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Abstract: Brain tumors, identified by their abnormal cell proliferation within the brain, have historically been diagnosed and delineated 

using Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. Recently, the use of X-rays, known for their speed 

and greater accessibility, for the detection of brain tumors has sparked interest in the medical community. This study aims to assess the 

efficacy of various computational techniques in the identification and delineation of brain tumors from MRI images. The investigation 

covered traditional models such as the Radial Basis Function (RBF), Linear, and Polygonal kernels, which demonstrated accuracy rates 

between 65.74% and 86.24% across two separate test images. Additionally, the research delved into the capabilities of the 

EfficientNetB3 model, distinguished by its deep learning prowess and innovative compound scaling approach. The findings revealed that 

the EfficientNetB3 model surpassed the conventional methods, achieving accuracy levels of 93.49% and 94.73% on the two test images, 

respectively. These results underscore the substantial promise of the EfficientNetB3 model in enhancing the precision of medical 

imaging analyses, representing a significant leap forward in the diagnostic and treatment planning processes for brain tumor patients. 

Keywords: Machine Learning, Brain tumors, X-ray images, Magnetic Resonance Imaging, Computed Tomography, EfficientNetB3, 

Radial Basis Function. 

1. Introduction 

Brain tumours, which are very challenging in the field of 

medicine, serve as evidence of the complex and fragile 

characteristics of the human brain. The identification, 

division, and subsequent treatment of these conditions are 

crucial, not only for the progress of medical knowledge, 

but more importantly, for guaranteeing the health and 

continued existence of affected persons. Magnetic 

Resonance Imaging (MRI) has proven a reliable and 

essential tool in this pursuit, offering detailed observations 

of the brain's structure and any irregularities. The 

advancements in MRI technology have been substantial. 

However, there is a continuous effort to enhance the 

efficiency and precision of tumour identification and 

segmentation procedures due to the intricate and diverse 

nature of brain tumours.  

Machine Learning (ML) is a branch of artificial 

intelligence that enables systems to learn from data and 

improve their performance based on experience, without 

the need for explicit programming. The ability of machine 

learning to analyse large volumes of detailed MRI data, 

detect complex patterns, and make predictions has led to a 

significant change in brain tumour diagnoses. Data-driven 

algorithms, which provide improved accuracy and 

dependability, have replaced traditional heuristic 

techniques. Figure 1 depicts the Brain tumour and its 

segmentation. 

 

Fig 1. Brain tumor and segmentation. 

However, as with every new technological leap, the 

marriage of MRI imaging and machine learning isn't 

without its challenges. From data acquisition to 

algorithmic transparency, from model validation to real-

world application, there are myriad aspects to consider. 

This review, therefore, aims to explore this confluence of 

machine learning and MRI in the domain of brain tumor 

segmentation and detection. It delves into the historical 

context, capturing the evolution of methodologies. It 
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critically assesses the capabilities and challenges of 

machine-learning-based approaches, while also providing a 

perspective on future trajectories. By synthesizing findings 

from various studies, this review endeavors to provide a 

holistic understanding of where we stand today in 

harnessing machine learning for brain tumor detection 

using MRI and what lies ahead in this promising avenue. 

In the early 2000s, initial attempts to introduce automation 

in MRI image analysis were based on rule-based 

algorithms. However, these models had limited 

adaptability and struggled with variability in tumor 

presentation. With the advent and rise of machine learning, 

particularly deep learning and neural networks in the late 

2010s, a new frontier opened up. Neural networks, 

mimicking the human brain's structure and function, 

offered superior adaptability and learning potential. 

Convolutional Neural Networks (CNNs), a subtype, 

became the cornerstone for image recognition tasks. Figure 

2 shows the  brain tumor detection and segmentation in 

MR images 

 

Fig 2. Brain tumor detection and segmentation in MR 

images. 

Diving Deeper into the Realm of Brain Imaging : The 

human brain, often deemed as the most intricate organ in 

our body, has always intrigued medical professionals. Not 

just because of its sheer complexity, but also due to the 

challenges it presents when afflicted with ailments like 

tumors. Brain tumors, especially malignant ones, can 

proliferate rapidly and can lead to serious neurological 

deficits, impaired cognitive abilities, and even death if not 

diagnosed and treated in a timely manner. 

MRI: A Revolution in Imaging : Since its inception, 

Magnetic Resonance Imaging (MRI) has emerged as a 

cornerstone for neuroimaging. Unlike traditional X-rays or 

CT scans, MRI employs strong magnetic fields and radio 

waves to generate detailed images of the brain. These 

images, comprising multiple slices and offering different 

contrasts, provide a comprehensive view of both healthy 

and pathological tissues. This imaging modality has proven 

invaluable, particularly for soft tissues, thereby offering a 

remarkable window into the brain's structure and any 

lurking anomalies. 

The Machine Learning Epoch : In recent years, the 

exponential growth in computational power and data 

availability has ushered in an era dominated by Machine 

Learning (ML). Given the vast amount of data MRI 

generates, manual interpretation becomes not only tedious 

but is also susceptible to human errors. Here, ML 

algorithms, trained on voluminous datasets, show prowess 

in automatically detecting and segmenting abnormalities, 

reducing the diagnosis time, and enhancing accuracy. 

Techniques ranging from classical ML, such as Support 

Vector Machines, to advanced Deep Learning architectures 

like Convolutional Neural Networks (CNN), have been 

employed. 

The Merger: MRI and Machine Learning : The 

amalgamation of MRI and ML is nothing short of 

revolutionary. ML algorithms, when fed with high-

resolution MRI scans, can discern patterns and anomalies 

which might be imperceptible to the human eye. This not 

only streamlines the diagnosis process but also paves the 

way for personalized treatment plans, tailored to individual 

patients. 

Challenges and The Road Ahead : Yet, it's not all 

smooth sailing. Integrating ML into clinical workflows, 

ensuring data privacy, handling the diverse and multi-

centric nature of MRI data, and making algorithms robust 

to variations are challenges that researchers grapple with. 

Additionally, interpretability of ML models remains a 

significant concern, especially in the medical domain 

where understanding the 'why' behind a diagnosis is as 

crucial as the diagnosis itself. 

Current Landscape : Today, the landscape of brain tumor 

segmentation and detection using ML for MRI images is 

vibrant and rapidly evolving. Advanced ML models, 

coupled with enhanced computational capacities, are 

enabling the analysis of MRI scans with unprecedented 

accuracy. Techniques like transfer learning, where pre-

trained models are fine-tuned for specific medical imaging 

tasks, are reducing the need for extensive datasets, which 

are often challenging to obtain in the medical domain due 

to privacy concerns. 

However, the journey is not without challenges. While ML 

models excel in accuracy, there are concerns about their 

interpretability. Understanding why a model makes a 

particular decision is crucial in medical applications to 

gain the trust of healthcare professionals. Furthermore, the 

quality of data, including its diversity and 

representativeness, can significantly impact the model's 

performance. Inaccurate or biased training data can lead to 

incorrect predictions, with potentially grave consequences 

in a medical setting. 

The Path Ahead : As we venture further into this review, 

we will deep-dive into the specific ML models making a 

mark in the realm of MRI-based brain tumor detection. We 

will scrutinize their strengths, analyze their limitations, and 

explore the innovations on the horizon. This journey will 

not only highlight the technological marvels but also 
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underscore the collaborative spirit of radiologists, data 

scientists, and engineers, all working in tandem to harness 

the potential of ML for the betterment of patient care. 

2. Literature Review 

Multiple metastases make metastatic brain illness 

monitoring onerous. The RANO-BM therapeutic response 

evaluation guideline is common. Yet, detailed volumetric 

measurement of lesions and peri-lesional edoema is 

essential. Brain metastases under 10 mm are difficult to 

segment. Metastases fluctuate in size, unlike gliomas, 

which start bigger. BraTSMETS seeks to automate brain 

metastases detection and segmentation [1]. 

Medical imaging relies on brain tumour segmentation. 

Recent deep learning approaches thrived in this area 

despite its complexity. This assessment of over 150 works 

on deep learning-based tumour segmentation discusses 

network architectures, unbalanced condition segmentation, 

multi-modality procedures, and future directions [2]. 

MRI is essential for early brain tumour identification. 

Tumour variability complicates detection. This paper 

presents an IIB-based Deep Residual network model for 

effective MRI tumour identification. Accuracy, sensitivity, 

and specificity show the method's excellence [3]. 

Brain tumour analysis is best using MRI. Different 

segmentation methods provide different results on the 

BRATS dataset-2018. CNN has better accuracy and 

reaction time than Otsu, watershed, level set, K-means, 

DWT, and CNN, making it a promising brain tumour 

imaging approach [4]. 

Precision computerised brain tumour diagnosis is crucial. 

A hybrid Deep Convolutional Neural Network (DCNN) 

classifier employing upgraded LuNet is proposed. This 

approach improves classifier performance using initial data 

separation, features extraction, and the Laplacian of 

Gaussian filter (LOG) with 99.7% accuracy [5]. 

Brain tumours, typically complicated in MRI data, need 

early identification. Automation is needed because 

radiologists make mistakes while assessing patients. This 

work offers an optimised eXtreme Gradient Boosting 

(XGBoost) brain tumour diagnosis algorithm with 

excellent accuracy and precision [6]. 

Brain tumour identification is crucial for patient care. This 

research presents a deep learning tumour segmentation 

approach for several brain illnesses. The suggested 

technique shows outstanding accuracy and sensitivity 

using a Harvard medicinal School dataset, suggesting 

medicinal value [7]. 

Brain tumour detection Using VGG16: Adults die most 

from brain tumours, which occur from aberrant cell 

proliferation. MRI early detection improves survival. The 

VGG16 deep learning model classified Kaggle MRI scans 

as "normal" or "tumour" with 97.33% accuracy. VGG16 

models are typically considered "black boxes"; hence, 

Layer-wise Relevance Propagation (LRP) was proposed 

for decision-making transparency [8]. 

Brain Tumour Classification Challenge Manually 

identifying brain tumours is challenging and may lead to 

diagnostic errors since they seem like normal tissues. MRI 

images were preprocessed using a HOFilter for this study. 

Tumours were segmented using edge detection and 

morphology. The proposed model achieved 96.46% 

accuracy and 96.19% precision [9]. 

Deep learning diagnostics: Brain tumours must be detected 

early. Research suggests that MRIs can reliably detect 

gliomas, meningiomas, pituitary gland tumours, and 

healthy brains. Two deep learning algorithms and various 

machine learning methods were presented. During training, 

their 2D CNN and auto-encoder networks achieved 

96.47% and 95.63% accuracy. K-Nearest Neighbours 

(KNN) was the most accurate machine learning method 

[10]. 

A More Accurate Brain Tumour Diagnosis Model Early 

detection of brain tumours, whether malignant or benign, is 

crucial because they affect adjacent cells. Use a CNN 

model fine-tuned using ResNet50 and U-Net to locate and 

segment tumours. This model performed well with IoU at 

0.91 and DSC at 0.95 [11]. 

Brain Tumour Detection using an Enhanced YOLOv7 

Model: A refined YOLOv7 model can consistently detect 

pituitary, meningioma, and glioma tumours. The CBAM 

attention mechanism, data augmentation, and Bi-

directional Feature Pyramid Network (BiFPN) improve 

feature extraction and fusion in this model. Thus, it is very 

accurate and may benefit professionals [12]. 

new Convolution-based Hybrid Segmentation Model: A 

unique convolution-based hybrid model segments brain 

tumour images properly. It scored up to 93.10% on dice 

scores across datasets, suggesting good performance. Its 

unique preprocessing structure offers advantages over 

other models [13]. 

MRI-Based Brain Tumour Segmentation: This research 

examined MRI modalities and brain tumour segmentation 

methods. Deep learning, especially CNNs, has enabled 

brain tumour segmentation from MRI scans [14]. 

Improved Segmentation using U-Net and 3D CNN: This 

study used Grey Level Co-occurrence (GLC) matrix 

feature extraction to segment aggressive gliomas. U-Net 

and 3D CNN together could segment the whole tumour 

with 99.4% accuracy [15]. 

Multi-modal MRIs and deep learning algorithms power 

advanced brain tumour segmentation. Manual adjustment 
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is a drawback of these models' intensive preprocessing like 

skull-stripping. This is laborious and not always 

practicable in clinical settings. Few studies have examined 

how brain extraction procedures affect segmentation. An 

automated pipeline and brain extraction decision may alter 

segmentation performance by 15.7%, according to our 

study. Without skull-stripping, training on raw pictures 

yields faster results without reducing accuracy [16]. 

The growth of automated medical imaging defect 

identification emphasises MRI tumour detection accuracy. 

This project benefits from deep learning methods like 

ANN and MLP. The characteristics from MRI 

preprocessing educate a machine learning system to 

identify brain tumours [17]. 

This paper presents WBM-DLNets, a new MRI brain 

tumour diagnostic method. Each combination is tested 

using 16 pretrained feature extraction networks and eight 

optimisation techniques. The outcome? Using chosen 

characteristics, classification accuracy increases 

considerably, with DenseNet-201-GWOA and 

EfficientNet-b0-ASOA leading [18]. 

Machine learning has transformed MRI brain tumour 

segmentation. We provide an effective tumour 

identification and segmentation method using AMSOM 

and FKM. We surpass previous techniques by 10% in key 

measures using the Brats-18 dataset [19]. 

Brain tumours are deadly and hard to detect. This research 

study reviews MR imaging for tumour detection in detail. 

It discusses brain tumour morphology and computational 

intelligence, deep learning, and machine learning detection 

approaches [20]. 

Brain tumour segmentation by MRI is crucial for patient 

treatment. Recent deep neural networks are promising yet 

limited. Our Improved Residual Network (ResNet) 

overcomes these constraints and improves performance 

measures by 10% [21]. 

AI mimics human behaviour. Deep learning, especially 

CNN, may identify brain tumours in MRIs. We present a 

CNN model that outperforms ResNet-50 and VGG16 in 

brain tumour identification [22]. 

MRI brain tumour segmentation using deep learning 

models like U-shaped architectures seems promising. They 

fail at capturing complex tumour borders. The SGC-

ARANet model uses four distinct modules to improve 

segmentation. Our method beats numerous others on the 

BraTS 2019 and 2020 datasets [23]. 

Medical imaging frequently misses important information. 

Meta-learning improves partial modality representations in 

our method. The approach outperforms existing methods in 

missing modality situations [24]. 

AI has made diagnostic radiology more scientific. CNN 

and deep learning algorithms identify early brain tumours 

well, but they demand plenty of resources. A harmony 

search technique is used in our work to segment MRI data 

efficiently. Accuracy-wise, this approach rivals CNN and 

DLA, but speed and resource management are better [25]. 

AI and IoT technologies have being researched for 

numerous purposes. A research produced a real-time item 

identifier for the visually handicapped [26]. Another 

utilised QCA to create an efficient Arithmetic Logic Unit 

(ALU) [27]. A hierarchical K-Means clustering technique 

was presented for digital buddy recommendations. Deep 

learning and OpenCV have been used to identify face 

masks [28] and forecast cancer using Random Forest and 

deep learning [29]. Advanced object detection was 

investigated using Mask-RCNN [31]. 

Many medical imaging methods have been developed to 

identify brain tumours. Big data analysis and several MRI 

modalities were used to develop a patch-based 

convolutional neural network (PBCNN) technique for 

early brain tumour segmentation [32]. Patch-based 

convolutional neural network. Another study employed U-

Net deep learning and the MICCAI BRATS 2018 dataset 

to create an automated MRI tumour segmentation model 

[33]. This model performed well in segmentation. The 

difficulty of detecting tiny tumours in MRI images led to a 

suggestion to employ dilated convolution and level-based 

learning to segment all tumour sizes [34]. A unique 

technique using the Bagging Ensemble with K-Nearest 

Neighbour (BKNN) was also suggested for better brain 

MR tissue differentiation. This method has 97.7% accuracy 

[35]. 

3. Research Gap 

1. Use of X-rays for Brain Imaging: Traditional 

methods for brain tumor detection and segmentation 

largely rely on MRI and CT scans. If X-ray imaging is 

being considered for brain tumor detection, one 

primary research gap could be the limited studies 

available that emphasize the use of X-rays for this 

purpose. 

2. Integration with Machine Learning: While machine 

learning has shown promise in medical imaging, its 

application specifically for X-rays in brain tumor 

detection might be under-explored. Studies might have 

largely focused on MRI and CT data, leaving a gap for 

exploration in X-ray data. 

3. Quality of X-ray Images: The resolution and details 

captured in X-ray images might be different than those 

in MRI or CT scans. The challenges tied to processing 

and analyzing lower-resolution images or images with 

less contrast might not be comprehensively addressed. 
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4. Diverse Algorithms for X-rays: Given the distinct 

nature of X-ray images, the same machine learning 

algorithms that are effective for MRI or CT might not 

be as effective for X-rays. There might be a gap in 

algorithms tailored specifically for X-ray brain tumor 

detection. 

5. Real-time Detection: Considering the relatively 

quicker processing time for X-rays compared to MRI or 

CT, there might be a research gap related to real-time 

tumor detection using X-ray images combined with 

machine learning. 

6. Dataset Availability: One significant challenge might 

be the lack of publicly available datasets of X-ray 

images of the brain with labeled tumor regions, limiting 

the advancement of machine learning models in this 

domain. 

7. Clinical Validation: Even if machine learning models 

are developed for X-ray-based brain tumor detection, 

they might lack extensive clinical validation, making it 

challenging to gauge their real-world efficacy. 

8. Interdisciplinary Collaboration: There might be a 

gap in collaborative studies that bring together 

radiologists who specialize in X-ray imaging with data 

scientists and machine learning experts. 

9. Patient Safety: Given the radiation exposure 

associated with X-rays, studies on the safety 

implications of repeated X-rays for brain tumor 

detection, especially when compared with other 

methods, might be limited. 

10. Comparative Studies: There might be a lack of studies 

comparing the performance, advantages, and 

disadvantages of X-ray-based machine learning models 

versus those trained on MRI or CT scans for brain 

tumor detection. 

4. Existing Methodology 

1. Thresholding and Region-based Methods : One of the 

earliest and simplest methodologies used in brain tumor 

segmentation is thresholding. This method leverages the 

intensity values of MRI images. Tumorous cells usually 

have different intensity values compared to normal cells. 

By setting a threshold value, pixels with intensities beyond 

this threshold are categorized as potential tumor regions. 

While thresholding is computationally efficient, it often 

struggles with images having non-uniform illumination or 

noise. To overcome these shortcomings, region-based 

methods were introduced. These methods identify regions 

in the image, based on predefined criteria, which are likely 

to be tumors. Region growing and region merging are 

popular techniques in this category. However, their 

efficiency can be compromised if the initial seed points are 

not chosen wisely. 

2. Edge Detection Methods : Edges in an image signify 

boundaries or transitions between different objects or 

regions. Edge detection methods, like the Sobel, Canny, 

and Prewitt operators, identify these boundaries to outline 

potential tumor regions. These methods are particularly 

effective for tumors with well-defined boundaries. 

However, they might not perform as effectively for tumors 

with blurry or ill-defined edges. 

3. Statistical Methods : These methodologies utilize 

statistical measures to distinguish between tumor and non-

tumor regions. Techniques such as clustering, where 

similar data points are grouped together, have been 

employed. The K-means clustering algorithm is a popular 

choice in this category. While statistical methods provide a 

more sophisticated approach than thresholding, they 

require a robust selection of initial parameters to be 

effective. 

4. Model-based techniques include constructing a 

representation of the intended item (in this instance, the 

tumour) and then using this representation to detect 

comparable structures within the picture. This approach 

extensively use deformable models such as active contours 

or snakes. These models repeatedly modify their shape to 

accurately conform to the boundaries of the tumour. 

Although these approaches possess significant computing 

capacity, they may be demanding in terms of processing 

resources and may get stuck in local minima, resulting in 

less than ideal outcomes. 

5. Utilisation of machine learning and deep learning 

methodologies: The advent of machine learning has led to 

the integration of prediction models with classic image 

processing approaches. Tumour detection has used Support 

Vector Machines (SVM) and Random Forests. 

Nevertheless, the real breakthrough occurred with the 

emergence of deep learning, namely Convolutional Neural 

Networks (CNN). Convolutional neural networks (CNNs), 

due to their capacity to extract hierarchical information 

from pictures, have shown unparalleled achievements in 

tasks related to the segmentation of brain tumours. 

Architectures such as U-Net and its variations are now 

considered the most advanced in this field. 

6. Hybrid Methods : Recognizing the strengths and 

weaknesses of the aforementioned methods, researchers 

started to combine multiple techniques to harness their 

collective potential. For instance, combining thresholding 

with statistical measures or integrating edge detection with 

model-based approaches. These hybrid methodologies aim 

to offset the limitations of one method with the strengths of 

another. 

5. Proposed Method 

5.1 Flowchart 
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Figure 3 outlining the steps of a research process, 

particularly for a study like detecting brain tumors through 

MRI images. Here’s an explanation of each step in the 

context of such a study: 

1. Start: Initiating the research project. 

2. Literature Review: Investigating existing studies on 

brain tumor detection using MRI imaging, machine 

learning models for medical imaging, and 

advancements in neural network architectures relevant 

to the task. 

3. Problem Definition and Research Objectives: 

Clearly defining what the research is addressing, such 

as the detection of specific types of brain tumors from 

MRI images, and setting objectives like achieving a 

certain accuracy or processing time. 

4. Data Collection and Preprocessing: Gathering a 

dataset of brain MRI images that are labeled with the 

presence or absence of tumors. Preprocessing may 

include normalizing the images, resizing them to the 

input size required by the model, augmenting the 

dataset to improve model robustness, and splitting the 

data into training and test sets. 

5. Model Selection and Implement: Choosing a suitable 

machine learning model for the task. For brain tumor 

detection, a model like EfficientNetB3 could be 

selected due to its balance of accuracy and 

computational efficiency. Implementation involves 

configuring the model with the appropriate 

hyperparameters. 

6. Training and Testing: Training the model on the 

prepared dataset, using a loss function and an 

optimization algorithm to adjust the weights. After 

training, the model is tested on a separate set of images 

to evaluate its performance. 

7. Performance Comparison Analysis: Comparing the 

model's performance to other models or benchmarks in 

the field. Metrics such as accuracy, precision, recall, 

and F1 score are typically used to assess performance. 

The analysis might also involve statistical tests to 

determine if performance differences are significant. 

8. Conclusion: Drawing conclusions from the research 

findings, discussing the model's effectiveness in 

detecting brain tumors from MRI images, its potential 

clinical applicability, and any limitations or areas for 

future research. 

 

Fig 3. Proposed working flowchart. 

5.2 Proposed working architecture 

The methodology for identifying brain tumors with the 

EfficientNetB3 framework commences with the 

aggregation of pertinent data, which is then subjected to 

preparatory procedures such as image resizing and 

standardization to ensure uniformity and enhance data 

quality. Subsequently, the EfficientNetB3 architecture is 

deployed, integrating pre-established weights to facilitate 

feature extraction. This is achieved through the utilization 

of MBConv and SE blocks, which are pivotal in refining 

the model's analytical capabilities. 

Training the model involves the application of annotated 

datasets, enabling it to learn and distinguish between 

different types of brain tumors. This phase is critical and is 

followed by validation and testing segments to rigorously 

assess the model's efficacy. Upon satisfactory performance 

metrics, the final phase involves the model's integration 

into clinical environments, where it serves as an advanced 

tool for brain tumor detection, aiding medical professionals 

in accurate diagnosis. 

The EfficientNet model employs a strategic scaling method 

known as compound scaling, which meticulously adjusts 

the network's depth, width, and resolution. This adjustment 

is governed by a compound coefficient (Φ) and is fine-

tuned using constants (α, β, γ) identified through an 

extensive grid search. This balanced scaling approach 

ensures that the network scales harmoniously across 

different dimensions, thereby maximizing accuracy within 

the confines of available computational resources. 

The MBConv Block, or mobile inverted bottleneck 

convolution block, is a cornerstone of the EfficientNet 

architecture. It features an initial 1x1 convolution that 

expands the channel count, followed by a depth-wise 3x3 

convolution, and culminates in a 1x1 convolution that 

reduces the channels, optimizing the network's efficiency, 

especially in scenarios with limited computational 

capacity. 
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Additionally, the SE (squeeze-and-excitation) block 

enhances the model's performance by dynamically 

recalibrating the feature channels. It differentiates the 

significance of various channels, thereby sharpening the 

network's focus on the most pertinent features for accurate 

brain tumor detection. This nuanced approach to feature 

prioritization significantly contributes to the model's 

overall effectiveness and efficiency. 

 

Fig 4. Proposed operational framework. 

The neural network architecture seen in Figure 4 is 

intricately designed to process three-dimensional MRI 

images of the brain. This advanced model excels at 

identifying subtle nuances and intricate patterns present in 

the imaging data, allowing it to accurately differentiate 

between malignant and benign tumours with exceptional 

accuracy. This system employs state-of-the-art deep 

learning techniques to effectively extract and analyse 

important characteristics from brain imaging. It provides a 

robust tool for accurately classifying tumours. This 

technique not only demonstrates the use of state-of-the-art 

AI technology in medical imaging but also greatly boosts 

the possibility of early and precise diagnosis, hence 

improving patient outcomes. 

3.2 Algorithm EfficientNetB3 

To undertake the task of detecting brain tumors from MRI 

scans using deep learning, particularly leveraging the 

EfficientNetB3 architecture, the following detailed 

procedure is adopted: 

Dataset Assembly for MRI Brain Scans: Begin by 

gathering a comprehensive dataset that includes brain MRI 

images, both of individuals diagnosed with tumors and 

those without, to create a balanced and informative dataset 

for training and testing the model. 

Image Preprocessing: Adjust the dimensions of the 

collected MRI images to fit the specific input requirements 

of the EfficientNetB3 architecture. This involves resizing 

images, normalizing the pixel intensity values to a standard 

scale, and potentially augmenting the dataset with 

artificially modified versions of the images (e.g., rotated, 

flipped, or scaled images) to enhance the model's ability to 

generalize from the data. 

EfficientNetB3 Initialization: Load the EfficientNetB3 

architecture equipped with pre-trained weights. This 

leverages the concept of transfer learning, where a model 

developed for one task is repurposed on a second related 

task, taking advantage of the pre-learned patterns in the 

data. 

Feature Extraction Phase: Process the preprocessed MRI 

images through the EfficientNetB3 network. This step 

allows the model to identify and extract complex features 

from the images that are relevant for distinguishing 

between malignant and benign brain tumors. 

Classification Layer Integration: Enhance the model by 

adding a fully connected layer followed by a softmax 

activation function. This classification layer is tailored to 

differentiate between the classes of interest, in this case, 

tumor and no tumor, based on the features extracted by the 

EfficientNetB3. 

Model Training: Employ the assembled and labeled dataset 

to train the neural network. Utilize optimization algorithms 

such as backpropagation and gradient descent to iteratively 

adjust the model's parameters, thereby minimizing the 

error in tumor classification. 

Model Validation: Before final deployment, validate the 

model's performance using a distinct dataset not seen 

during training. This step is crucial for adjusting the 

model's hyperparameters and ensuring it generalizes well 

to new data, effectively preventing overfitting. 

Model Testing: Finally, assess the fully trained model's 

performance by evaluating it on a separate test dataset. 

This evaluation focuses on key metrics such as accuracy, 

sensitivity (true positive rate), and specificity (true 

negative rate) to gauge the model's diagnostic capability. 

EfficientNets, including EfficientNetB3, are known for 

their unique compound scaling method. This approach 

uniformly scales the network's depth, width, and resolution 

based on a set of predetermined scaling coefficients. This 

scaling is conducted subsequent to a neural architecture 

search aimed at identifying an optimal baseline network. 

The selected baseline is then scaled up to produce the 

EfficientNet variants, optimizing performance across 

various computing constraints and tasks. 

In the brain tumor detection from medical images, 

applying EfficientNetB3 involves translating the intricate 

visual patterns of MRI scans into a form that the model can 

effectively analyze and interpret. This process harnesses 

both the depth of the network for feature extraction and the 

efficiency of its architecture to provide a potent tool for 

medical diagnosis, leveraging the network's capacity to 

handle complex image data with high efficiency. 

1. Baseline Network: 

• EfficientNets start with a baseline network found 

through neural architecture search. This network is 

a mobile inverted bottleneck CNN (MBConv) 

which includes elements such as depthwise 
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separable convolutions and squeeze-and-excitation 

blocks. 

2. Compound Scaling: 

• A compound coefficient, φ (phi), is used to 

uniformly scale network width, depth, and 

resolution in a principled way: 

• Depth: d=αϕ 

• Width: w=βϕ 

• Resolution: r=γϕ 

• Here, α, β, and γ are constants that are determined 

by a small grid search on the original baseline 

network. The EfficientNetB3 corresponds to a 

specific value of φ, which increases the network's 

size compared to the baseline model. 

3. Applying EfficientNetB3 to Brain Tumor Detection: 

The process of detecting brain tumors using MRI images 

through the EfficientNetB3 architecture involves a series 

of meticulously designed steps, each crucial for ensuring 

the accuracy and reliability of the diagnosis: 

Initial Image Processing 

• MRI Image Preparation: The journey begins with an 

MRI scan of the brain. Given EfficientNetB3's 

requirement for a specific input resolution, typically 

300x300 pixels, any MRI image not meeting this 

criterion is resized to match, ensuring uniformity 

across the dataset. 

Image Preprocessing 

• Normalization: Prior to analysis, the MRI images 

undergo normalization, adjusting pixel values to a 

scale that the neural network can effectively process. 

This adjustment typically involves scaling the values 

to fall within either a -1 to +1 or 0 to 1 range, 

optimizing the network's ability to learn from the 

data. 

Feature Extraction and Analysis 

• Convolutional Layers: The core of the model consists 

of multiple convolutional layers. Each layer employs 

filters to extract vital features from the MRI images. 

This step is enhanced with batch normalization and 

activation functions, particularly the swish function, 

which is mathematically represented as 

f(x)=x⋅sigmoid(x), optimizing the flow and 

transformation of data through the network. 

• MBConv Blocks: At the heart of EfficientNetB3 lie 

the MBConv blocks. These blocks utilize depthwise 

separable convolutions, which serve to minimize the 

number of parameters, and squeeze-and-excitation 

blocks, which prioritize the most significant features 

by dynamically recalibrating channel-wise feature 

responses. 

• Progression Through the Network: As the image data 

advances through the network, there's a deliberate 

decrease in spatial resolution while the number of 

feature maps, or channels, increases. This transition 

ensures that the network captures and emphasizes the 

most pertinent features for classification. 

Classification and Output 

• Global Average Pooling: Nearing the final stages, a 

global average pooling layer condenses each feature 

map to a singular value, averaging out all the inputs, 

which effectively reduces the dimensionality and 

prepares the data for classification. 

• Fully Connected Layer and Activation: The 

streamlined feature set is then fed into a fully 

connected layer, tailored to match the number of 

desired output classifications. For brain tumor 

detection, this typically translates to a binary setup—

identifying the presence or absence of a tumor. The 

softmax activation function is applied to this layer's 

output, generating a probability distribution over the 

potential classes. 

Training the Model 

• Model Training: With a dataset of labeled MRI 

images at hand, the network undergoes training. A 

loss function, commonly cross-entropy in 

classification tasks, evaluates the discrepancy 

between the model's predictions and the actual labels. 

Through backpropagation, gradients are calculated, 

allowing an optimizer, such as Adam, to adjust the 

weights and minimize the loss, refining the model's 

predictive capability. 

6. Implementation 

6.1 Dataset 

This dataset is composed of 7,023 MRI images of the 

human brain, categorized into four distinct classes: glioma, 

meningioma, no tumor, and pituitary. The images that fall 

under the 'no tumor' classification are sourced from the 

Br35H dataset. 

https://www.kaggle.com/datasets/masoudnickparvar/brain-

tumor-mri-dataset 

6.2 Illustrative example 

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
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Fig 5. Image depicting the division of a malignant test 

sample into distinct segments. 

Figure 5 displays the segmented picture of the test model, 

which the model will predict as being cancerous. 

 

Fig 6. The picture of the benign test has been divided into 

segments. 

Figure 6 displays the segmented picture of the test model, 

which will predict that the image is benign. 

 

Fig 7. Training and validation loss and accuracy of the 

model. The optimal epoch is 15, with a secondary option at 

7. 

Figure 7 displays the model's training accuracy at the best 

epoch, which is 7, and the model's validation loss at the 

best epoch, which is 15. 

7. Result 

7.1 Parameters description 

This dataset encapsulates a comprehensive analysis of MRI 

brain images through various statistical and textural 

metrics, each offering insights into different aspects of the 

images: 

• Mean: Represents the average of pixel intensities 

across the image, providing a basic measure of its 

overall brightness. 

• Standard Deviation: Quantifies the dispersion of pixel 

intensities around the mean, indicating the extent of 

contrast within the image. 

• Entropy: Evaluates the level of unpredictability or 

complexity in the image's texture, a reflection of the 

image's detail richness. 

• RMS (Root Mean Square): Offers an alternative 

measure of average brightness, emphasizing the 

influence of higher intensity values. 

• Variance: Measures the expectation of the squared 

deviation from the mean intensity, further highlighting 

contrast levels. 

• Smoothness: Assesses the uniformity of intensity 

variations, with lower values indicating a smoother 

image texture. 

• Kurtosis: Determines the peakedness of the image's 

intensity distribution, with higher values suggesting a 

sharper peak. 

• Skewness: Measures the asymmetry of the intensity 

distribution, indicating whether the distribution leans 

towards higher or lower intensities. 

• IDM (Inverse Difference Moment): A metric for 

assessing the image's homogeneity by examining the 

texture's uniformity. 

• Contrast: Captures the difference in luminance or color 

that enables the distinction of objects within the image. 

• Correlation: Evaluates the extent to which a pixel's 

intensity is predictive of its surroundings, offering 

insights into the image's texture patterns. 

• Energy: Calculates the sum of squared values in the 

image matrix, serving as an indicator of texture 

uniformity. 

• Homogeneity: Measures how closely the distribution of 

elements in the image matrix aligns with the diagonal 

of the matrix, with higher values indicating a more 

homogeneous texture. 

This table appears to represent statistical parameters 

computed from two test images, likely related to texture 

analysis for image processing or pattern recognition tasks, 

such as brain tumor detection or segmentation in medical 

imaging: 
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Table 1. Parameters with test images. 

Parameters Test image 

-1 

Test image 

-2 

Mean 0.00245 0.00123 

Standard Deviation 0.0423 0.754 

Entropy 2.524 2.745 

RMS 0.0236 0.046 

Variance 0.00412 0.00436 

Smoothness 0.8425 0.8436 

Kurtosis 6.2398 5.985 

Skewness 0.543 0.239 

IDM -0.214 0.354 

Contrast 0.158 0.234 

Correlation 0.089 0.234 

Energy 0.684 0.328 

Homogeneity 0.896 0.872 

 

Table 2. Models with accuracy. 

Models Accuracy 

Test image -1 

Accuracy 

Test image -

2 

RBF Accuracy 65.74 81.24 

Linear Accuracy 79.53 81.84 

Polygonal 

Accuracy 

82.79 86.24 

EfficientNetB3 93.49 94.73 

 

 

Fig 8. Models with accuracy. 

• The graph visually compares the accuracies of four 

different models—RBF Accuracy, Linear Accuracy, 

Polygonal Accuracy, and EfficientNetB3—across two 

test images. Here's a summary of the key observations: 

• EfficientNetB3 shows the highest accuracy for both test 

images, with 93.49% for Test image -1 and 94.73% for 

Test image -2, indicating superior performance in 

classifying or analyzing the images. 

• Polygonal Accuracy ranks second, demonstrating solid 

performance with accuracies of 82.79% for Test image 

-1 and 86.24% for Test image -2. 

• Linear Accuracy is slightly lower but still competitive, 

with accuracies of 79.53% for Test image -1 and 

81.84% for Test image -2. 

• RBF Accuracy has the lowest performance among the 

models evaluated, with 65.74% accuracy for Test 

image -1 and 81.24% for Test image -2, showing a 

significant improvement in performance from Test 

image -1 to Test image -2. 

8. Conclusion 

This study delves into the comparative analysis of different 

computational models for their capacity to identify and 

delineate brain tumors within MRI imagery. Traditional 

methodologies, such as the Radial Basis Function (RBF), 

Linear, and Polygonal kernels, were scrutinized, revealing 

accuracies that span from 65.74% to 86.24% across two 

separate test images. Furthermore, this research explored 

the capabilities of the EfficientNetB3 model, distinguished 

by its proficiency in deep learning and its innovative 

approach to compound scaling. The findings indicated a 

superior performance by the EfficientNetB3 model, which 

achieved remarkable accuracy levels of 93.49% and 

94.73% on the two evaluated test images, respectively. 

These outcomes underscore the exceptional potential of the 

EfficientNetB3 model to enhance the precision of medical 

imaging analyses significantly, representing a noteworthy 

progression in the diagnostic and treatment planning 

processes for brain tumor patients. 
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