

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 276–283 | 276

Analysis of Vertical Scalability for Controller Placement in Software-

Defined Networking and its Implementation using Tree based

Architecture

Ritesh Jain*1, Dr. Pradnya Ashish Vikhar2

Submitted: 09/01/2024 Revised: 15/02/2024 Accepted: 23/02/2024

Abstract: Software defined networking decouples data plane and control plane. Controller, which is a centralized control plane, is

responsible for performing the control operations. By doing this it simplifies network management and provides the opportunity for fast

innovation and development. By separating data plane and control plane each can evolve independently. It facilitates the introduction of

new services much more easily. Control plane works as a network’s brain. It allows us to program the network in our own way. Every

switch should be connected to one controller. For big data centers, there is needs of multiple controllers. By proper controller placement

the reliability of the data center network can be increased. The main motivation is to minimize the communication delay. For large data

centers, we require multiple controllers, when we use multiple controllers, we need to decide which switch should be assigned to which

controller and how many switches should be assigned to a particular controller? In big data centers, switches change their behavior

dynamically. So, the switches also should be assigned dynamically to the controllers. Hence the aim is to design an algorithm which can

assign switches dynamically to the available controllers and can improve the overall performance. In this work a solution to switch

assignment problem and cascading failure of controllers in multi-controller environment is given. A hierarchy for multiple controllers is

proposed which ensures that cascading failure of multiple controllers is not possible. To assign the switches to multiple controllers

frequently used links are taken as parameter, it reduces the flow set up time and load on the links between controllers. A comparison

between random switch allocation and switch allocation according to proposed solution is done which shows flow set up time is very less

in proposed solution.

Keywords: Controller Placement, Software Defined Networking, Tree based Architecture

1. Introduction

Present computer organizations are using huge and complex

networks, there are many equipments involved in computer

networks such as firewalls, routers, switches, network

address translators, intrusion detection systems. In current

scenario we cannot store all our information on the local

systems and due to the increasing volume of the data

companies have moved towards a new concept which is

known as a data center.

Data center reliability in the real world is strongly depends

on the organization running the data center, not just on the

design. The heat generated by all equipment is removed by

datacenter cooling systems. There must be some hierarchy

of loop system in a cooling system for removing the heat,

each time the hierarchy brings a cool medium that warms up

from some heat exchange and again cooled back somehow.

1.1 Software Defined Networking (SDN):

The control plane refers to the collection of functions inside

a network that dictate its behaviour. Typically, it is

represented by a single, advanced software controller that

serves as the central intelligence of the network,

coordinating its operations. In contrast, the data plane

encompasses the network services that are specifically

designed for the purpose of forwarding traffic, effectively

managing the physical conveyance of data. The SDN

controller communicates with the network switches below

it to enable the control and data planes to interact. This

ensures that the control plane's strategic decisions are

effectively implemented by the data plane in the physical

flow of network traffic.

1.2 Tools and Platform:

When Floodlight is executed, the activities of both the

northbound and southbound APIs from the controller are

activated. Any application has the capability to

communicate with the controller by sending an HTTP REST

command. On the other hand, outside the network, the

Floodlight module will begin listening on the designated

TCP port given by OpenFlow for connections from the

OpenFlow switches. At now, Floodlight is also compatible

with the OpenFlow 1.0 protocol.

Floodlight is an SDN controller that is both user-friendly

and powerful, thanks to its flexible Java development

environment and enterprise-grade core engine. Mininet uses

Python as its underlying programming language. Mininet

12 Department of Computer Science and Engineering
1 Research Scholar, Dr. A. P. J. Abdul Kalam University, Indore
2 Research Supervisor, Dr. A. P. J. Abdul Kalam University, Indore

E-mail Id: 1rit.rit1@gmail.com, 2pradnyav123@gmail.com

* Corresponding Author: Ritesh Jain

Email: rit.rit1@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 276–283 | 277

operates with an authentic kernel and switch, enabling the

execution of genuine software and application code on a

single system. OpenFlow encompasses several pre-existing

capabilities, rendering it advantageous for the development,

implementation, and dissemination of diverse elements

inside the Mininet programming environment.

The segregation of the data plane and control plane enables

network operators to manage network behaviour using a

centralised, singular, high-level control programme. The

present architecture consists of routers, a control plane, and

numerous functionalities. The Management plane employs

many protocols such as Simple Network Management

Protocol (SNMP), Telnet, Hypertext Transfer Protocol

(HTTP), Secure HTTP (HTTPS), and Secure Shell (SSH).

Routers use these commands to determine the network

topology and determine the actions of physical and virtual

switches. The behaviour of these switches is contingent

upon the requests made by applications via the northbound

APIs. The first advantages of SDN will mostly arise from

the implementation of network virtualization, enabling more

flexibility in network segmentation and utilisation.

The switches forward packets as instructed by the controller.

Software Defined Networking has the potential to overcome

the existing limits of network infrastructure. SDN enables

network operators to manage network behaviour using a

centralised control programme, referred to as the controller,

by separating the control plane and data plane. Software

defined networking transforms network switches into basic

forwarding devices, while a logically centralised controller

executes the control logic.

The centralised controller has a comprehensive perspective

of the whole network, enabling it to determine the

forwarding rules and implement them on the switches.

By using a high-level programme to govern network

behaviour, it has the ability to enhance the

comprehensibility of network operations. This is due to the

convenience of examining a single programme to identify

issues and determine the means to regulate the network. It

makes it easy to use traditional computer science

methodologies which we learnt from diverse disciplines

such as software engineering, programming languages,

testing to old issues.

2. Problem Statement and Justification

Analysis of Vertical Scalability

The controller may experience overload as a result of the

excessive number of control messages originating from the

data plane. This issue is especially troublesome in smaller

organisations, when the controller's performance is

constrained by the hardware and control applications it

executes. This bottleneck arises particularly when certain

hosts generate a substantial amount of control messages

within short time periods, posing a danger of overwhelming

the controller. The main forms of control communications

that may greatly increase the operating burden of the

controller are packet-in messages and flow statistics

messages.

In order to reduce the workload on the controller, a common

approach is to integrate control operations directly into the

data plane or assign them to local controllers. This method

enables more effective and localised handling of packet-in

messages, hence reducing the need for substantial controller

involvement. When it comes to flow statistics messages, it

is more efficient to consolidate this data inside the data plane

by using techniques such as sampling, triggers, and

summaries.

An analysis of the consequences of incorporating control

functions into the data plane or local controllers uncovers

several approaches for improving vertical scalability. To

achieve vertical scalability, the most direct method is to

include control capabilities directly into the data plane. This

entails creating a two-layered system for handling control

signals, as shown in figure 1. This approach not only

simplifies the management of control messages but also

enables the use of more scalable network designs.

Fig 1. Two-layer SDN architecture

Fig 2. Three-layer SDN architecture

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 276–283 | 278

Figure 1 presents the fundamental concepts of Software-

Defined Networking (SDN), demonstrating a centralised

control paradigm in which the controller oversees all control

operations and directs the OpenFlow switches in data

transfer according to its instructions. Figure 2 examines a

novel method for handling individual data packets using

localised tactics such as duplicating rules or performing

direct actions inside the switch. This approach also allows

for the consolidation and compression of flow data at the

switch level. This approach avoids the need of a dual-

layered design by ensuring that the maximum delay in

processing control signals matches the delay shown in

Figure 1. Practical implementations of this idea include

DevoFlow and OpenSketch.

The discussion on vertical scalability in SDN revolves on

two primary approaches that include including intermediate

control units into the network's design. Figure 2 depicts a

configuration in which local controllers, situated between

the main controller and the switches, manage proximal

control messages. These local controllers may directly

conduct tasks that do not need global supervision, such as

real-time data collecting, with this setup. The central

controller maintains its responsibility for supervising global

operations such as geographic exploration and algorithmic

modifications. Kandoo, on the other hand, serves as a

realistic demonstration of this architecture, but lacks the

inclusion of additional local controllers. Specific switches

provide control functions that allow them to oversee

neighbouring switches, therefore incorporating control

elements into the data plane to optimise traffic management.

These specialised switches have a greater control duty

compared to their ordinary counterparts, as shown by

DIFANE, which delegates control chores to them.

Examining these control plane models demonstrates that

including control features inside the data plane and using

local controllers may decrease the burden on the central

controller and improve network adaptability. Nevertheless,

this integration amplifies the operational intricacy inside the

data plane and can need an OpenFlow extension to directly

configure these control functions from the controller,

deviating from the standard protocol established by the

ONF. This method of interacting with neighbouring

controllers entails preserving data and control plane links,

guaranteeing a uniform network state across several control

tiers. Although the traditional OpenFlow interface has its

limits, the advancement towards an OpenFlow-based SDN

framework highlights the significance of protecting the

control plane's integrity and assuring effective processing of

data plane packets. In order to facilitate the capacity to scale

upwards, three concepts are suggested:

Control functions need to be located in the control plane,

unless their incorporation into the data plane may improve

processing efficiency without sacrificing the capabilities of

the hardware and software.

Control function integration must preserve the fundamental

processes of the data plane, ensuring that network devices

remain simple and efficient inside an SDN environment.

The inclusion of data analysis capabilities in the data plane

should not have a negative impact on the correctness or

validity of operations, nor should it substantially increase

the burden of the control plane.

The separation of control and data planes is crucial as SDN

continues to develop, particularly with OpenFlow as its

foundation. However, the progress involves integrating

certain control functions into the data plane, such as the

replication of rules seen in DevoFlow. Open vSwitch, a

virtual switch that is compatible with OpenFlow, employs

specialised treatment of stream entries to enable fast packet

processing. This feature, similar to duplicating rules, is well-

suited for the software-defined architecture, improving data

transfer rate without overloading the controller. Therefore,

these concepts play a crucial role in directing the SDN's

transformational path towards a more scalable and efficient

network administration.

3. Mechanisms for Handling Control Messages

In order to tackle the issue of handling excess packets in

messages, especially in the context of connectionless

protocols such as UDP, it is necessary to devise a method to

avoid overburdening controllers due to high-rate UDP

streams or intentional activities by malevolent entities. To

address this problem, it is necessary to enhance the data

plane's capacity to differentiate between various streams.

Nevertheless, the OpenFlow protocol does not explicitly

delineate the processes for attaining such difference.

To properly address this problem, it is crucial to provide

either the data plane or local controllers more control

capabilities in order to efficiently handle different streams.

As per the first recommendation, the responsibility of

recognising and controlling various data flows should be

handled by the data plane, in keeping with the operational

principles of the OpenFlow protocol. This indicates that the

data plane must have the capability to efficiently separate

and regulate different streams of packets when it receives

instructions from the controller.

Upon examination of Open vSwitch (version 1.9), it is

evident that a hash map is used for stream identification.

This hash map organises streams into buckets, allowing for

the efficient separation and management of individual

streams. By implementing targeted alterations to the

switch's software, it becomes feasible to eliminate

superfluous packets from messages, harmonising with the

current programming framework of the architecture without

modifying the fundamental processes of data transmission.

Although these modifications resolve the problem of excess

packets, it is essential to guarantee that they do not violate

the criteria of preserving simplicity and effectiveness in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 276–283 | 279

network device operations inside an SDN environment.

Moreover, the advancement of SDN architecture signifies a

rise in the utilisation of white-box switches that may

implement OpenFlow functions at the hardware level. These

switches, known for their open software ecosystem,

generally consisting of Linux and Open vSwitch, represent

a progressive direction in the development of Software-

Defined Networking (SDN). Modifications made to Open

vSwitch may be immediately transferred to various

hardware switches, hence expanding the range of our

solutions.

Open vSwitch consists of two main components: a user

space component that connects with the controller, and a

kernel module that manages the receipt and routing of

packets. The system has two distinct flow tables to optimise

packet processing: a high-speed channel for instant

processing and a low-speed path for more intricate

processes. By improving the administration of the stream

table in the user space and allocating distinct IDs to each

stream, the switch can better handle and distinguish across

streams. This advanced technique attempts to enhance

packet handling without compromising the integrity of the

data plane's operations, while adhering to the principles of

successful SDN management.

4. Algorithms

Solution for Dynamic Switch Assignments:

Tree Based Architecture As a solution a tree-based scheme

is proposed in which there will be a hierarchy between

controllers, all the switches will be connected to bottom

most controllers. Every switch must be connected to at least

one controller. Every controller has two child controllers

and every child controller will share their topology

information to its parent controller. Every time a switch

receives a new flow request it will ask its controller to install

flow rule, the controller will now check the flow rule from

its topology information. If it finds it will install the flow

rule otherwise it will forward the flow request to its parent.

Now the same procedure will repeat at the upper layer

controller and this will continue until the rule is installed or

the request reaches to the root level controller, since the root

level controller has the global view of the topology it will

definitely install the required flow rule, if the requested path

is available otherwise the rule will not be installed. Here we

are considering two types of controllers, active controller is

the controller which is assigned at least one switch,

otherwise the controller is known as inactive controller.

Inactive controllers always keep listening for new switch

assignment, it saves power and resources.

If we use single, centralized controller for controlling whole

network then it suffers from a single point of failure. If

centralized controller fails, then whole network will fail

(collapse) but in tree-based architecture if one controller

fails, then also the network will work fine in two parts. As

shown in figure 3.

Fig 3. Tree topology of controllers

In the hierarchy of controllers shown in figure 3 if controller

1 fails as shown in figure 4, then also the network will work

in two halves that is controller 2 and controller 3 will

become root now and flow rules for the paths under the

controllers 2 and 3 will be installed properly.

Fig 4. Tree topology when controller 1 fails

In current architecture failure detection is also a big

problem, if a controller fails, then there is no exact method

which can find the failed controller in less time, and after

finding the failed controller it is also a tough task to assign

switches under that controller to other controllers, here the

controller can get overloaded because the switches are

assigned randomly. But in proposed architecture each

controller sends echo messages to its parent controller and

receives echo messages from its child controllers. So

maximum 3 echo messages will be required to find the

failure of any controller, and since it is an organized

structure so the switches under the failed controller will be

easily equally distributed among other active controllers by

the root controller. Here the switches are assigned based on

equal load so there is no chance of controller failure on the

exceeding of load.

Initially, it seems that we are using extra controllers in tree

topology, but these are necessary because we need a proper

mechanism through which we can dynamically assign

switches when a controller comes to its full load, on

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 276–283 | 280

condition of the divide we need hierarchy and at the time of

combining switches i.e., when load decreases, we need to

reduce the number of active controllers.

Assumptions

Following assumptions we have considered for this

approach:

1) We have sufficient numbers of controllers, initially only

one controller is active and all other are inactive.

2) All controllers are connected in tree topology. Every

controller has two child controllers, except the leaf level

controllers.

Algorithm for Tree Based Architecture

1) Initially there will be only one controller, every switch

will request to this controller for assignment.

2) When the controller reaches to its maximum load it

activates its two child controllers and divide its switches

among both child controllers, in such a way that load on both

the child controllers will be nearly equal.

3) Both the child controllers frequently share their load to

their parent controller, here the parent controller knows

about total load on the network under their control.

4) Now the parent controller can decide on the basis of total

load that whether the child controllers should remain active

or it should take all the switches under its control and make

them inactive.

5) Every new switch request to route controller for its

assignment, since the root controller knows load on every

controller so it will assign the switch to the controller with

minimum load, in this way the load will be divided among

all the controllers equally.

5. Result and Analysis

Mininet is used to create topologies for data center

networks. For this purpose, Fat-Tree topologies and

Random topologies are used. In Fat-Tree topology, there are

three layers of switches. Core layer is the uppermost layer,

and the edge layer is the lowest layer, the middle layer is the

aggregation layer. The hosts or application servers are

connected to the switches of edge layer. In Random

topology switches are connected randomly to each other.

Since none of the switch knows the route information it

always forwards the initial route request to the controller,

and then controller installs the flow rules. In this work

Floodlight is used as SDN controller, which will compute

and installs rules in switches based on incoming flow

requests from switches. On the controller we can measure

the load that is the number of flow requests coming in a

specific time unit (Here 1 second is considered).

Following image shows the some of the topologies used:

Fig 5. Topologies -1

Fig 6. Topologies -2

Fig 6. Topologies -3

The current method of multi controller placement is suitable

for static switch assignment and proposed solution is

suitable for dynamic switch assignment, as it’s an organized

structure so easy to control. The Proposed scheme is suitable

for data center networks as there is no need of consideration

of length in data center networks, and data center networks

are small in area so maintaining them is an easy task. Let

every controller have the capacity of handling traffic from

100 switches at a particular time T and let say there are 1000

switches.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 276–283 | 281

The following graph shows the number of controllers

required at any point of time in the network depending upon

the number of flow set up requests.

Fig 7. Number of flow request per second on network

If the initial average number of requests per second is 0 or

500 or 1000 requests and then traffic varies dynamically

then in non-organized way, which is being used currently

we will require minimum 10 controllers. In tree topology we

will require only one active controller.

Fig 8. Assign switches randomly to any controller

From the above graphs it is clear that if we assign switches

randomly to any controller then the flow set up time will be

greater as compared to proposed approach of assigning the

switches which are connected to the most frequently used

link. The reason behind it is that in random assignment of

switches to controller it is possible that to fulfill a flow set

up request more than one level of tree hierarchy need to

traverse the request, But if we assign the switches according

to proposed approach, then maximum the flow set up

requests are satisfied at bottom most layer of the hierarchy,

in this way the average flow set up time reduces.

6. Conclusion

Within the realm of Software-Defined Networking (SDN)

architecture, there is a growing inclination towards

implementing a distributed control plane in order to improve

scalability. Nevertheless, existing approaches to enhance

scalability often include integrating control features into the

data plane, hence potentially complicating its design. Given

the ongoing development of SDN, we propose three

fundamental concepts for incorporating control capabilities

into the data plane. In accordance with these principles, we

have devised two techniques with the objective of reducing

control messages in OpenFlow-based SDN settings. The

experimental findings confirm that our suggested methods

successfully reduce the burden on the controller and

improve the scalability of the network.

Author contributions

Ritesh Jain: Conceptualization, Methodology, Software,

Field study, Data curation, Writing-Original draft

preparation, Validation Dr. Pradnya Ashish Vikhar:

Visualization, Investigation, Writing-Reviewing and

Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] SDN [EB/OL] [2013-9-24]. https://www.open-

networking.org/sdn-resources/sdn-library / whitepapers.

2013.

[2] Yu M L, Rexford J, Freedman M J, et al. Scalable

Flow-Based Networking with DIFANE[C]// ACM

SIGCOMM, 2010. New Delhi, India, 2010: 351-362.

[3] Yeganeh S H and Ganjali Y. Kandoo: A

Framework for Efficient and Scalable Offloading of Control

Applications[C]// ACM SIGCOMM HotSDN 2012.

Helsinki, Finland, 2012: 19-24.

[4] YU M L. Jose L, Miao R. Software Defined Traffic

Measurement with OpenSketch[C]// Proceedings of the

10th USENIX conference on Networked Systems Design

and Implementation (NSDI), 2013. Lombard, Italy, 2013:

29-42.

[5] Schmid S, Suomela J. Exploiting Locality in

Distributed SDN Control[C]// ACM SIGCOMM HotSDN

2013. Hongkong, China, 2013: 121- 126.

[6] Pfaff B, Pettit J, Koponen T, et al. Extending

Networking into the Virtualization Layer. In: Proc. of the

7th ACM SIGCOMM Workshop on Hot Topics in

Networks (HotNets), 2009. New York City, USA, 2009.

[7] Jose L, Yu M L, Rexford J. Online Measurement

of Large Traffic Aggregates on Commodity Switches[C]//

The 1st USENIX Workshop on Hot Topics in Management

of Internet, Cloud, and Enterprise Networks and Services

(Hot-ICE), 2011. Boston, USA, 2011.

[8] Al-Fares M, Radhakrishnan S, Raghavan B, et al.

Hedera: Dynamic Flow Scheduling for Data Center

Networks[C]// Proceedings of the 7th USENIX conference

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 276–283 | 282

on Networked Systems Design and Implementation (NSDI),

2010. San Jose, USA, 2011.

[9] Heller B, Seetharaman S, Mahadevan P, et al.

ElasticTree: saving energy in data center networks[C]//

Proceedings of the 7th USENIX conference on Networked

Systems Design and Implementation (NSDI), 2010. San

Jose, USA, 2011.

[10] Kotani D, Okabe Y, et al. Packet-In Message

Control for Reducing CPU Load and Control Traffic in

OpenFlow Switches[C]// European Workshop on Software

Defined Networking, 2012.

[11] Sumit Badotra, Japinder Singh, A Review Paper on

Software Defined Networking, in International Journal of

Advanced Research in Computer Science, Volume 8, No. 2,

March-April 2017.

[12] Pradeep Kumar Sharma, S. S. Tyagi, Improving

Security through Software Defined Networking (SDN): AN

SDN based Model in International Journal of Recent

Technology and Engineering (IJRTE), Volume-8 Issue-4,

November 2019, pp 295-300

[13] Abigail O. Jefia, Segun I. Popoola and Aderemi A.

Atayero, Software-Defined Networking: Current Trends,

Challenges, and Future Directions in Proceedings of the

International Conference on Industrial Engineering and

Operations Management Washington DC, USA, September

27-29, 2018

[14] Meena, R.C.; Bhatia, S., Jhaveri, R.H.; Shukla,

P.K.; Kumar, A., Varshney, N.; Malibari, A.A., Enhancing

Software-Defined Networks with Intelligent Controllers to

Improve First Packet Processing Period. Electronics 2023,

12, 600. https://doi.org/10.3390/electronics12030600

[15] Bari, M. F., Boutaba, R., Esteves, R., Granville, L.

Z., Podlesny, M., Rabbani, M. G. Zhang, Q., and Zhani, M.

F. (2013a). Data center network virtualization: A survey.

Communications Surveys & Tutorials, IEEE, 15(2):909–

928.

[16] Bari, M. F., Roy, A. R., Chowdhury, S. R., Zhang,

Q., Zhani, M. F., Ahmed, R., and Boutaba, R. (2013b).

Dynamic controller provisioning in software defined

networks. In Network and Service Management (CNSM),

2013 9th International Conference on pages 18–25. IEEE.

[17] Barroso, L. A. and Ranganathan, P. (2010). Guest

editors’ introduction: Data center scale computing. Micro,

IEEE, 30(4):6–7.

[18] Benson, T., Akella, A., and Maltz, D. A. (2010a).

Network traffic characteristics of data centers in the wild. In

Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, pages 267–280. ACM.

[19] Benson, T., Anand, A., Akella, A., and Zhang, M.

(2010b). Understanding data center traffic characteristics.

ACM SIGCOMM Computer Communication Review,

40(1):92–99.

[20] Cervello-Pastor, C., Garcia, A. J., et al. (2014). On

the controller placement for designinga distributed SDN

control layer. In Networking Conference, 2014 IFIP,

pages1–9. IEEE.

[21] Dhamecha, K. and Trivedi, B. (2013). Sdn issues-

a survey. International Journal of Computer Applications,

73(18):30–35.

[22] Feamster, N., Rexford, J., and Zegura, E. (2013).

The road to SDN. Queue, 11(12):20.

[23] Gude, N., Koponen, T., Pettit, J., Pfaff, B.,

Casado, M., McKeown, N., and Shenker, S. (2008). Nox:

towards an operating system for networks. ACM

SIGCOMM Computer Communication Review, 38(3):105–

110.

[24] Heller, B., Sherwood, R., and McKeown, N.

(2012). The controller placement problem. In Proceedings

of the first workshop on hot topics in software defined

networks, pages 7–12. ACM.

[25] Hock, D., Hartmann, M., Gebert, S., Jarschel, M.,

Zinner, T., and Tran-Gia, P. (2013). Pareto-optimal resilient

controller placement in SDN-based core networks. In

Teletraffic Congress (ITC), 2013 25th International, pages

1–9. IEEE.

[26] Hoelzle, U. and Barroso, L. (2009). The datacenter

as a computer. Morgan andClaypool.Hu, Y., Wang, W.,

Gong, X., Que, X., and Cheng, S. (2014). On reliability

optimized controller placement for software-defined

networks. Communications, China, 11(2):38–54.

[27] Jain, R. and Paul, S. (2013). Network

virtualization and software defined networking for cloud

computing: a survey. Communications Magazine, IEEE,

51(11):24–31.

[28] Kim, H. and Feamster, N. (2013). Improving

network management with software defined networking.

Communications Magazine, IEEE, 51(2):114–119.

[29] Kim, H., Santos, J. R., Turner, Y., Schlansker, M.,

Tourrilhes, J., and Feamster, N. (2012). Coronet: Fault

tolerance for software defined networks. In Network

Protocols (ICNP), 2012 20th IEEE International Conference

on, pages 1–2. IEEE.

[30] Kirkpatrick, K. (2013). Software-defined

networking. Communications of the ACM,56 (9):16–19.

[31] Koponen, T., Casado, M., Gude, N., Stribling, J.,

Poutievski, L., Zhu, M., Ramanathan, R., Iwata, Y., Inoue,

H., Hama, T., et al. (2010). Onix: A distributed control

platform for large-scale production networks. In OSDI,

volume 10, pages 1–6.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 276–283 | 283

[32] Kreutz, D., Ramos, F., and Verissimo, P. (2013).

Towards secure and dependable software-defined networks.

In Proceedings of the second ACM SIGCOMM workshop

on hot topics in software defined networking, pages 55–60.

ACM.

[33] Kreutz, D., Ramos, F. M., Esteves Verissimo, P.,

Esteve Rothenberg, C., Azodolmolky, S., and Uhlig, S.

(2015). Software-defined networking: A comprehensive

survey Proceedings of the IEEE, 103(1):14–76.

[34] Limoncelli, T. A. (2012). OpenFlow: a radical new

idea in networking. Queue,10(6):40 Phemius, K., Bouet, M.,

and Leguay, J. (2014). Disco: Distributed multi-domain

SDN controllers. In Network Operations and Management

Symposium (NOMS), 2014IEEE, pages 1–4. IEEE.

