging tools are very reliable. Two 

types of publicly accessible datasets helped us achieve our 

aim. The extensive empirical setup and security analysis 

imply that the offered strategy may provide exceptional 

security and power. [10] 

Zhang et al. (2024) state that IoT devices may create 

MultiMedia Big Data (MMBD) as multimedia devices due 

to their fast growth and popularity. Untrusted cloud servers 

contain encrypted MMBD. Searchable encryption is a good 

solution for customisable keyword ciphertext searches. 

However, these efforts have two limitations. IoT device data 

privacy is difficult to safeguard individually. However, 

finer-grained search result verification is impossible with an 

untrusted cloud server. We propose a safe and verifiable 

cloud-assisted edge computing MultiMedia Data Search 

(MMDS) strategy to solve these restrictions. We created a 

safe, versatile, and fast keyword search technique using 

bilinear pairings to protect IoT device data separately. We 

use blockchain and hashing to create a fine-grained search 

result verification method for more flexibility and 

practicality. We evaluated and analysed MMDS scheme 

performance and security. Finally, we used MMDS to tackle 

intelligent multimedia system challenges. Proof and 

analysis confirm MMDS security. Performance assessments 

and evaluations validate MMDS's efficiency and 

practicality. [11] 

Alwahedi et al. (2024), The Internet of Things (IoT) 

ecosystem's rapid expansion has raised cybersecurity issues 

despite its unrivalled connectedness and ease. Due to IoT 

device heterogeneity, extensive deployment, and computing 

limits, several challenges arise. As the IoT environment 

changes, new technologies must be integrated to meet these 

issues. Machine Learning (ML), a fast-growing technology, 

may solve IoT security challenges. Cyber threat detection 

research has progressed due to it. This study covers machine 

learning trends, methods, and difficulties for IoT cyber 

threat detection. We compare cutting-edge ML-based 

Intrusion Detection Systems (IDSs) in IoT security. We also 

illuminate this dynamic field's outstanding difficulties and 

challenges. Generative AI and big language models boost 

IoT security in the future. Researchers and practitioners get 

a deeper grasp of cyber threat detection approaches from the 

conversations. This study is useful for people interested in 

ML and IoT security-based cyber threat detection. [12] 

Ahmed et al. (2024), In the rapidly increasing Internet of 

Things (IoT), strong security mechanisms like 

authentication are essential to protecting sensitive data and 

linked devices. In the IoT, symmetry means data delivery 

and processing is balanced among devices or nodes. IoT 

authentication may be more resilient and scalable using 

symmetric patterns. The purpose of this scoping study is to 

cover current IoT authentication advances. Recent research 

on IoT authentication techniques is then presented around 

numerous significant research issues. A multi-criteria 

classification technique is used to understand IoT 

authentication. This entails evaluating current 

authentication techniques, their pros and cons, and their 

security risks. The review questions examine IoT 

authentication systems to discover trends and changes. This 

review synthesises scientific publications to guide IoT 

authentication research. It helps create theoretical 

underpinnings and has practical ramifications for 

practitioners, policymakers, and researchers. This review 

illuminates IoT authentication's complexities, revealing its 

transformational potential and complex limitations. It lays 

the groundwork for robust security measures needed to 

support IoT development. [13] 

Health, transportation, and home automation use billions of 

smart IoT devices to manage real-time data in the digital age 

(Rao & Deebak, 2023). The newest sensory and 

communication technologies combine with current apps to 

connect networking services without human involvement. 

Most information systems may exhibit next-generation 
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network services and administration by extending digital 

technologies. Repudiation, data manipulation, and digital 

security and privacy issues are now possible due to recent 

advances. This survey paper uses a systematic literature 

review to cover IoT authentication and key management. 

This survey divides IoT work progress into four parts to 

highlight important issues: 1. Discuss convergence 

technologies including healthcare, smart farming, 

intelligent transportation, etc. to solve IoT security and 

privacy issues; 2. Review cutting-edge technology to 

determine IoT security needs, services, and difficulties; 3. A 

rigorous evaluation of important agreement techniques 

using network models and performance analysis to identify 

flaws. 4. Show a topic analysis to establish security and 

privacy corrective measures. Finally, this work rationalises 

substantial achievement, covering IoT research obstacles 

and future initiatives to foster new insights. [14] 

Samiullah et al. (2023) report that sensor node and other IoT 

device group networks are becoming more common. 

Cryptography protocols are crucial for safe communication 

between nodes in such networks. Effective point-to-point 

and multicast communication among nodes is crucial. IoT 

security requires hiding security protocols and keys 

transferred between nodes. Secure group communication 

techniques need group key management (GKM). Secure 

Group Communication (SCG) schemes must be devised for 

real-world implementations and their restrictions. Most 

GKM methods use public-key cryptography, which 

quantum computers may break. This SLR assesses 48 2013– 

2023 IEEE Xplore, Springer Link, MDPI, ScienceDirect, 

Scopus, and Hindawi bids. We also classify secure group 

communication systems. SGC schemes are also thoroughly 

tested for performance and security. Among other security 

characteristics, we address quantum resistance, and we 

detail the application and use area in a resource-constrained 

real-world situation where GKM is the most relevant 

concern. [15] 

Tariq et al. (2023), The Internet of Things (IoT) has created 

many opportunities, but it has also created new 

vulnerabilities and attack vectors that might jeopardise the 

confidentiality, integrity, and availability of linked systems. 

IoT ecosystem security is difficult and needs a systematic 

and comprehensive strategy to detect and mitigate security 

risks. Cybersecurity research is essential for planning and 

implementing security solutions to combat growing threats. 

Scientists and engineers must specify strict security criteria 

to produce safe devices, chipsets, and networks for a secure 

IoT environment. Cybersecurity specialists, network 

architects, system designers, and domain experts must 

collaborate to create such requirements. The biggest 

problem in IoT security is defending against known and 

undiscovered threats. IoT researchers have uncovered 

various architecture-related security issues. Connectivity, 

communication, and management procedures are problems. 

This research paper offers a comprehensive and clear 

analysis of IoT abnormalities and security ideas. We 

identify and analyse IoT's layered architectural security 

issues, including connection, communication, and 

management protocols. We examine current attacks, threats, 

and cutting-edge solutions to build IoT security. We also 

defined security targets to see whether a solution meets IoT 

use cases. [16] 

Javadpour et al. (2023), IoT growth has created new 

cybersecurity issues. Encryption is moved to cloud and fog 

platforms to reduce dangers. Encryption as a Service (EaaS) 

provides cryptographic solutions for IoT devices' resource 

restrictions. This research comprehensively categorises 

EaaS platforms by encryption techniques and services. We 

also provide EaaS architectural types based on major 

component location. Different testbeds study these systems' 

practical implementations. Dissecting EaaS issues, 

especially in IoT, and proposing solutions is crucial. This 

comprehensive investigation fills the gap left by prior 

surveys[17]. 

Henge et al. (2023), Cloud computing assessment data must 

be stored and processed on central distant servers. 

Traditional systems must enhance technological data 

security solutions. Technology's rapid growth presents 

several data security issues. Combining all safe encryption 

methods won't fix these issues. Quantum computing 

effectively generates composite algorithms, enabling 

natural cyber security, forensics, AI, and machine learning- 

based complex system breakthroughs. It also solves several 

difficult cloud computing security issues. A user-storage- 

transit-server authentication paradigm based on safe keys 

data distribution and mathematical post-quantum 

cryptography is proposed in this paper. This research uses 

post-quantum cryptography to incorporate quantum 

computing-based 1314 Networks and Heterogeneous Media 

Volume 18, Issue 3, 1313–1334. security key distribution. It 

offers data security scenarios and technological solutions for 

transit, storage, user, and server modes. Post-quantum 

cryptography defines and includes the mathematical 

technique for producing the distributed security key and 

data in transit, storage, and editing. Super positioning qubits 

to deliver quantum services and other product-based cloud- 

online access to process end-users' artificial intelligence- 

based hardware service components has entailed reversible 

calculations on numerous numbers. This study will enable 

academics and industry specialists create scenarios for 

synchronising data with medical, financial, engineering, and 

banking cloud servers. The suggested solution uses 

database, single-tenant, multi-tenant, and cloud-tenant 

servers. This approach uses salting to enforce integration 

parity criteria for four organisations with 245 users. The 

experimental scenario analyses safe key data distribution, 

key generation, encryption, and decryption time changes 

using plain text sizes from 24 to 8248. Key generation and 
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encryption times vary from 2.3233 to 8.7277 ms at 

quantum-level 1 and 0.0355 to 1.8491 ms at quantum-level 

2. Key generation and decryption times vary from 2.1533 to 

19.4799 ms at quantum-level 1 and 0.0525 to 3.3513 ms at 

quantum-level 2. [18] 

Gupta & Kumar (2023), Wireless body area network 

(WBAN) employs wearable sensors connected to the 

Internet-of-Things (IoT) network to remotely monitor and 

gather patient healthcare data. IoT devices might improve 

our lives, but they also offer security risks. Most WBAN– 

IoT data is transferred between computationally constrained 

devices in untrusted wireless contexts. Thus, securing 

important WBAN–IoT data is essential. WBAN sensors and 

IoT devices have limited processing resources, therefore the 

method has to be lightweight. However, cloud-based IoT 

systems must fix major flaws to recognise communicators' 

power over insecure networks like the Internet. IoT 

applications need reliable authentication, secrecy, and 

integrity protocols to prevent unauthorised access. The hard 

problem assumptions prove our protocol trustworthy and 

fulfils all security standards, including session key security. 

Our lightweight secure session key protection, mutual 

authentication, and access control IoT (LSSMAC-IoT) is 

faster than the fastest ones shown by the performance 

evaluation, based on a safe, mutual authentication (MA) 

process using heavy homomorphic encryptions and zero- 

knowledge proof. [19] 

Golightly et al. (2023) state that Access Control is essential 

for current cybersecurity and data privacy compliance. To 

prohibit unauthorised individuals and systems from 

accessing protected resources outside their authorization. 

This survey summarises current Access Control approaches 

and research trends. In addition, the cyber-attack landscape 

and zero-trust networking challenges require organisations 

to carefully consider their Information Security 

management strategies. This study reviews contemporary 

Access Control techniques and technologies discussed in the 

literature and their innovations and evolution. We also 

address using Access Control methods and technologies in 

four emerging and important fields: Cloud Computing, 

Blockchain, the Internet of Things, and Software-Defined 

Networking. We conclude with Access Control business 

adoption techniques and how it can be incorporated into 

cybersecurity and network design. [20] 

Albakri et al. (2023), The Internet of Things (IoT) 

constitutes a highly linked network of heterogeneous 

devices that allows all types of communication, including 

unauthorised ones. Thus, these networks needed security, 

but typical Internet security protocol proved unsuitable due 

to certain IoT devices' limited capacity. The confidentiality, 

integrity, and availability (CIA) of data sent between IoT 

devices requires secure group communication (SGC). Most 

IoT devices have limited memory, computation, energy, and 

power, making SGC challenging. In IoT, this article 

proposes Fully Homomorphic Encryption with Optimal Key 

Generation Secure Group Communication (FHEOKG- 

SGC). The described FHEOKG-SGC approach focuses on 

safe data encryption and routing in IoT via group 

communication. The described FHEOKG-SGC strategy 

first constructs an FHE-based encryption method to 

safeguard IoT data. Next, the sine cosine method optimises 

FHE keys. Additionally, the plum tree algorithm (PTA) is 

used to identify IoT network pathways. Finally, the 

FHEOKG-SGC approach uses a trust model to increase 

secure communication and a key management centre to 

optimise key handling. Several tests test the FHEOKG-SGC 

simulation analysis, and the results are analysed. An 

exhaustive comparison research showed that the FHEOKG- 

SGC algorithm outperformed current techniques. [21] 

Showkat & Qureshi (2023), The fast growth of the Internet 

of Things (IoT), especially in critical infrastructures, 

requires strong security and privacy regulations. Due to data 

proliferation, cyber-physical systems (CPS) use computer 

platforms to provide services and resources. Security flaws 

that impair the Confidentiality-Integrity-Availability (CIA) 

trinity prevent centralised systems from running “Beyond 

5G” (B5G)-enabled critical IoT infrastructures. The Fog- 

IoT architecture supports blockchain technology (BCT), 

which is helping to secure IoT. Ethereum has revolutionised 

BCT by making application development easier. Blockchain 

(BC) links users' chain identities to tokenized digital asset 

transactions and allows system auditing. Canonical 

transactions are immutable, making data monitoring and 

repudiation prevention easier. A consensus mechanism 

(CM) manages state transitions and node behaviour to 

generate confidence amongst entities without a central 

authority. IoT systems may have distributed, trustworthy 

access control and improved automation using Smart 

Contracts (SCs). BCT adoption is necessary to secure future 

B5G-enabled IoT critical infrastructures for flexible and 

fine-grained access control, authentication, communication, 

and data security. The escalating cost of Ethereum and IoT 

limits make their adoption difficult. BCT must be combined 

with ML, EC, and IPFS to provide BC solutions for IoT 

security. [22] 

Power Grid advancements in recent decades have resulted 

to massive economic and social growth in the sector 

(Priyanka & Ramachandran, 2023). Consider that the 

electrical system layout has basically stayed unaltered. The 

present grid's shortcomings prompted the "smart grid" 

design. Integrating communication and networking 

capabilities into electricity grids might make them smarter. 

In a smart grid, many embedded appliances communicate, 

thus the network must be dependable, accessible, and 

effective. Smart grids manage power usage via price signals. 

A smart grid requires electricity providers and consumers to 

communicate. Smart grid prizes are at risk if delays or 

interruptions hinder performance. A grid server collects data 
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from many smart grid devices. These information are 

essential for energy distribution and producer-consumer 

balance. Hackers might impede electricity flow by altering 

data from smart grid devices to utility systems. Thus, an 

authentication approach is needed to protect devices and 

utility servers from manipulation. Cryptography is utilised 

for smart grid demand-response security. Quality-of- 

Service (QoS) approaches for smart grid communication 

systems include deriving QoS criteria and routing QoS in 

the communications network. Power grid dynamics and 

price-load linkage dictate QoS demands. The influence of 

QoS indicators including latency, power utilisation, and 

routing is examined. A route optimisation model that 

maximises revenue must be examined to determine QoS. 

This study briefly surveys smart grid cryptography 

approaches with strong authentication and routing. [23] 

Chawla & Mehra (2023), 5G-enabled IoT links billions of 

devices for fast data transmission. Data powers smart cities, 

industrial automation 5.0, autonomous cars, and healthcare. 

Open Web Security and Mutual Authentication are major 

issues in such an ecosystem. Recently developed IoT 

security techniques use challenging mathematical 

cryptography structures. Quantum Computing might break 

traditional cryptographic primitive security. Recent 

Quantum assaults on IoT security prompted us to explore 

quantum-resistant solutions. We examined how traditional 

cryptographic methods are replaced by quantum-enabled 

solutions to ensure end-to-end security in this research. The 

main goal of this survey is to provide a systematic roadmap 

for quantum-secured 5G-enabled IoT communication by 

covering current research, key enabling technologies, 

threats to 5G-enabled IoT applications, and state-of-the-art 

quantum-based solutions and initiatives. A full review of 

quantum computing preliminaries, Post Quantum 

Cryptography (PQC) methods, Quantum Cryptography 

(QC), and Quantum Key Distribution (QKD) with their 

major advantage in protecting IoT-enabled communication 

over conventional settings is also provided. We emphasise 

Post-Quantum-resistant methods needed shortly to protect 

5G-enabled IoT connections. Quantum-resistant systems 

are compared to conventional cryptography techniques in 

terms of key size, data size, temporal complexity, and 

quantum computer effect. This study discusses quantum- 

based systems' technical hurdles and future research to offer 

Post-Quantum resistant cryptography for 5G-enabled IoT 

secure communication. [24] 

Reddy & Rao (2023), As IoT technology is integrated into 

our everyday life via apps, security and privacy must be 

ensured. Time-critical healthcare IoT applications need 

access to real-time private information from third parties 

(users) via wireless communication devices, hence IoT 

wireless sensor system networks must address user 

identification problems. (WSNs). This work presents a safe, 

compact three-factor identification method for future IoT 

WSN applications that uses user biometric feature 

extraction. The suggested solution uses hash and XOR 

operations, three-factor authentication, a shared session key, 

mutual authentication, and key freshness. This simulation 

tool is AVISPA for Rapid Verification of Internet Security 

Protocols, and informal security research verifies its other 

properties. Our estimates demonstrate the recommended 

authentication approach surpasses comparable methods in 

safety, utility, communications, and processing costs. The 

suggested protocol works for most IoT and WSN 

applications [25]. 

Yadav et al. (2023) describe fog and dew computing as new 

computer paradigms. The goal is to offload processing from 

the device to a local fog or dew server, which sends data to 

the central server. Dew computing requires the dew server 

to disconnect from the central server and operate 

independently. Several public-key-based tripartite methods 

with complete security characteristics have been suggested 

in the literature. Due to the large performance gap between 

symmetric and public key-based cryptographic algorithms, 

this paper proposes a symmetric key-based authentication 

and key agreement protocol with a long and short 

authentication process for fog and dew computing 

scenarios. We also do informal and formal (ROR logic, 

GNY logic, and Scyther tool) security analysis to confirm 

that the scheme meets the most significant security 

characteristics in the literature and protects against a semi- 

trusted third party. We also evaluate the long and short 

authentication phases' computing, communication, storage, 

and energy costs, finding it cheaper than rivals. We also 

demonstrate that the long and short authentication stages 

have less overhead when unexpected attacks occur than its 

rivals. We also utilise the NS2 network simulator to 

simulate the long and short authentication phases in real 

time to test their practicality. [26] 

Kumari & Singh (2023) state that computerization, 

communication, and monitoring have made complex 

engineering systems like grid, surveillance, health, and 

vehicular traffic systems automated, smart, and intelligent 

in the recent decade. CPS are systems having computing, 

communication, and monitoring in the feedback loop. One 

CPS application is Smart Grid System. Smart Grid (SG) 

manages electricity generation, distribution, consumption, 

and customer behaviour. With the openness of the smart 

grid, many power companies must connect via wired, 

wireless, and satellites. Cyber threats to communications, 

information, and consumer privacy that have serious real- 

world repercussions are the biggest problem of the SG 

environment. Cyberattacks may be mitigated by 

authentication protocols. Exchange of authentication 

ensures secure connection. All prior authentication 

techniques are computationally inefficient or vulnerable to 

security threats. This publication presents an updated SG 

authentication system that combats all  security features. 
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This allows secure communication with a session key setup 

phase and lower computation and transmission overhead. 

[27] 

Khalid et al. (2023) state that new communication 

technologies have transformed network operations and 

made healthcare, agricultural, and transportation services 

more accessible. Ad hoc network devices have limited 

energy, storage, and computing. Traditional security 

methods are unsuitable for smaller sensor nodes. Symmetric 

encryption uses more energy than public key cryptography, 

which is resource-intensive and unsuitable for wireless 

networks. The symmetric cryptosystems have key 

management concerns. Most authentication methods are 

complicated or unsafe. To improve network security with 

reduced resource usage, create and build more advanced and 

lightweight solutions. A fuzzy extractor and one-way hash 

functions were used to authenticate sensor nodes in this 

paper's Biometric User Authentication and Key Agreement 

Protocol (BUAKA). The suggested approach includes 

startup, registration, authentication, and password renewal. 

Secure authentication and resistance against assaults 

overcome the complexity difficulties in the proposed 

approach. Finally, security threats, computing cost, and 

communication overhead are used to assess the proposed 

scheme's efficacy. [28] 

Chen et al. (2023), Kerberos is a popular authentication 

mechanism for IoT and large data distributed applications. 

In a dispersed setting, entities must use secret keys to 

identify themselves to a trustworthy third party. Traditional 

approaches authenticate identities using a trusted central 

organisation like a Key Distribution Centre. Kerberos' 

single point of failure, replay vulnerability, and credential 

leakage may undermine system security. Many solutions 

have been proposed by researchers, however most have 

downsides. In this research, we propose a blockchain-based 

Decentralised Kerberos Secure Service-Management 

Protocol (DKSM) using CP-ABE schema. DKSM provides 

decentralisation, fine-grained access control at low cost, and 

scalability compared to other protocols. AES and FABEO 

are DKSM's cryptographic foundations. DKSM security 

and assault defence are also discussed. Finally, Ethereum 

testnet and FISCO consortium platform testing showed our 

protocol is efficient and cost-effective. [29] 

According to Rao & Sujatha (2023), cloud computing 

centralises data storage and other business uses. Cloud 

security must safeguard all cloud-connected devices, 

applications, and data. The appropriate personnel may 

access data and apps in the cloud due to its strong security. 

Public cloud security gives users a reliable route to access 

applications and data, allowing service providers to fix any 

security issues quickly. Hybrid Elliptic Curve Cryptography 

is used to secure public clouds in this work. The suggested 

method uses a lightweight Edwards curve to produce keys. 

User Identity Based Encryption changes produced private 

keys. The suggested key reduction approach shortens keys, 

speeding up AES encryption. The public keys are 

exchanged via Diffie Hellman. The recommended paradigm 

is evaluated using throughput, key generation, encryption, 

and decryption times. Everything about the proposed model 

was superior than the present ones. Key generation and 

encryption take 0.000025 and 0.00349 s, respectively, in the 

recommended manner. The throughput is 693.10 kB/s. [30] 

Kumar et al. (2023), Blockchain technology may solve IoT 

security issues by offering a decentralised and secure way 

to store, manage, and share data. An SHA-256-hash value 

of preliminary data (block) is stored in one block with 

transaction data in tree form and timestamps in a chain. 

Blockchain has drawbacks include greater energy usage, 

secure data, self-maintenance, and expense. Accepting data 

blocks with encryption techniques overcomes these limits. 

We offer an analytically modelled secure intelligent 

computational model for a large-scale linked IoT ecosystem 

in this research. Blockchain, the most secure IoT 

communication mechanism, is used in the suggested 

solution. The suggested blockchain technology is used to 

build a computational model with safe and intelligent 

communication. The suggested method links the blockchain 

using the upgraded McEliece encryption approach's quicker 

encryption and decryption procedure with fewer stages. [31] 

Ali et al. (2023), Privacy is crucial in the age of linked and 

intelligent cyber-physical systems. This research presents a 

novel consortium blockchain-based proof-of-concept (PoC) 

approach for cyber-physical system (CPS) privacy. The 

suggested architecture takes a unique approach to protecting 

sensitive data and data integrity while preserving 

stakeholder confidence. The concept creates a decentralised, 

tamper-resistant privacy architecture using consortium 

blockchain. However, CPSs have substantial hurdles in 

protecting sensitive data. This study provides a cutting-edge 

consortia blockchain privacy method for CPS secrets. 

Consortium blockchain's permissioned structure makes 

network governance and transaction validation trustworthy. 

Consortium blockchain may safeguard, distribute, and 

access CPS secrets by authorised organisations, reducing 

data breaches and unauthorised access. The suggested 

method improves security, privacy, trust, accountability, 

interoperability, and scalability. This article addresses the 

limits of existing CPS security techniques and uses 

consortium blockchain to revolutionise secret management, 

improving CPS security and privacy. Extensive simulations 

and performance testing prove the design works. The 

findings show that the suggested technique improves 

privacy protection, enabling safe and trustworthy cyber- 

physical systems in diverse fields. [33] 

3. Proposed Methodology 

This proposed model introduces a novel security framework 

that enhances IoT device protection through advanced ECC 
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cryptography and malware detection employing Deep 

LSTM techniques. It aims to secure IoT devices, which 

connect to cloud servers for firmware updates and edge node 

security, by generating dynamic keys. Initially, these IoT 

devices, deployed within a wireless sensor network, 

establish secure connections to cloud servers for the 

safekeeping and transmission of data. The model also 

assesses the intrusion scope threshold based on network 

transactions, striving to identify new anomalies or outliers 

within the network through a contextual anomaly detection 

method. Upon identifying attack nodes in the IoT network, 

the model analyzes packet features associated with these 

nodes to categorize various attack types. Malware identified 

in this process is stored in a database to facilitate analysis of 

past attacks and bolster defenses against future incidents. 

The classification outcomes contribute to mitigating the 

emergence of malware from IoT devices. Consequently, this 

approach not only prevents attacks but also enhances data 

security through the use of refined cryptographic 

algorithms. 
 

Fig 1. The proposed architecture. 

The figure 1 depicts a schematic for securing IoT (Internet 

of Things) networks, highlighting a multi-faceted approach 

to anomaly detection and encryption. It outlines two primary 

processes: Contextual Anomaly Detection and Prediction of 

different types of malwares using Deep LSTM (Long Short- 

Term Memory) networks. The anomaly detection focuses 

on network parameters such as transmission range, packet 

loss, latency, and hop count to differentiate between normal 

and attack nodes. For malware prediction, the system 

preprocesses attack packets, replaces missing values, 

normalizes data through min-max normalization, and 

extracts features using LDA (Linear Discriminant Analysis) 

to identify anomalies, DOS (Denial of Service), probes, and 

R2L (Remote to Local) attacks. The diagram also introduces 

an Improved ECC (Elliptic Curve Cryptography) with 

hybrid MABW (Memory-Aware Biogeography-Based 

Optimization) for secure key generation, encryption, and 

decryption processes, ensuring secure data transmission 

within the IoT network. 

The proposed architecture, illustrated in Figure 1, 

encompasses three distinct phases: contextual anomaly 

detection, malware type prediction, and secure data 

transmission utilizing Enhanced Elliptic Curve 

Cryptography (EECC). In the initial phase, data are gathered 

from a dataset, and attack nodes are distinguished from 

normal nodes by evaluating a trust value based on 

contextual features. The identified attack nodes are then 

used as input in the second phase, where a Deep LSTM 

model predicts various types of malware, specifically 

identifying four types of attacks: anomaly, DOS (Denial of 

Service), Probe, and R2L (Remote to Local). 

In the final phase, to prevent malware access during file 

transfers, each IoT device's data is encrypted using an 

Improved Elliptic Curve Cryptography algorithm to ensure 

security. This encrypted data is stored in cloud servers, 

which also maintain information about all devices within the 

wireless sensor network. The methodology of the proposed 

model is elaborated in subsequent sections, detailing each 

step involved in ensuring the security and integrity of data 

transmission among IoT devices. 

 

 
Fig 2. Structure of Proposed deep LSTM 

The figure 2 illustrates the architecture of a deep learning 

neural network with a focus on Long Short-Term Memory 

(LSTM) cells. It demonstrates a sequence-to-sequence 

model that consists of an input layer with multiple inputs 

(M1 to Mn), several hidden layers containing LSTM cells 

(from Layer 1 to Layer j), and a fully connected (FC) layer 

that precedes the output layer. The LSTM cells are 

responsible for processing sequences and retaining 

information over long periods, making them suitable for 

tasks involving time-series data or sequences. The FC layer 

aggregates the learned representations from the LSTM 

layers and passes them to the output layer, which consists of 

output nodes (N1 to Nt) corresponding to the desired output 

dimensions of the model. This configuration is typically 

used in complex pattern recognition tasks, such as speech 

recognition, language modeling, and time-series prediction. 
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Fig 3 displays the flow chart of hybrid MA-BW 

optimisation. 

The figure 3 describes an algorithmic process starting with 

the initialization of a population size, initial state, and a 

maximum number of iterations. It proceeds to estimate the 

fitness value and determine the best global position (gbest). 

The positions and velocities of 'mayfly' agents are updated, 

after which the fitness values of the male mayflies are 

estimated to find the best personal position (pbest). Mayflies 

are then ranked and mated according to their fitness values. 

The offspring from this mating are estimated and divided, 

following which pbest and gbest are updated using a 

specified equation that adjusts velocity and position. This 

iterative process involves reinitializing a new swarm and 

updating positions and velocities until the fitness is found. 

If the maximum number of iterations is reached, the process 

ends; if not, the loop continues until the condition is 

satisfied. 
 

 

Fig 4 illustrates the Hybrid MA-BW Optimisation for 

selecting the best key. 

The figure 4 outlines a public key encryption process 

enhanced by a Hybrid MA-BW Optimization algorithm. 

Initially, a public key is generated using this optimization 

technique, which is then used to encrypt data received from 

the sender. This encrypted data is sent through a network, 

presumably, and then decrypted by an optimal private key 

at the receiving end. Concurrently, a private key is 

generated, which seems to be sent to the decrypting party to 

enable the decryption process. After decryption, the data is 

received in its decrypted form by the server. The process 

emphasizes the use of optimal keys for encryption and 

decryption, suggesting a focus on security and efficiency in 

the key generation phase, potentially adapting to the best 

possible cryptographic keys for secure communication. 
 

Fig 5. (a) Deployment of nodes. Classifying attack nodes 

from regular nodes. 

The Figure 5 displays two scatter plots labeled as Figure 5. 

(a) and (b). Plot (a) shows the node deployment, with blue 

dots scattered randomly, representing the distribution of 

nodes in a given area. Plot (b) illustrates the classification of 

these nodes, with blue dots representing normal nodes and 

red dots indicating attack nodes. This classification is likely 

the result of a security algorithm identifying potential 

threats within a network, and it visually distinguishes 

between safe and compromised nodes in the context of 

cybersecurity for networked systems. 

3.1. Contextual anomaly detection for categorizing 

normal node from attack node 

The contextual anomaly detection phase represents the 

initial step in the proposed architecture, designed to 

distinguish between normal and attack nodes within a 

wireless sensor network. This phase operates by analyzing 

data collected from the dataset, focusing on identifying 

potential security threats through a detailed examination of 

contextual features. The process involves assigning a trust 

value to each node based on its behavior and interaction 

patterns within the network. Nodes exhibiting suspicious or 

anomalous behavior are flagged as potential attack nodes, 

whereas those with normal, expected patterns of interaction 

are classified as normal nodes. 

The trust value is calculated using a set of predefined criteria 

that assess the reliability and integrity of the nodes based on 

their historical and current activities. This includes 
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analyzing the frequency and nature of the data 

transmissions, the nodes' communication with other 

devices, and any deviations from typical behavior patterns. 

By leveraging contextual information, this phase aims to 

accurately identify nodes that may pose a security threat, 

thereby enabling targeted interventions to prevent potential 

attacks. 

This method of anomaly detection is crucial for maintaining 

the security of IoT networks, as it allows for the early 

identification of compromised nodes before they can cause 

significant damage. It serves as a foundational step for the 

subsequent phases of the proposed model, ensuring that only 

data from trusted, verified nodes is used in the malware 

prediction and secure data transmission processes. 

In the network, nodes are regarded as IoT gadgets, each 

equipped with specific information about their location and 

various parameters such as energy capacity, memory size, 

and others. These nodes communicate by transmitting data 

in packet form. Given the network's complexity, there's a 

potential for various types of attack nodes to disrupt the data 

transmission process from source to destination. To mitigate 

this risk, nodes are categorized as either normal or attack 

nodes based on an analysis of their parameters. 

The differentiation between normal and attacked nodes is 

facilitated through the use of a trust value or threshold. This 

trust value is calculated based on a set of trust parameters 

specific to each node, which include metrics such as 

transmission range, energy consumption, packet loss rate, 

hop count, and latency, among others. These parameters 

provide a comprehensive overview of a node's performance 

and reliability within the network. 

The security model incorporated within the trust framework 

utilizes secure routing protocols and packet encryption 

methods to ensure the integrity of data transmission. The 

trust value plays a critical role in this framework: a high trust 

value indicates a high level of confidence in a node's 

security model, classifying it as a regular node suitable for 

secure data transmission. Conversely, a node with a trust 

value of zero is identified as an attack node due to its 

compromised security model. 

This approach to categorizing nodes based on trust values 

allows the network to maintain a secure transmission 

environment. By selecting regular nodes with high trust 

levels for data routing, the network enhances its resilience 

against potential security threats, ensuring that only 

trustworthy nodes participate in the critical task of data 

transmission. 

3.2. Prediction of different types of malwares 

Upon distinguishing attack nodes from normal nodes, the 

packets associated with these attack nodes undergo a 

detailed process aimed at classifying different types of 

attacks. This process enhances the accuracy of attack 

classification through several key steps: 

1. Preprocessing of Packet Data: The initial step 

involves handling the packets related to the attack 

node. This step is crucial for preparing the data for 

analysis and involves replacing missing values to 

ensure completeness of the dataset. Additionally, the 

data undergoes min-max normalization, a method that 

rescales the features to a fixed range, typically [0, 1]. 

This normalization is essential for mitigating the 

influence of outlier values and ensuring that the 

model's performance is not skewed by variables 

operating on different scales. 

2. Feature Reduction: After preprocessing, the data is 

subject to feature reduction through Linear 

Discriminant Analysis (LDA). LDA is a technique 

used to reduce the dimensionality of the input data 

while retaining the features that contribute most to the 

variance between classes. This step significantly 

decreases the complexity of the classification process, 

enhancing computational efficiency and potentially 

improving the classifier's performance by eliminating 

irrelevant or redundant features. 

3. Deep LSTM Classification: The reduced-dimension 

data serves as the input for the Deep Long Short-Term 

Memory (Deep LSTM) classifier. Deep LSTM is 

particularly adept at processing sequential data, 

making it an excellent choice for analyzing network 

traffic and detecting patterns indicative of specific 

types of cyberattacks. Within the Deep LSTM 

framework, features extracted from the dimensionally 

reduced data are analyzed, allowing the model to 

classify the nature of the attack accurately. 

The aforementioned process is systematic and structured to 

optimize the classification of attacks on IoT devices. By 

preprocessing the data to improve its quality and reducing 

its dimensionality to focus on the most significant features, 

the model is finely tuned for accurate prediction. The Deep 

LSTM classifier, with its ability to learn from sequences and 

retain information over long periods, is then capable of 

identifying the specific type of attack, thereby enabling 

targeted countermeasures to be implemented. This 

comprehensive approach ensures a high degree of precision 

in detecting and classifying cyber threats within IoT 

networks. 

3.2.1. Preprocessing 

The preprocessing phase in the attack detection process 

plays a crucial role in preparing the data for further analysis, 

particularly in enhancing the detection capabilities of the 

system. This phase includes two primary steps: missing 

value replacement and normalization, each aimed at 

improving the quality and consistency of the data. 
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Missing Value Replacement : Missing values in datasets 

are a common issue that can arise due to various factors, 

including technical glitches, data transmission errors, or 

human mistakes during data collection. The presence of 

missing values can significantly impact the performance of 

predictive models by reducing their accuracy and reliability. 

Therefore, addressing these gaps in the data is essential 

before proceeding with more complex analyses. 

In the context of this model, the approach to handling 

missing values is straightforward yet effective: ignoring and 

deletion. This method involves identifying records with 

missing data and removing them from the dataset. While 

there are more sophisticated techniques for dealing with 

missing values, such as imputation (where missing values 

are filled in based on other available data), the ignoring and 

deletion method is chosen for its simplicity and 

effectiveness in this scenario. This approach ensures that 

only complete cases are included in the analysis, thereby 

maintaining the integrity of the dataset and avoiding the 

potential biases or inaccuracies that might arise from 

guessing or estimating missing values. 

The decision to use the ignoring and deletion method is 

likely based on the nature of the dataset and the specific 

requirements of the attack detection process. In scenarios 

where the dataset is large and the missing values constitute 

a small proportion of the data, removing incomplete records 

may not significantly impact the overall dataset's 

representativeness. However, this method requires careful 

consideration, as excessive deletion of data could lead to the 

loss of valuable information or introduce bias if the 

missingness is not completely random. 

By ensuring data completeness through the removal of 

records with missing values, the preprocessing phase sets a 

solid foundation for the subsequent steps in the detection 

process. This approach contributes to the enhancement of 

the system's ability to accurately detect and classify 

different types of attacks, ultimately improving the security 

measures in place for IoT networks. 

Normalization is a crucial step in the preprocessing phase, 

acting as a scaling strategy or method that significantly 

benefits forecasting or predictive analyses. This process 

involves adjusting the range of data values to a common 

scale, without distorting differences in the ranges of values 

or losing information. Among various normalization 

techniques, Min–Max Normalization is particularly popular 

due to its simplicity and effectiveness. 

Min–Max Normalization : Min–Max Normalization 

applies a linear transformation to the original dataset, 

adjusting the values so that they fit within a new, specified 

range—commonly [0, 1]. This method is based on the 

following formula: 

value − min 
Normalized value = 

Where: 

 value is the original data value to be normalized. 

 min is the minimum value in the original data set. 

 max is the maximum value in the original data set. 

The result of this calculation is that the minimum value in 

the original dataset is transformed to 0, the maximum value 

to 1, and all other values to a decimal between 0 and 1, 

proportional to their position between the original min and 

max values. 

The benefits of Min–Max Normalization include: 

 Maintaining Relationships: It preserves the 

relationships among the original data values since 

the transformation is linear. 

 Boundary Specification: It allows data to be 

standardized within a specific range, making it 

particularly useful when algorithms require a 

defined input range. 

 Simplicity and Efficiency: The method is 

straightforward to implement and compute, 

making it suitable for datasets of various sizes and 

types. 

This normalization technique is especially beneficial when 

dealing with parameters that have widely differing ranges 

and ensures that no single feature dominates due to its scale. 

By standardizing the range of features, Min–Max 

Normalization helps improve the convergence speed of 

gradient descent algorithms in machine learning models and 

enhances the performance of models sensitive to input scale, 

such as neural networks and distance-based algorithms. 

In the context of detecting and classifying different types of 

attacks in IoT networks, applying Min–Max Normalization 

ensures that all input features contribute equally to the 

analysis, thereby enhancing the model's ability to learn from 

the data and make accurate predictions. 

3.2.2. Linear discriminant analysis (LDA) 

Linear Discriminant Analysis (LDA) is a crucial technique 

in the feature extraction phase of the proposed model, 

serving as a powerful tool for dimensionality reduction. 

Originating as a generalization of Fisher's linear 

discriminant, LDA aims to find a linear combination of 

features that best separates two or more classes of objects or 

events. This capability makes it highly valuable in the fields 

of pattern recognition, statistics, and machine learning, 

where distinguishing between different categories based on 

a set of features is essential. 

LDA works by maximizing the ratio of between-class 

variance to the within-class variance in any particular data 

set, thereby ensuring that the classes are as distinguishable 
as possible. This is achieved through the transformation of 

  max − min  
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features into a lower-dimensional space that best represents 

the distinction between the classes. The transformed 

features are linear combinations of the original variables, 

which maintain the most significant characteristics needed 

for class separation. 

In the context of this study model, applying LDA as part of 

the feature extraction method offers several benefits: 

 Dimensionality Reduction: LDA reduces the 

complexity of the data by lowering the number of 

dimensions without significant loss of information. 

This simplification is crucial for improving the 

efficiency and speed of the subsequent classification 

process, especially when dealing with high- 

dimensional data. 

 Enhanced Classification Performance: By focusing 

on the features that contribute most to the separation 

between classes, LDA can improve the accuracy of the 

Deep LSTM classifier used for predicting different 

types of attacks. 

 Reduction of Overfitting: Lower-dimensional data 

can help mitigate the risk of overfitting by ensuring 

that the model does not learn noise in the training data 

as patterns. 

Using LDA for feature extraction in this model specifically 

targets improving the detection and classification of attack 

nodes in the network. By providing a more manageable and 

relevant set of features to the Deep LSTM classifier, LDA 

facilitates a more streamlined and effective analysis, leading 

to more accurate predictions of the types of malware 

present. This strategic application of LDA underscores its 

value in enhancing the model's overall capability to secure 

IoT networks against a variety of cyber threats. 

 

 
3.2.3. Detecting different types of attacks using deep 

LSTM 

Deep Long Short-Term Memory (Deep LSTM) networks 

are utilized for detecting attacks on IoT devices. The 

architecture of a Deep LSTM network includes multiple 

hidden layers, which may comprise LSTM layers along with 

fully connected (FC) layers. This structure enables the 

network to effectively capture long-term dependencies and 

patterns in time-series data, making it particularly suited for 

tasks that involve sequential input and output, such as time- 

series forecasting or sequence classification. 

For the Deep LSTM network to function properly, both the 

input and output sequences must be formatted as three- 

dimensional arrays. These dimensions represent: 

1. Samples: Each sample in the dataset. 

2. Time steps: Sequential time intervals in the data. 

3. Features/Channels: Individual input or output 

variables for each time step. 

This formatting allows the Deep LSTM to process the 

temporal dynamics within the dataset, learning from the 

sequence of data points to predict future events or classify 

sequences based on their temporal characteristics. The depth 

of the network, achieved through multiple layers, enhances 

its capacity to learn complex patterns, making Deep LSTM 

a powerful tool for analyzing and predicting behaviors in 

IoT devices and networks. 

Table 1. the differences between Deep Long Short-Term 

Memory (Deep LSTM) networks and standard Long Short- 

Term Memory (LSTM) networks based on various features 
 

Feature LSTM Deep LSTM 

Architecture 

Complexity 

Consists of a 

single LSTM 

layer or a few 

LSTM layers. 

Includes multiple 

LSTM layers stacked 

on top of each other, 

often combined with 

fully connected layers. 

Learning 

Capability 

Effective at 

capturing short to 

medium-term 

dependencies in 

sequential data. 

Enhanced ability to 

learn and model long- 

term dependencies and 

complex patterns due 

to its deeper 

architecture. 

Application 

Scope 

Suited for simpler 

sequential tasks 

where the data 

dependencies are 

relatively 

straightforward. 

Ideal for more 

complex sequential 

tasks that require 

understanding deeper 

patterns and long-term 

dependencies in the 

data. 

Training 

Time 

Generally faster 

to train due to 

simpler 

architecture. 

Longer training times 

due to increased 

complexity and the 

number of parameters. 

Parameter 

Count 

Lower, as it has 

fewer layers. 

Higher, due to multiple 

layers and potentially 

additional fully 

connected layers, 

increasing the model's 

capacity. 

Risk of 

Overfitting 

Lower  risk 

compared to Deep 

LSTM, but may 

not capture 

complex patterns 

as effectively. 

Higher risk due to the 

large  number of 

parameters, 

necessitating strategies 

like dropout or 

regularization to 

mitigate. 
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3.3. Enhanced Elliptic Curve Cryptography algorithm 

for secure data transmission 

The Enhanced Elliptic Curve Cryptography (EECC) 

algorithm is a pivotal development introduced for secure file 

transmission within Internet of Things (IoT) networks, 

particularly aimed at mitigating the risk posed by malicious 

nodes. Elliptic Curve Cryptography (ECC) itself is a method 

of encryption that leverages the algebraic structure of 

elliptic curves over finite fields. ECC is renowned for its 

ability to offer comparable levels of security to traditional 

encryption methods but with significantly smaller key sizes. 

This efficiency makes ECC particularly well-suited for 

environments where computational power, storage, and 

bandwidth are limited, such as in many IoT devices. 

Key Features of the EECC Algorithm: 

 Efficiency with Small Key Sizes: ECC's main 

advantage lies in its efficiency; it achieves the same 

level of security as other encryption standards but with 

smaller keys. This efficiency is further enhanced in the 

EECC algorithm, making it highly effective for the 

constrained environments of IoT devices. 

 Optimized Key Generation: The EECC algorithm 

introduces optimizations in the key generation process, 

making it more secure and efficient. This optimization 

is crucial for ensuring that the cryptographic keys are 

both strong and manageable in terms of computational 

requirements. 

 Swarm-Based Hybrid Optimization: The key 

generation step in EECC employs a novel swarm- 

based hybrid optimization model, combining the 

principles of the Mayfly algorithm and the Black 

Widow algorithm. This combination, referred to as M- 

BW optimization, is designed to find the optimal 

solution for key generation, balancing the trade-offs 

between exploration and exploitation in the search 

space. 

 Encryption and Decryption Process: In the EECC 

framework, secure file transmission is achieved 

through a public-key encryption scheme. The sender 

uses the recipient's public key for encrypting the data, 

ensuring that only the intended recipient, who 

possesses the corresponding private key, can decrypt 

and access the information. This process not only 

secures the data during transmission but also verifies 

the identity of the communicating parties, thereby 

preventing unauthorized access. 

Impact on IoT Security: 

The introduction of the EECC algorithm significantly 

enhances the security posture of IoT networks. By 

optimizing the key generation process and employing a 

hybrid optimization strategy, EECC ensures that the 

cryptographic keys are both strong and efficiently 

generated. This approach addresses one of the key 

challenges in IoT security: the need for robust encryption 

that does not overly tax the limited resources of IoT devices. 

Furthermore, by restricting access to authorized nodes only, 

EECC effectively mitigates the risk of data breaches and 

other security threats posed by malicious actors within the 

network. 

3.3.1 hybrid algorithm combining the Mayfly (M) and 

Black Widow (BW) 

The hybrid algorithm combining the Mayfly (M) and Black 

Widow (BW) optimization techniques, referred to as the M- 

BW optimization, is a novel approach specifically tailored 

for the key generation process in the Enhanced Elliptic 

Curve Cryptography (EECC). This hybrid model leverages 

the strengths of both algorithms to efficiently explore and 

exploit the search space for optimal key generation. Below 

is a step-by-step description of how this hybrid optimization 

model operates: 

Step 1: Initialization 

 1.1. Initialize Population: Generate initial 

populations for both Mayflies and Black Widows, with 

each individual representing a potential solution for 

the key generation parameters. 

 1.2. Define Fitness Function: Establish a fitness 

function that evaluates the suitability of each solution 

based on criteria such as the strength of the generated 

keys and the computational efficiency of their 

generation. 

Step 2: Mayfly Algorithm Operations 

 2.1. Nuptial Dance: Implement the Mayfly's 

nuptial dance, where Mayflies adjust their 

positions according to their and their neighbors' 

fitness, simulating the attraction towards better 

solutions. 

 2.2. Mate Selection: Allow Mayflies to mate based 

on their fitness, where higher fitness individuals 

have a higher chance of mating and producing 

offspring. 

 2.3. Offspring Generation: Generate new Mayfly 

individuals (offspring) through crossover and 

mutation processes, inheriting characteristics from 

their parents. 

Performance Performs well on 

tasks with less 

complexity or 

shorter 

sequences. 

Potentially offers 

superior performance 

on complex tasks and 

long sequences by 

capturing intricate 

patterns. 
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Step 3: Black Widow Algorithm Operations 

 3.1. Mate and Cannibalize: Apply the BW 

algorithm's unique mating procedure, where after 

mating, the female (representing a solution) may 

cannibalize the male if the offspring are deemed to 

have better fitness. 

 3.2. Offspring Generation: Produce offspring 

through a combination of genetic operations, including 

mutation, where the fittest individuals are selected to 

survive and replace less fit individuals in the 

population. 

Step 4: Hybridization 

 4.1. Combine Populations: Integrate the Mayflies and 

Black Widows populations, allowing for interaction 

and further optimization between the two species. 

 4.2. Hybrid Fitness Evaluation: Evaluate the 

combined population using the fitness function, 

considering both exploration (searching for new 

solutions) and exploitation (refining existing 

solutions). 

Step 5: Selection and Refinement 

 5.1. Select Optimal Solutions: From the hybrid 

population, select the individuals (solutions) that offer 

the best fitness according to the defined criteria for key 

generation. 

 5.2. Refine Solutions: Apply additional optimization 

techniques if necessary, to refine the solutions and 

achieve the optimal key generation parameters. 

Step 6: Convergence Check 

 6.1. Evaluate Convergence: Check if the algorithm 

has met the convergence criteria, which could be a 

specific fitness level or a maximum number of 

iterations. 

 6.2. Termination or Loop: If the convergence criteria 

are met, terminate the algorithm and output the optimal 

key generation parameters. If not, return to Step 2 or 

Step 3, as appropriate, for further iterations. 

This hybrid M-BW optimization approach aims to leverage 

the dynamic and adaptive behaviors of Mayflies and Black 

Widows in nature to navigate the complex search space of 

cryptographic key generation efficiently. By combining 

these methods, the algorithm seeks to balance exploration 

and exploitation, thereby identifying robust and efficient 

cryptographic keys for secure communications in EECC. 

3.3.2 Pseudocode outline that captures the essence of the 

Enhanced Elliptic Curve Cryptography (EECC) 

Algorithm 

1. Initialize EECC Parameters 

- Define elliptic curve parameters. 

- Establish security level (e.g., 256-bit security). 

2. Generate Initial Key Pairs 

- For each IoT device, generate a public-private key pair 

based on ECC. 

3. Optimize Key Generation (Swarm-Based Hybrid 

Optimization: M-BW) 

3.1 Initialize Population 

- Create initial populations for Mayflies and Black 

Widows. 

- Each individual represents a potential solution (key 

pair parameters). 

3.2 Define Fitness Function 

- Fitness function evaluates the strength and efficiency 

of key pairs. 

3.3 Mayfly Algorithm Operations 

- Perform nuptial dance and mate selection. 

- Generate offspring through crossover and mutation. 

3.4 Black Widow Algorithm Operations 

- Execute mate and cannibalize procedure. 

- Produce offspring with mutation, selecting the fittest 

individuals. 

3.5 Hybridization 

- Merge Mayflies and Black Widows populations. 

- Evaluate combined population using the fitness 

function. 

3.6 Selection and Refinement 

- Select the best solutions for key generation. 

- Refine solutions to achieve optimal parameters. 

3.7 Convergence Check 

- If convergence criteria are met, proceed to next step. 

- Else, repeat from 3.3 or 3.4 as appropriate. 

4. Finalize Key Generation 

- Use the optimized parameters to generate the final 

public-private key pairs for each IoT device. 

5. Encryption Process 

- Sender encrypts data using recipient’s public key. 

6. Decryption Process 

- Recipient decrypts data using their private key. 

7. Secure File Transmission 

- Transmit encrypted data over the network. 
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- Ensure only intended recipient can decrypt and access 

the data. 

3.3.3 Hybrid optimization for ECC-key selection 

3.3.3.1 Mayfly Optimization Algorithm 

Algorithm: Mayfly Optimization Algorithm 

Input: Population size (N), Maximum generations (Gmax), 

Problem-specific parameters 

Output: Best solution found 

1. Initialize: 

1.1 Generate an initial population of N mayflies randomly. 

1.2 Evaluate the fitness of each mayfly based on the 

problem-specific criteria. 

2. For each generation g = 1 to Gmax: 

2.1 Nuptial Dance (Exploration and Attraction): 

For each mayfly i in the population: 

- Update velocity and position based on personal best 

and global best positions. 

- Apply random movements to simulate exploration. 

- Evaluate the updated fitness of mayfly i. 

2.2 Mate Selection and Reproduction (Exploitation): 

- Sort mayflies based on their fitness. 

- Select top performers as parents for mating. 

- Generate offspring through crossover and mutation of 

parent genes. 

- Evaluate the fitness of offspring. 

2.3 Survival of the Fittest: 

- Combine parents and offspring into a new population. 

- Retain the top N performing mayflies for the next 

generation. 

- Optionally, introduce new mayflies to maintain 

genetic diversity. 

2.4 Update the global best solution if a better solution is 

found. 

3. Check for termination criteria: 

- If the maximum number of generations (Gmax) is 

reached or no improvement in global best, terminate the 

algorithm. 

4. Output the best solution found. 

End Algorithm 

3.3.3.2 Black Widow Optimization (BWO) 

Algorithm: Black Widow Optimization (BWO) 

Input: Population size (P), Maximum generations (Gmax), 

Problem-specific parameters 

Output: Best solution found 

1. Initialize: 

1.1 Generate an initial population of P black widows 

randomly. 

1.2 Evaluate the fitness of each black widow based on the 

problem-specific criteria. 

2. For each generation g = 1 to Gmax: 

2.1 Mating and Reproduction: 

- Randomly select pairs of black widows for mating 

based on their fitness. 

- For each pair, produce offspring using a crossover 

operation. 

- Apply mutation to the offspring to introduce new 

genetic variations. 

- Evaluate the fitness of each offspring. 

2.2 Cannibalism: 

- Sort the population (parents and offspring) by their 

fitness. 

- The least fit individuals are considered as candidates 

for cannibalism. 

- Perform cannibalism by removing a portion of the 

least fit individuals from the population. 

- This simulates the natural cannibalistic behavior, 

where only the fittest survive. 

2.3 Hourglass Mechanism: 

- To maintain population diversity and control the 

population size, implement the hourglass mechanism. 

- This involves selectively keeping the best-performing 

individuals and a few randomly chosen individuals from the 

lower fitness spectrum to ensure genetic diversity. 

2.4 Update the best solution: 

- Keep track of the best solution found so far across all 

generations. 

- If a newly generated individual has better fitness than 

the current best, update the best solution. 

3. Check for termination criteria: 

- If the maximum number of generations (Gmax) is 

reached or no significant improvement in the best solution, 

terminate the algorithm. 

4. Output the best solution found. 

End Algorithm 
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4. Result and Discussion 

The research presents an integrated approach to enhancing 

IoT device security through the development of an 

Enhanced Elliptic Curve Cryptography (EECC) algorithm 

and a malware detection system utilizing deep Long Short- 

Term Memory (LSTM) networks. Here's a summary of the 

methodology and system configuration used in this study: 

4.1 System Configuration: 

 Memory (RAM): 16.0 GB 

 CPU Speed: 2.50 GHz 

 Operating System: 64-bit 

 Processor: Intel Core i5-10300H 

 GPU: NVIDIA GTX 1650 4 GB (GDDR6) 

 Software: Python 3.8 

4.2 Stimulation parameters considered for this analysis 

Table 2. Stimulation parameters considered for this 

analysis 
 

Parameters Value 

Primary learning rate 0.005 

Loss function Cross 

Entropy 

Optimizer Adam 

Dropout 0.5 

State activation function tanh 

Learn rate drop factor 0.2 

Gradient threshold 1 

Gate activation function Sigmoid 

Number of layers 3 

Maximum epochs 100 

Batch size 64 

 

4.3 Research Methodology: 

1. Network Environment: 

 Nodes within the IoT network are classified as either 

normal nodes or attack nodes. 

 Contextual features of these nodes (e.g., transmission 

range, energy consumption, packet loss, hop count) are 

analyzed to evaluate trust values. 

2. Trust Value Evaluation: 

 Nodes with a trust value greater than one are classified 

as secure (normal) nodes. 

 Nodes with a trust value less than one are identified as 

attack nodes. 

 This classification aids in isolating potentially harmful 

nodes from the secure network environment. 

3. Malware Detection Using Deep LSTM: 

 Packet features from identified attack nodes undergo 

preprocessing, including missing value replacement and 

normalization. 

 Linear Discriminant Analysis (LDA) is applied to 

reduce the dimensionality of the packet features. 

 The dimensionally reduced features serve as input for 

the Deep LSTM classifier, which is trained to detect 

various types of attacks. 

 The dataset is split into training (80%) and testing (20%) 

sets to evaluate the classifier's performance. 

4. Attack Classification: 

 The Deep LSTM classifier is capable of detecting four 

distinct types of attacks within the IoT devices, 

demonstrating the efficacy of deep learning in 

identifying complex patterns indicative of cybersecurity 

threats. 

5. EECC Algorithm for Secure Transmission: 

 To counteract identified threats and ensure secure file 

transmission, an Enhanced Elliptic Curve Cryptography 

algorithm is proposed. 

 The IECC algorithm focuses on enhancing 

cryptographic security with optimized key generation, 

leveraging swarm-based hybrid optimization techniques 

for key selection. 

4.4 Performance Different Threshold 

The Receiver Operator Characteristic (ROC) curve is a 

graphical plot that illustrates the diagnostic ability of a 

binary classifier system as its discrimination threshold is 

varied. The True Positive Rate (TPR) and the False Positive 

Rate (FPR) are pivotal metrics represented on this curve, 

providing insights into the classifier's performance across 

different threshold levels. Here's a breakdown of these terms 

and their significance: 

True Positive Rate (TPR): 

 Definition: The TPR, also known as sensitivity or recall, 

measures the proportion of actual positives that are 

correctly identified as such by the classifier. 

 Formula: TPR=(TP+FN)/TP 

 Interpretation: A TPR of 1 (or 100%) means that the 

classifier correctly identifies all positive cases without 

missing any, while a TPR of 0 indicates that the 

classifier fails to identify any positive cases. 
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False Positive Rate (FPR): 

 Definition: The FPR measures the proportion of actual 

negatives that are wrongly classified as positives. 

 Formula: FPR=(TN+FP)/FP 

 Interpretation: An FPR of 1 indicates that the classifier 

incorrectly identifies all negative cases as positive, while 

an FPR of 0 means that the classifier correctly identifies 

all negative cases without any false alarms. 

ROC Curve: 

 Description: The ROC curve plots the TPR against the 

FPR at various threshold settings. The curve starts at the 

origin (0,0) and ends at the point (1,1). 

 ROC Value (Area Under the ROC Curve, AUC): The 

area under the ROC curve (AUC) quantifies the overall 

ability of the classifier to discriminate between positive 

and negative observations. An AUC of 1 represents a 

perfect classifier; an AUC of 0.5 suggests a no better 

performance than random guessing, and an AUC of 0 

indicates a completely incorrect classifier. 

Significance of the ROC Curve: 

 Diagnostic Ability: The ROC curve is a useful tool for 

comparing the diagnostic performance of multiple 

classifiers. A curve closer to the top-left corner indicates 

a more effective classifier. 

 Threshold Selection: By examining the ROC curve, one 

can choose the threshold that best balances sensitivity 

and specificity for a given context. 

 Comparison Tool: When comparing two or more 

classifiers, the one with a higher AUC can be considered 

to have better overall performance. 

4.5 Receiver Operating Characteristic 

 

Fig 6. Receiver Operating Characteristic (ROC) curve 

The proposed model demonstrates a near-optimal ROC 

curve, with the area under the curve (AUC) approaching 1, 

which suggests an excellent classification ability with high 

sensitivity and specificity. This is indicative of the model’s 

high discriminative power to distinguish between the 

positive and negative classes. Based on the visual 

representation of the ROC curve, the proposed model 

exhibits exceptional performance, as indicated by the 

curve's proximity to the top-left corner of the graph. This 

positioning suggests high sensitivity (True Positive Rate) 

across all levels of specificity (False Positive Rate), 

implying that the model can effectively identify positive 

instances while maintaining a very low rate of false 

positives. The area under the ROC curve (AUC), which 

quantifies the model's discriminative ability, is close to 1, 

further confirming its excellent classification performance. 

Overall, the ROC curve underscores the proposed model's 

capability to achieve accurate and reliable predictions in 

binary classification tasks 

4.6 Multiclass Classification Problems 
 

Fig 6. Confusion between certain classes 

The image presents a confusion matrix for a proposed 

model, indicating the performance of the model in 

classifying data into five categories labeled from 0 to 4. The 

diagonal cells from the top left to the bottom right represent 

the number of correct predictions for each class, with the 

cell for class 0 showing a particularly high number of correct 

predictions (10022 instances). Classes 1 through 4 have 

decreasing true positives, with class 1 having 7381, class 2 

having 1439, class 3 with 407, and class 4 with 545 correct 

classifications. The off-diagonal cells represent 

misclassifications, with relatively low numbers, indicating 

the model’s high accuracy in classification. For instance, 

class 0 was most commonly confused with class 1 (1023 

times), while class 4 was least likely to be confused with the 

other classes. This matrix reflects the model's ability to 

distinguish between different classes effectively, with some 

instances of confusion between certain classes, which is 

typical in multiclass classification problems. 

4.7 Proposed and Existing Approaches 
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Table 3. Values attained for proposed and existing 

approaches 

 
 

 

 
Techniq 

ues 

Propos 

ed 

Deep 

LSTM 

 

 
LST 

M 

RN 

N 

[29 

] 

DN 

N 

[30 

] 

DB 

N 

[31 

] 

 
RBF 

N 

[32] 

Accurac 

y 
98 95 90 90 88 83 

Precisio 

n 
98 91 86 86 78 83 

Recall 97 89 86 86 76 84 

Specific 

ity 
97 96 95 92 89 81 

FNR 8 12 15 16 16 18 

FPR 2 4 6 11 13 17 

NPV 97 95 92 90 85 83 

 

 

 
 

Fig 8: The comparative accuracy of six different machine 

learning techniques. 

The figure 8 visualizes the comparative accuracy of six 

different machine learning techniques applied to a specific 

task, showcasing the Proposed Deep LSTM model as the 

most accurate with a 98% success rate. It is followed by the 

LSTM model at 95%, and both RNN and DNN models are 

tied at 90% accuracy. The DBN model shows slightly lower 

performance at 88%, while the RBFN model ranks lowest 

with an 83% accuracy rate. The graph, distinguished by its 

use of different colors for each technique, clearly illustrates 

the superiority of the Proposed Deep LSTM in this context, 

providing a straightforward visual comparison of the 

techniques' effectiveness in achieving high accuracy. 

 

 
 

Fig 9: The precision of various machine learning 

techniques 

The figure 9 above illustrates the precision of various 

machine learning techniques, highlighting the Proposed 

Deep LSTM's leading performance with a precision rate of 

98%. It is closely followed by LSTM at 91%, while RNN 

and DNN both share a precision rate of 86%. The DBN 

technique presents a lower precision of 78%, and RBFN 

rounds out the comparison with an 83% precision rate. This 

visualization clearly distinguishes the superior precision of 

the Proposed Deep LSTM over the other techniques, 

providing a concise and effective comparison of their 

precision capabilities in a given task. 

 

 

Fig 10. The recall rates of various machine learning 

techniques 

The figure 10 above depicts the recall rates of various 

machine learning techniques, with the Proposed Deep 

LSTM technique achieving the highest recall at 97%. It is 

followed by LSTM with 89%, while both RNN and DNN 

have recall rates of 86%. DBN shows a lower recall rate of 

76%, and RBFN has a recall rate of 84%. This visualization 

clearly demonstrates the superior recall capability of the 

Proposed Deep LSTM in comparison to the other 

techniques, effectively summarizing their ability to identify 

relevant instances within a dataset. 
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Fig 11. The specificity comparison chart visually 

represents the performance 

The figure 11 specificity comparison chart visually 

represents the performance of six different machine learning 

techniques—Proposed Deep LSTM, LSTM, RNN, DNN, 

DBN, and RBFN—based on their specificity rates. 

Specificity measures the proportion of true negatives 

correctly identified, making it a critical metric for evaluating 

the ability of a model to correctly identify negative cases as 

such. 

In the chart, the Proposed Deep LSTM technique emerges 

as the most effective, with a specificity rate of 97%. It is 

closely followed by LSTM at 96% and RNN at 95%, 

indicating strong performance in correctly identifying 

negative instances. The DNN technique shows a slightly 

lower specificity of 92%, while DBN is at 89%, 

demonstrating moderate effectiveness. The RBFN 

technique has the lowest specificity rate at 81%, suggesting 

it may be less adept at correctly identifying negative cases 

compared to the other models. 

This visualization clearly delineates the comparative 

strengths of these techniques in terms of specificity, with the 

Proposed Deep LSTM model standing out for its superior 

ability to distinguish negative instances accurately. Such 

insights are invaluable for selecting the most appropriate 

model based on the specificity requirements of a given task, 

especially in applications where false positives carry 

significant consequences. 
 

Fig 12. The False Negative Rate (FNR) comparison chart 

provides a visual representation of the performance of six 

machine learning techniques 

The figure 12 False Negative Rate (FNR) comparison chart 

provides a visual representation of the performance of six 

machine learning techniques—Proposed Deep LSTM, 

LSTM, RNN, DNN, DBN, and RBFN—based on their 

FNR, which measures the percentage of positive instances 

that were incorrectly classified as negative. In the chart, the 

Proposed Deep LSTM technique demonstrates the lowest 

FNR at 8%, indicating its superior ability to correctly 

identify positive cases. The LSTM model follows with an 

FNR of 12%, showcasing its effectiveness but with slightly 

more room for improvement compared to the Proposed 

Deep LSTM. 

The RNN and DNN techniques display higher FNRs at 15% 

and 16%, respectively, suggesting that while they are 

capable of identifying positive instances, they do so with a 

greater likelihood of missing some positive cases. Both the 

DBN and RBFN models exhibit an FNR of 16% and 18%, 

respectively, indicating that these techniques have the 

highest likelihood of failing to detect positive instances 

among the compared models. 

This visualization underscores the comparative efficiency of 

the Proposed Deep LSTM model in minimizing false 

negatives, a critical aspect for applications where failing to 

detect positive instances could have significant 

consequences. The chart effectively summarizes the models' 

reliability in recognizing positive cases, providing essential 

insights for selecting the most appropriate technique based 

on the tolerance for false negatives in specific applications 

or research endeavors. 
 

 

Fig 13. The FPR across different techniques 

The figure 13 highlights the FPR across different 

techniques, showcasing the Proposed Deep LSTM's 

superior performance with the lowest FPR of 2%. This 

indicates its high efficiency in correctly identifying negative 

cases as such, minimizing the instances where negative 

cases are incorrectly marked positive. The LSTM model 

follows with an FPR of 4%, indicating a relatively high 

precision. The FPR gradually increases with RNN at 6%, 

DNN at 11%, and DBN at 13%, illustrating a trend where 

the more complex or specialized techniques tend to have 

lower false positive rates. The RBFN model has the highest 

FPR at 17%, suggesting it is more prone to falsely 
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identifying negative instances as positive compared to the 

other models. This visualization serves as a crucial tool for 

evaluating the reliability and precision of these techniques 

in scenarios where avoiding false positives is critical. 
 

 

Fig 14. The NPV, which measures 

The figure 14 showcases the NPV, which measures the 

proportion of true negatives correctly identified as such, for 

each technique. The Proposed Deep LSTM model leads 

with an NPV of 97%, indicating its exceptional ability to 

accurately predict negative outcomes. It is closely followed 

by the LSTM model with an NPV of 95% and the RNN 

model at 92%, showing strong performance in accurately 

identifying negative cases. The DNN and DBN models 

exhibit slightly lower NPVs of 90% and 85%, respectively, 

while the RBFN model has the lowest NPV at 83%, 

suggesting a greater challenge in correctly predicting 

negative instances compared to the other models. This 

visualization is crucial for understanding the effectiveness 

of these techniques in scenarios where accurately 

identifying negative cases is essential to the task at hand. 

Table 4. Analysis of encryption time for various file size 

among proposed and existing algorithms 
 

Algorithm EEC 

C 

EC 

C 

AE 

S 

DE 

S 

Blowfish 

2 MB 4 6 7 9 12 

8 MB 13 18 21 24 28 

6 MB 17 23 26 29 33 

8 MB 29 32 35 39 42 

 

 
 

Fig 15. Examines the encryption time across different file 

sizes 

The analysis presented in Fig. 15 examines the encryption 

time across different file sizes for a range of proposed and 

existing algorithms, including EECC, ECC, AES, DES, and 

Blowfish. The data indicates that encryption times generally 

increase with larger file sizes across all algorithms. Among 

the algorithms tested, Blowfish consistently exhibits the 

longest encryption times, followed by DES and AES. 

Conversely, EECC consistently demonstrates the shortest 

encryption times across all file sizes. This analysis provides 

valuable insights into the performance characteristics of 

these encryption algorithms, informing decisions regarding 

their suitability for various applications and file sizes. 

Table 5. Analysis of decryption time for various file size 

among proposed and existing algorithms 
 

Algorithm EECC ECC AES DES Blowfish 

2 MB 0.013 0.015 0.017 0.019 0.021 

8 MB 0.03 0.035 0.038 0.041 0.046 

6 MB 0.045 0.049 0.051 0.053 0.056 

8 MB 0.053 0.086 0.089 0.091 0.095 

 
 

Fig 16. Evaluates the decryption time across various file 

sizes 
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The analysis presented in Fig. 16 evaluates the decryption 

time across various file sizes for a selection of proposed and 

existing encryption algorithms, namely EECC, ECC, AES, 

DES, and Blowfish. The data indicates that decryption time 

tends to increase with larger file sizes for all algorithms 

considered. Among the algorithms tested, Blowfish 

consistently exhibits the longest decryption times, followed 

by DES and AES. Conversely, EECC demonstrates the 

shortest decryption times across all file sizes. This analysis 

offers valuable insights into the performance characteristics 

of these decryption algorithms, aiding in the selection of 

appropriate algorithms for different file sizes and decryption 

requirements. 

Table 6. Analysis of processing time for various file size 

among proposed and existing algorithms. 
 

Algorithm EECC ECC AES DES Blowfish 

2 MB 6 8 10 13 16 

8 MB 13 18 21 23 28 

6 MB 19 24 27 29 35 

8 MB 26 32 37 29 31 

 
 

 

Fig 17. Examines the processing time across diverse file 

sizes 

The analysis depicted in Fig. 17 examines the processing 

time across diverse file sizes for several proposed and 

existing encryption algorithms, including EECC, ECC, 

AES, DES, and Blowfish. The data reveals that processing 

time generally escalates with larger file sizes for all 

algorithms assessed. Notably, Blowfish consistently 

displays the lengthiest processing times across all file sizes, 

followed by DES and AES. Conversely, EECC consistently 

demonstrates the shortest processing times across the range 

of file sizes. These findings offer valuable insights into the 

efficiency of these algorithms in processing data of varying 

sizes, aiding in informed decision-making regarding 

algorithm selection for specific processing requirements. 

5. Conclusion 

In this study, a thorough evaluation of machine learning 

techniques for IoT security is conducted, focusing on the 

Proposed Deep LSTM, alongside traditional models like 

LSTM, RNN, DNN, DBN, and RBFN. The assessment 

spans key performance metrics such as accuracy, precision, 

recall, specificity, FPR, FNR, and NPV. The Proposed Deep 

LSTM emerges as the leading model, markedly surpassing 

others with an accuracy, precision, recall, specificity, and 

NPV of 98%, 97%, 97%, and 97%, respectively, while 

maintaining the lowest FPR and FNR. This underscores its 

robustness and reliability, especially compared to the RBFN 

model which lagged in performance with the lowest 

specificity and NPV, and higher rates of false positives and 

negatives. The study confirms the superiority of deep 

learning models in analyzing complex data, which is pivotal 

for high-stakes applications that demand accuracy and 

reliability. Furthermore, the investigation into encryption 

algorithms reveals EECC as the most time-efficient for 

encryption and decryption, in contrast to Blowfish, which is 

slower across various file sizes. This comprehensive 

analysis provides insights into selecting suitable models and 

encryption methods, ensuring a balance between accuracy, 

reliability, and computational efficiency critical for 

enhancing IoT security. 
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