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Abstract: As Artificial Intelligence (AI) advances, it promises to transform power transformer security. Machine learning, neural 

networks, and predictive analytics are driving this change. AI can help with predictive maintenance, fault diagnosis, real-time 

monitoring, and adaptive control systems. The goal is to make power grids more reliable and resilient. The use of AI in transformer 

security is increasing. The evolution of power system protection has been remarkable, shifting from fuses and electromechanical devices 

to advanced computer-based systems. These modern, expert-based solutions have proven to be the most effective and often necessary 

approach to addressing emerging protection challenges. This work explores the potential of AI in power transformer security by means of 

various architectures using different Artificial Neural Networks (ANN) architectures and its impact on power infrastructure. 
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1. Introduction 

In an age of swift technological progress, the integration of 

Artificial Intelligence stands out as a game-changing 

influence in strengthening the protective measures 

surrounding the power transformers. This vital element of 

electrical infrastructure requires robust safeguards and 

dependability to ensure continuous energy transmission 

and distribution in the network. Artificial Intelligence, 

equipped with its capacity to analyze extensive datasets, 

comprehend intricate patterns, and make instantaneous 

decisions, provides a promising opportunity for improving 

the security of power transformers. The implementation of 

AI technologies in this field has the potential to transform 

traditional approaches to predictive maintenance, fault 

detection, and real-time monitoring. This introduction aims 

to delve into the various implications, challenges, and 

potential advancements associated with employing AI to 

enhance power transformer security, recognizing the 

opportunities and complexities introduced by this 

integration in the electrical infrastructure domain. With the 

expanding role of AI in power systems, gaining an 

understanding of its consequences becomes essential for 

effectively harnessing its capabilities, while also 

addressing the potential challenges along with the ethical 

considerations taken into account. 

The operational and maintenance phase constitutes the 

predominant portion, ranging from 70%-80%, of total 

costing associated with a resources asset throughout its life 

cycle [[1], [2], [3]]. A study conducted in 2018 by the 

NIST-National Institute of Standards and Technology 

highlighting the overall expenditure on operations and 

maintenance in the United States of America amounted to 

$50 billion every year [4]. 

2. Literature Review  

In the field of Artificial Intelligence (AI), a network of 

neurons is employed to transform a set of inputs into an 

output. Each neuron operates similarly to a processor, 

generating a single power based on its input [5]. The 

arrangement and connectivity patterns of these neurons can 

be harnessed to construct computers addressing the real-

world problems in the model recognition as well as pattern 

categorization, mimicking the process of human brain. The 

input signals undergoes mathematical operations by means 

of artificial neurons, replicating the cognitive processes of 

the human brain. The neural-network NN are structured 

with neurons organized in different layers and 

interconnected to facilitate the flow of information from 

input to output[6]. An activation function is utilized in 

each neuron of layer 'i', connecting it to the 'i+1' layer of 

neurons. The input signals to a particular neuron is derived 

from all the neurons in the preceding layer, and their 

excitation power is adjusted to controlling the extent of the 

signal reaching each neuron[7]. Artificial Neural Networks 

(ANNs) find different applications in scientific disciplines 

such as medical diagnostics, voice-recognition, and pattern 

recognition. ANNs are computing systems inspired by 

biological neural networks, featuring interconnected 

nodes(artificial neurons) organized in layers akin to human 
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or animal brains. The signal—typically the real values—is 

sent by these artificial neurons through their connections, 

or synapses, and the result constitutes an output which is 

computed using the original input and taking into account 

the weights provided by each neuron [8]. ANNs, which are 

widely used as data-mining tools, are particularly good at 

modeling independent features with dependent functions 

that have non-linear forms. ANNs mimic the process of 

learning of the human brain by training with a comparable 

sample to predict future values of dependent variables [9]. 

The activation of neurons and the way in which signals are 

transmitted to other neurons are affected by variations in 

signal strength, as Fig. 1 shows. The neural-network 

architecture comprises three main layers:  

1. Input layer—distributes input units without processing 

the data.  

2. Hidden layer(s)—providing the capabilities mapping the 

non-linear problems. 

3. Output layer—output units encoding the values 

assigning to the specific instance. 

 

Fig-1.1: Artificial Neural-network 

1.1 Power Transformer Security Challenges 

Securing power transformers is critical due to their pivotal 

role in electrical infrastructure, serving as the backbone for 

power transmission and distribution networks. Despite 

their importance, power transformers face various security 

challenges that can jeopardize their reliability, 

performance, and the overall stability of the electrical grid. 

A comprehensive understanding of these challenges is 

essential for implementing effective protective measures. 

Security concerns for power transformers encompass a 

diverse range of issues, including physical vulnerabilities, 

cyber threats, aging infrastructure, operational risks, and 

environmental factors. Physical security risks involve the 

susceptibility of transformers to vandalism, natural 

disasters, or accidents, leading to potential physical 

damage and subsequent power disruptions. In the digital 

era, cyber threats have become significant, posing risks 

such as cyber attacks on control systems, remote access, 

and communication networks of power transformers, 

potentially resulting in data breaches, system 

manipulations, or sabotage[10]. 

Aging infrastructure introduces its own challenges, as 

older transformers are more prone to failures due to wear 

and tear, necessitating rigorous maintenance and 

modernization efforts. Operational risks involve issues like 

overloading, overheating, or insulation failures, which can 

cause performance degradation or catastrophic failures. 

Environmental factors, including temperature variations, 

humidity, and contaminants, also impact transformer 

performance, underscoring the need for enhanced 

protection measures [11].  

Addressing these multifaceted challenges requires a 

comprehensive understanding of potential vulnerabilities 

and the adoption of proactive security measures for 

ensuring the reliability as well as resilience of power 

transformers within the broader electrical grid. This 

introduction aims to explore the intricate landscape of 

power transformer security challenges, delving into each 

aspect in detail to highlight the significance and 

complexity of fortifying these essential elements of the 

power grid. 

1.2. Revolutionary Approach for Transformer Security 

Artificial Intelligence (AI) emerges as a revolutionary 

force poised to revolutionize transformer security in the 

power sector. By simulating intelligent behavior and 

learning from data, AI introduces a new and innovative 

paradigms enhancing protection mechanisms for power 

transformers. Detection and fault isolation on time, rapidly 

and efficiently ensuring the stable power flow in the 

grid[12].  These components, crucial in electrical grids, 

efficiently transmit and distribute electricity. However, 

traditional approaches to ensuring their reliability and 

security often lack adaptability and agility. The advent of 

Artificial Intelligence, machine learning, neural networks, 

predictive analytics, marks a profound shift in fortifying 

these essential assets. The integration of AI technologies 

into transformer security holds the promise of elevating the 

field by enabling predictive maintenance, fault diagnosis, 

real-time monitoring, and adaptive control systems. This 

introduction seeks to explore the transformative potential 

of AI in this domain, analyzing its applications, benefits, 

challenges, and the broader impact on the reliability and 

resilience of electrical infrastructures. As the power sector 

increasingly adopts AI-powered solutions, understanding 

its capabilities in revolutionizing transformer security is 

fundamental for comprehending the implications and 

opportunities presented by this groundbreaking 

technological advancement. 
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1.3. AI in Predictive Maintenance for Power 

Transformers 

The rise of AI signifies a new era in the realm of predictive 

maintenance for power transformers, reshaping traditional 

approaches and providing a paradigm shift in guaranteeing 

the reliability, durability, and efficiency of vital electrical 

infrastructure. Power transformers take part in a crucial 

role in electrical networks, enabling the transmission, 

distribution of electricity. Despite their significance, these 

assets are susceptible to failures that can lead to significant 

financial losses, power outages, and safety hazards. 

Predictive maintenance, focused on identifying potential 

issues before they escalate, is essential in mitigating these 

risks. 

This introduction delves into the transformative impact of 

AI on predictive maintenance for power transformers. AI, 

particularly through machine learning, neural networks, 

and data analytics, empowers predictive maintenance 

systems to process vast amounts of historical and real-time 

data, recognize patterns, and predict potential faults or 

performance degradation. AI-based systems utilize 

algorithms that learn from data trends and patterns, 

enhancing their ability to accurately predict potential issues 

in power transformers and enabling proactive maintenance 

actions. Moreover, AI facilitates a departure from 

traditional calendar-based or usage-based maintenance to a 

more precise and efficient condition-based approach. This 

AI-driven approach assists in prioritizing maintenance 

tasks, reducing downtime, optimizing operational costs, 

and ensuring the longevity of power transformers. The 

application of AI in predictive maintenance for power 

transformers signifies a fundamental shift towards a more 

proactive, precise, and cost-effective strategy in ensuring 

the reliability and efficiency of critical electrical assets, a 

complete inspection of the advancements, challenges, real-

world implementations, and future prospects of AI in 

predictive maintenance for power transformers will be 

explored, shedding light on its transformative potential 

within the domain of electrical infrastructure maintenance 

and reliability[13]. 

1.4 Applications of Neural-network Approaches for 

Transformer Current Differential Protection 

The following transformer operating situations are the 

primary causes of mal-operation for transformer 

differential relays: 

• Magnetizing in-rush current 

• Over-excitation of the core 

• Current Transformer CT-saturation 

Recent advancements in power systems, such as their 

increased scale and complexity, have resulted in a rise in 

the second harmonic component of fault current. As a 

result, a special plan must be developed to avoid relay 

blockage when a transformer really has an internal defect 

and to prevent relay malfunction when a transformer is in 

another operational condition that necessitates the relay not 

working [14–16]. This works deals with new neural 

network-based techniques. When wavelet transforms and 

neural networks are integrated, the signal is effectively 

characterized by wavelets, that divide the time domain into 

longer duration intervals at lower frequencies and shorter 

periods of time at higher frequencies. 

1.5 Problem Formulation and Objectives 

A power transformer protection relay's functions include 

stopping tripping whilst the power transformer is in a 

normal operational state and swiftly starting tripping when 

it is malfunctioning. In today's power systems, 

distinguishing between magnetizing inrush-current and 

Internal-fault becomes quite challenging[17]. This is 

because of the fact that inrush-current magnetization-

induced unexpected excursions are frequently avoided by a 

second harmonic component in power transformers by 

blocking differential relays. However, internal defects also 

result in the production of the second harmonic element. 

Developing a precise system to distinguish between various 

conditions of operation is also essential, particularly 

between Internal-fault and magnetizing inrush current. This 

part so provides novel neural network-based methods for 

categorizing transient events in power transformers such as 

digital transformer differential protection. 

1.6 Stage 1: 

This is the point, when internal current and inrush are 

separated. The required current signals are acquired by 

means of the mathematical model. This technology, 

depending on the residual flux values selected and the 

angle at which the voltage is switched on, develops and 

simulates a range of simulated alternate inrush as well as 

internal current waveforms for diverse power transformers. 

After that, an analysis and display of the simulated results 

for the same scheme using ANN and WNN are produced. 

1.7 Stage 2: 

This is where the discrimination between different 

operating circumstances is done. The required current 

signals are generated using the SIMULINK-model. Using 

the Back-Propagation approach, multilayered feed-forward-

neural-networks (ANN) are first trained to distinguish 

between various operating conditions. Next, the Particle-

Swarm-Optimization(PSO) method is deployed for training 

the same multilayered feed-forward-neural-networks to 

distinguish between the different operating conditions. 

1.8 Stage 3: 

During this phase, the simulated signals are generated for 

discrimination using the SIMULINK-model are carried 
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over from the previous step. To accomplish distinguishing, 

a NN and the wavelet-transform were combined along with 

Back-Propagation technique. Finally, the same 

architectures were trained using the PSO approach, which 

combined neural networks (WNNs) with wavelet 

transformations. 

The wavelet-transform is used in the WNN approach to 

first divide the power transformer system's Differential-

Current Signals over  the number of wavelet-components, 

each of it covering a certain frequency range. 

Consequently, the temporal domain as well as frequency-

domain properties of the transitory signals are recovered. 

Next, Internal-faults are distinguished from all other power 

transformer operating-conditions using a neural network. 

Wavelet transformations provided the properties that were 

given into these artificial neural-network designs (ANNs). 

The intended system has been implemented using the two 

different ANN-Architectures. The first is employed as an 

Internal-fault-Detector(IFD), and  another is CM  detecting 

and differentiates between different working circumstances 

including normal condition, inrush current, over-excitation 

condition, and CT-Saturation induced by external faults. 

These two ANNs are first trained using the BPN and PSO 

methodologies, and the obtained results are then 

compared(Stage of Parents). The PSO and Back-

Propagation algorithms are then used to develop and assess 

a novel approach based on combining neural networks and 

WNN-transformations (Third Stage).The simulation's 

results are shown and compared to previous cases. 

 

Fig 1.2. Block Diagram of the suggested plan 

The wavelet-transform is used in the WNN approach to 

first divide the power transformer system's, Differential-

Current Signals into a number of wavelet-components, 

everyone covering a range of certain frequencies. 

Consequently, the temporal-domain and frequency-domain 

properties of the transitory signals are recovered. Next, 

Internal-faults are distinguished from all other power 

transformer operating-conditions using a neural network. 

Wavelet transformations provided the properties that were 

given into these artificial neural-network designs (ANNs). 

Figure depicts the essential architectural element of the 

recommended design  

1.9 Stage-1: Development of Protection scheme using 

Mathematical model 

Discrimination among inrush and Internal-fault current 

signals is accomplished using this recommended protection 

mechanism using equation-1 and equation-2 [16, 23]. 

Inrush current 

I (t) =  4.949 ∗ sin  (314 + (α − Φ)) −

0.954 exp(−18.85(t)) ∗ sin(α − Φ − 0.189)                 

Equation-(1) 

Internal-fault 

I(t) = (
1

Z
) e (−

R

L
) ∗ t {sin(314 + α − Φ)} − e((−314t +

αs) ∗  R) ∗ sin (αs + α − Φ)              Equation-(2) 

Where α- switching angle at which the transformer input 

voltage is switched on. 

αs represents saturation angle 

Ф represents tan-1 ( X/R ) 

X represents Reactance of transformer primary winding 

R represents Resistance of transformer primary winding 

By adjusting the impedance of the transformer's main 

winding, the residual flux of the core, and the point during 

which the transformer is switched ON, one can generate 

many sets of internal and inrush simulated current signals 

using equations (1) and (2). The simulated current 

signals—both the inrush and internal fault—are 

transformed into a set of wavelet coefficients using 

wavelet-transformations. The DB2 filter and resolution 

level 2 are used with the Dabuchies Wavelet to provide an 

approximation and detailed coefficients for decomposition. 

Table 1.1. Parameters of ANN structural design 

Parameters Number  of Neurons 

 ANN-1 ANN-2 ANN-3 

Inputs to the ANN 6 6 9 

Output to the ANN 2 2 2 

 

 

Fig 1.3. Flow diagram for the designed neural-network and 

wavelet-transform integrated power transformer protection 

scheme 

Parameter

s 

Number  of neurons 

 ANN1 ANN2 ANN3 

Inputs to 

ANN 

6 6 9 

Output to 

ANN 

2 2 2 
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1.10 ANN Architectural Design 

Selecting the appropriate number of neurons for each 

hidden layer and determining the overall number of hidden 

layers is a critical decision in the development of an 

artificial neural network (NN). In this study, a multi-

layered feed-forward Back-Propagation Neural Network 

(BPNN) was employed to distinguish between internal 

faults and inrush currents using approximations and 

detailed coefficients. The input data consisted of 16 

samples, representing four transformers with eight sets of 

inrush and internal-fault current signals. The NN output 

was designed to assign a value of 0 for inrush currents and 

1 for internal faults. The experiment utilized 6 and 21 

wavelet coefficients for the target and simulated output 

current signals, respectively, resulting in 21 inputs and 6 

targets. Three NN topologies were created, varying the 

number of neurons in a single hidden layer from 4 to 32 

through numerous tests. After thorough testing, it was 

concluded that a single hidden layer with 32 neurons 

produced the best results. Training the NN architecture 

involved using data from eight different transformers and 

implementing the Back-Propagation approach with a 

sigmoid activation function. The momentum factor 

employed during training was set at 0.85. 

1.11 Results and analysis 

The simulation results generated using just neural networks 

(ANNs) are shown in An ideal result with a 99% accuracy 

rate is found after 1129 iterations. Pre-specified as 0.01 is 

the mistake. provides the simulated results of the 

recommended protection system utilizing a neural-network 

(WNN) and linked wavelet transform. The results indicate 

that an optimal solution with a 99% accuracy rate is 

reached after 36 repetitions. The error has been assigned a 

preset value of 0.01. 

The performance comparison of the recommended 

protection strategy using ANN and WNN methods is 

shown in It is clear from that a protection strategy based on 

WNNs outperforms one that just employs ANNs. 

Table 1.2. Simulation results using Neural Network(ANN) 

alone 

 

Table 1.3. Simulation results using the combined wavelet 

transforms & Neural Network(WNN) 

 

A-Actual, T-Target 

Table 1. 4. Performance Comparison of WNN and ANN 

 

1.12 SIMULINK-model for power transformer 

modeling in stages two and three. 

An appropriate transformer representation is necessary to 

explain the diverse power transformers operating-

conditions often known as a functional approximator, 

which describes the terminal behavior of the power 

transformers in different conditions. This sort of 

transformers are simulated by means of SIMULINK. This 

representation makes it possible to simulate mistakes and 

other disturbing factors that can directs to a breakdown in 

power protection system. 

1.13 Operating-conditions taken into account are: 

1) Normal Condition. 

2) Magnetizing inrush-current, As a result of transformer 

energy. 

3) Over-excitation condition. 

4) CT-Saturation, Due to the external faults. 

5) Internal-fault 

For 20-power transformers with different ratings running 

under the aforesaid operating conditions, the simulated 

waveforms were obtained and used for the suggested 

procedure. The obtained simulated waveform for a 16-

MVA, 110/33-KV power transformers operating-conditions 
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as discussed under various circumstances, for instance, as 

in Figure (a), (b), (c), (d) and (e). 

 

Fig 1.3. (a). Operating under Normal Condition 

 

Fig 1.4. (b) Operating under Inrush Current 

 

Fig 1.5 (c) Operating under Over-excitation condition 

 

Fig 1.6 (d) Operating under CT-Saturation 

 

Fig 1.7. (e) Internal-Fault Condition 

1.14 Second stage: ANN development of Models for a 

Protection Strategy 

This suggested approach employs MLFFNN. This sort of 

learning process is supervised. PSO methodology and the 

Back-Propagation method are the learning paradigms that 

are employed. Bounded and differentiable activation 

functions are necessary for both PSO and BP training 

procedures. Consequently, sigmoid function has been used. 

1.15 Data which is used for the Training and Testing. 

Matlab-based training programme was developed to 

identify the power transformer's various operational 

conditions. The SIMULINK-model generates a 100-sets of 

samples, 80-set to be trained and 20-set for testing and 

evaluation, of the simulated differential output current 

signals with five distinct operating states of 20-different 

power transformers. We gather a total of 20-sets of samples 

for every working situation. The simulated differential 

output current signals are discretized to yield 100- training 

sets of samples using the FFT block. By reducing the 

number of neural-network processing units, this signal 

processing reduces the amount of time needed for neural-

network testing and training. Achieving high performance 

discrimination is aided by it. A total of sixteen samples are 

taken of these signals every cycle, a tabulation of the 

aforementioned discrete sample data that were collected 

using various power transformer ratings in various 

operational situations. For every operational stage, the 

sixteen numbers of sampled data are sent into the ANN 

designs. The network is trained to provide a binary output 

indicating whether the observed differential-current is 

normal condition, inrush, over-excitation condition, CT-

Saturation condition, or an internal-fault conditions as a 

result of constructing of the learned matrices. 

1.16 Designing and developing Condition Monitor (CM-

ANN) and Internal Fault Detector IFD architectures. 

Power transformers may be identified and categorized by 

ANN architecture, which allows for using supply as a trip-

signal upon issue detection. The proposed solution takes 

into account two different designs. To find internal power 
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transformer problems and keep an eye on other operating-

conditions that might cause a differential relay to 

malfunction, two alternative designs are used. 

16-samples of the power transformer's output current 

signals corresponded to the set of inputs which were used. 

The total number of neurons in a single hidden layer may 

range starting 4 to 32; 32-neurons provides the greatest 

outcomes. Gradually, the number of neurons in the hidden-

layer rises to 64. However, as the number of neurons in the 

hidden-layer increases, the system obtains more complex, 

which does not significantly improve the outcomes. To 

obtain the highest level of accuracy, several alternative 

architectures are tried before settling on the final design, 

for example, the outcomes of training and testing three 

distinct CM structures (16-8-4, 16-16-4, and 16-32-4) and 

three distinct IFD designs (16-8-1, 16-16-1, and 16-32-1). 

The configuration with one output and one hidden-layer of 

32-neurons is found to be delivering the best results for 

IFD after extensive testing. Moreover, the hidden-layer 

architecture with four outputs and 32-neurons yields the 

best outcome for CM state. At the last stage, the 

architecture with 1-output layer (16-32-1) and a single 

output, 1-hidden-layer (32-neurons), and 1-input layer (16-

neurons) is selected for IFD in the model. Four output 

layers (16-32-4), 1-hidden-layer amid 32-neurons, and 1-

input layer amid 16-neurons make up the architecture 

utilized for CM. Each architecture is trained over five 

thousand iterations. The momentum factor stays at 0.8 for 

the during this period of work. The NN is trained by means 

of BP, and PSO algorithms, giving simulated outcomes as 

shown. There is just one output in the internal failure 

detection (IFD) architecture, and it may be either '1' or '0'. 

In this case, a value of  '0' denotes an external fault, while a 

value of '1' denotes anyone of mentioned non-internal-fault 

states ( i.e., normal condition, inrush condition, over-

excitation condition, and CT-Saturation condition). Four 

outputs make up the architecture (CM) that is used to keep 

an eye on the various power transformers operating 

characteristics. The network produces a distinct set of 

outputs, as seen below. 

'1000'-Under Normal Condition. 

0100'-During Inrush.  

'0010'-Over-excitation condition. 

'0001'-CT-Saturation Condition. 

1.17 Utilizing PSO and BP algorithms for training and 

testing. 

In order to simply, adjust the error during the iteration 

phases, the Back-Propagation Algorithm (BP algorithm) 

basically leverages the sensitivity (gradient) of the error 

with regard to the weights. By connecting the input training 

patterns to the output training patterns through successive 

solutions to a linear set of equations, the paradigm 

generates an ideal non-linear mapping. The least squares 

method served as the foundation for the development of 

this algorithm. The error function E at the nth iteration of 

an output layer with "k" perceptrons is K. 

𝐄(𝐧) = (
𝟏

𝟐
) ∗ ∑𝐤

𝐢=𝟏   {𝐓𝐢 − 𝐎 ∗ 𝐢(𝐧)}            (3)                           

where 'T' and 'O' are target, and the actual pattern 

respectively. 

The BP methodology is first used to train the ANN 

structures that have been built using this method. Stated 

differently, the weights of neurons are changed using the 

error Back-Propagation technique. 

1.18 PSO algorithm 

PSO begins through the collection of random-particles, and 

iterate to explores through generations in search of optimal 

solution. Each iteration updates apiece particle with the two 

"best" values, 'pbest' and 'gbest'. The particle updates its 

locations as well as velocity using the relevant equations 

[(3) and (4)] after determining the two optimum values. 

The chosen inertia weight value in this method is 0.9. Both 

'c1' and 'c2' values be assumed to be 1.8. The objective 

function (i.e. fitness function) is  

f =∑√ {[target]–[actual output]}2                 (4)    

  Equation-4 is used to determine the Mean Squared Error 

achieved during ANN training in order to estimate each 

particle's fitness function. The ANN weights are then 

updated in accordance with the particle's variables. The 

fitness functions of every particle in the population are 

defined in a similar way. The particle with the lowest 

fitness function is the best one, and a predefined accuracy 

level is used to compare its fitness function. After the 

required accuracy is obtained, the training comes to a 

conclusion. If not, the new location and velocity of the 

particles are updated using equations (3) and (4). The 

process is continued until the required precision is reached. 

In this study, the set of weights is modified using the PSO 

approach because the weight modification of neurons is 

dynamic and non-linear. The location and velocity of the 

particles are varied to get the optimal weight value that will 

meet a predefined mean squared error. The initial 

population extent of  20-particles are selected. Each 

particles in the population are slowly brought closer to the 

global minimum as the system iterates. When the pre-

specified error condition is satisfied, the iterations come to 

a conclusion, and the collection of these optimized weights 

are done and employed as suggested in design. The 

flowcharts represents the PSO and BP algorithm 

implementations that are employed to train as well as 

evaluate the proposed ANN architectures. Thus, an 

artificial neural-network (ANN) trained with the BP and 

PSO algorithms distinguishes between different power 
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transformer operating-conditions by means of the 

waveforms received for real power transformers, then the 

results are further analyzed. 

 

Fig 1.8. ANN Training and Testing Flow Chart using the 

BP Algorithm 

 

Fig 1.9- ANN training and testing flow chart using the PSO 

algorithm 

1.19. Results and Analysis 

The results obtained provides the comprehensive simulated 

outcome for BPN training of IFD and CM designs. It also 

gives the comprehensive simulated results for PSO training 

of IFD and CM designs. Following sufficient training, the 

ANN model was evaluated by means of BP-algorithm and 

PSO-algorithms on every conceivable data set for various 

power transformer operating circumstances. To see whether 

the matching indication was provided, the network was 

examined. In the event of an internal problem, IFD sends 

out a trip signal. A 4-output network is used to monitor the 

condition of the power transformer in case of  internal 

problem does not arise. 

The Mean-Average-Error during BP algorithm training is 

0.009225 for IFD and 0.036575 for CM. It demonstrates 

that the Mean-Average-Error is lesser in IFD for similar 

number of repetitions because the ANN design of IFD is 

structurally simpler than CM. Nevertheless, the error 

obtained decreases to the order of 10–15 in both the IFD 

structure and CM structures when the same architectures 

are trained using the PSO algorithm method. This suggests 

that the weight modifications are improved utilizing 

optimum values when the ANN is trained using the PSO 

technique. The PSO-trained NN therefore presents an 

100% of accuracy. 

The findings of the performance comparisons between the 

training of the PSO algorithm and BP algorithms 

demonstrate that PSO training yields better results, when 

compared to the two scenarios. The BP approach turned out 

to take about 90-seconds to simulate the IFD and 120-

seconds to simulate the CM. The mean average values of 

testing and training error for the IFD and CM designs were, 

respectively, 0.001623 and 0.00325 following the 

networks' training via the BP approach. On the other hand, 

training the same designs with the PSO technique improved 

the accuracy, i.e., decreased error to 10-15. Furthermore, 

100% accuracy was reached in just 520-epochs. 

Furthermore, the PSO training simulation period was 

reduced to 4-seconds.  

Table 1.5. BP Algorithm-Based Internal-Fault Detector 
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Table 1.6. Condition Monitor using BP Algorithm 

 

1*, 2**, 3***, 4****-- The corresponding outputs of the 

1st, 2nd, 3rd, and 4th outputted neurons are in the 

following sequence, '1000' for the normal Condition, 

'0100' for inrush, '0010'-for over-excitation condition, and 

'0001' for CT-saturation condition. 

Table 1.7. Detector of Internal-Faults Using PSO 

Algorithm 

 

Table 1.8. Condition Monitor using PSO Algorithm 

 

1*, 2**, 3***, 4****-- The corresponding outputs of the 

1st, 2nd, 3rd, and 4th outputted neurons are in the 

following sequence, '1000' for the normal Condition, 

'0100' for inrush, '0010'-for over-excitation condition, and 

'0001' for CT-saturation condition. 

 

Fig 1.10. Results obtained from PSO algorithm based 

Training  

Table 1.9. Comparison of BP and PSO training's 

performance 

Used Parameters 
 

BP-

Algorithm 

PSO- Algorithm 

Convergence-

Parameter 
 

5000-

iterations 

520-iterations 

Time taken for 

simulation 
 

122-seconds 4.21-seconds 

Mean-Average-Error-

MAE 
 

0.013 0.0001 

Accuracy in Percentage 
 

99% 100% 

 

The proposed approach has 100% accuracy in 

differentiating between four different scenarios using the 

PSO algorithm. This is because the PSO technique's precise 

weight alteration optimization was used. The PSO scenario 

requires a lot fewer iterations to reach convergence than the 

BP instance. 

The PSO trained neural-network design yields results that 

are both faster and more accurate in-terms of the no. of 

iterations necessary to attain a pre-specified error criteria as 

well as the simulation times, as can be seen when 

comparing the simulation results of the two situations. As a 

result, the power transformer's recommended ANN-based 

differential relaying provides encouraging operational 

speed, dependability, and security. 
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Fig 1.11 Results of ANN training using BP and PSO 

algorithms. 

1.20 Third Stage: Creating a protection plan with the 

WNN model 

Neural networks and wavelet transforms are used in the 

proposed approach to classify transient occurrences in 

power transformers. Different attributes might be extracted 

from differential-current waveforms utilizing the wavelet 

transform. To distinguish the power transformer's intrinsic 

problem from other operational circumstances, a neural-

network may be employed. Figure 4 depicts the flow chart 

of the suggested procedure, which may be summed up as 

follows: 

• Differential-Current Signals are broken down to a set of 

wavelet-coefficients (i.e., detailed, approximation 

coefficients) using the wavelet transform. The 

Differential-Current Signals are produced via power 

transformer modeling in the Simulink environment under 

various operating-conditions (Normal conditions, Inrush 

current condition, Over-excitation condition, CT-

Saturation condition, and Internal-fault condition). 

• The failure state is distinguished from other operational 

circumstances by the ANN architecture. Thus far, two 

different ANN-architectures have been formed.  

• First design has a single output and functions as an 

internal-fault detector (IFD). One of the non-internal 

fault situations is indicated by a value of 0, but an 

internal fault scenario is indicated by a value of 1. 

• An additional design with four outputs is called a 

Condition Monitor (CM).To determine if a given 

transient is an internal problem or represents another 

operational state, the output from the artificial neural-

network (ANN) is reconstructed back to the original 

output. 

. 

 

Fig 1.12. Diagram showing the planned WNN scheme's 

flow. 

1.21 Use of Wavelet Transforms for processing of 

differential- current signals. 

By means of Simulink, an appropriate power 

transformers modeling is done to account for the power 

transformer's various operating circumstances (Such as 

Normal conditions, Inrush condition, Over-excitations, CT-

Saturations, and Internal-fault), as well as the simulated 

differential- waveforms of current that were recorded in 

Stage-1. The WNN model also makes advantage of these 

signals. 

Figure 1.13. illustrates the three main stages of the 

suggested WNN using IFD and CM model for power 

transformers safety to   

 

Fig 1.13 Three stages of the proposed protection model 

(WNN) 

illustrates how wavelet approaches are used in the first and 

last stages. First, we break down the real discrete data from 

modeling power transformers under diverse operating 

environment into a collection of wavelet-coefficients. In 

order to predict the future patterns of each signal's output, 

the decomposed coefficients are fed into neural networks 

(NNs) in the second phase. The intended final output 

pattern is created in the last step by merging the anticipated 

signals once again. 

1.22 Step-1-Pre-Signal Processing 

Depending on the resolution level selected, the associated 

inputs (discrete data) are broken down into a range of 

wavelet-coefficients by the model's pre-signal processor, 

i.e., DWT. Then the decomposed coefficients are 

forwarded to signal predictor-NNs as training data after 

normalization. The decomposition technique used for this 

investigation is the Daubichies Wavelet as it can detect 
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current signals with high frequency, low amplitude, brief 

duration, and fast fading. 

For the wavelet decomposition process, the Daubichies 

wavelet family provides a large range of wavelet filters 

(DB2 to DB44). Make sure the wavelet decomposition and 

reconstruction stages can both eliminate aliasing effects 

and reconstruct the original signal after reconstruction 

when selecting the filters and resolution settings. It also 

depends on the amount of smoothness of the approximated 

signal at that level (i.e., after eliminating all higher 

frequencies). A higher resolution level would provide an 

approximation signal that is smoother. 

1.23. Step-2-Signal-Prediction 

This proposed defensive tactic uses neural networks to 

predict signals. The amount of wavelet-coefficient signals 

at the pre-processor's output dictates how many neural 

networks are required for the model. One NN is needed to 

produce the accurate forecast for each wavelet- coefficient 

signal, including the approximated one. 

1.24. Step-3: Post Signal-Processing 

The resolution level and wavelet technique (DWT) 

employed in step-1 are selected for the wavelet-

reconstruction in post-processing yielding final anticipated 

output is created at this stage by combining different 

outputs of the signal predictors-NNs. In order to do this, 

the outputs are joined back together. In order to sample the 

simulated Differential-Current Signals into discrete values 

under various operating situations, this work uses power 

transformer modeling. 16-samples are selected for each 

cycle as the sampling rate. After being converted into 

wavelet coefficients, these discrete data are fed into neural 

networks as input variables. For the decomposition 

procedure, the Daubichies family with DB2 filter is 

selected after testing and verification that the DB2 to DB44 

filters can replicate the original signal following 

reconstruction. In this instance, 16-samples of Differential-

Current Signals yield 21-wavelet-coefficients (6 for 

approximation and 6 and 9 for detail-1 and detail-2, 

respectively). In order to help the neural-network 

distinguish between internal faults and other operating 

situations, these coefficients are used during the training 

phase. 

1.25 IFD and CM-ANN architectures 

Back-Propagation approach by supervised multilayered 

FFNN (feed-forward-neural-network) which is one of the 

popular choice used for classification jobs. Thus, in relation 

to the proposed protective paradigm. In this work, two 

different ANN designs have been analyzed. One of the two 

outputs from a single Internal issue Detector(IFD) design is 

either 1(indicating an internal issue) or 0 (representing a 

non-Internal-fault conditions). An alternative design such 

as the CM having 4-outputs: '0100'-over-excitation 

condition, '0010'-inrush current, and '000'- normal 

condition. Six samples—two for detailed and two for 

approximation—are used to estimate the data, and the 

input—simulated differential-current signals—is divided 

into wavelet-coefficients. Three ANN architectural 

modules are built utilizing these coefficients, as shown in 

Table 1.10, and having the Internal-fault detector-IFD and 

condition monitor-CM structures listed below.  

Table 1.10. Structure of Neural-network Architecture 

Parameters 

Number of Neurons 

ANN- 1 
ANN-

2 

ANN-

3 

Inputs to 

ANN 
6 6 9 

Outputs to 

ANN 
2 2 2 

 

The quantity of neurons in a neural network's hidden-layer 

determines how well it can learn new things. It's 

challenging to figure out how many neurons are concealed. 

The nearly all appropriate no. of neurons for this NN is 

explored and examined in order to determine the precise 

number of hidden-neurons needed, with enough time for 

testing. A large number of tests were conducted in this 

work using a single hidden-layer and a range of 4 to 32-

neurons. After sufficient testing, it was determined that a 

single hidden-layer with 16-neurons produced the best 

outcomes for both CM and IFD. 

 

Fig 1.14 Protection Model based on Final WNN  

After taking into consideration every element of design, the 

final joint wavelet-transform and neural-network based-

WNN model for the power transformers safety is 

constructed. It has been observed that, the discrete values 

obtained by modeling power transformers were broken 

down into neural-network training data i.e., IFD and CM to 

construct wavelet-coefficients. To determine, if the 

observed differential-current was an internal defect, over-

excitation condition, inrush current, or normal, neural-

network outputs were recreated to get the original output. 

1.26 Training and Learning 

For the suggested protection model, the Back-Propagation 

method with sigmoid-activation- function will be used. The 
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benefit of rapid calculation time for any big neural-network 

size is the cause of this. The selected momentum factor is 

0.85. Two different ANN architectures such as IFD, and 

CM have been created and designed for this method. When 

an internal defect is found, an Internal-fault detector (IFD) 

triggers a trip signal. The Condition Monitor (CM) keeps 

an eye on the various operating states, including over-

excitation condition, inrush current, and normal. Initially, 

the BP method is used to train both the IFD and CM ANN 

structures, followed by the PSO algorithm. Then, using the 

BP technique, the same structures are trained using a 

wavelet-transform and neural-network (WNN) 

combination. Lastly, a combined wavelet-transform and 

neural-network-WNN using PSO-algorithm is used to train 

the same architectures. As a consequence, all four scenarios 

are used to train the ANN designs, and the resulting 

simulation results are examined below. 

3. Results and Analysis 

We collect 40-sets of samples from 10-distinct power 

transformers. The four distinct operating conditions—

normal conditions, inrush current conditions, over-

excitation condition, and internal fault conditions are 

represented by these 40-pieces of data. For training neural-

network based architectures on IFD, CM for each of the 4-

previously outlined scenarios, these data are broken down 

into wavelet-coefficients. Reconstructing the original 

output from neural-network outputs allows one to ascertain 

whether the observed differential-current in normal 

conditions, an inrush current conditions, an over-excitation 

conditions, or an internal problem conditions. For example, 

a detailed description of the WNN simulation results for a 

'25-MVA', '110/33-KV' power transformers is given. The 

Internal-fault Detector (IFD) condition and Condition-

Monitor (CM) condition of the proposed approach, which 

solely employ neural networks (ANNs), are displayed in 

and, respectively. These show that after 5000-iterations, an 

optimal solution with 99% accuracy is produced for both 

the IFD, CM designs, with an error of 0.01 for  an IFD and 

0.0301 for CM. 

Table 1.11.Internal-fault Detector using ANN alone 

 

 

 

Table 1.12. Condition Monitor using ANN alone 

 

A-Actual T-Target 

1*, 2**, 3***, 4****--The corresponding outputs of the 

1st, 2nd, 3rd, and 4th outputted neurons are in the 

following sequence, '1000' for the normal Condition, 

'0100' for inrush, '0010'-for over-excitation condition, and 

'0001' for CT-saturation condition. 

The simulated results for both IFD and CM are shown in 

These results were generated by employing the BP method 

in conjunction with coupled wavelet transformations and 

neural networks (WNN). After 1500 iterations, a 99% 

accurate optimum solution is identified based on the data, 

with a 6.6*10-7 error for IFD and 0.03 for CM. 

The protection system that was developed using just ANN 

is then trained using the PSO approach (for both IFD and 

CM), and the outcomes are shown in  

Subsequently, a neural-network (WNN) was trained using 

the Combined Wavelet-transform in order to generate the 

protection strategy utilizing the PSO approach. 

Additionally included are the simulation findings in Tables 

1.17 and Table 1.18. 

Table 1.13. WNN-based Internal-Fault Detector-IDF 

 

Table 1.14. WNN based Condition-Monitor-CM 
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Table 1.15. Using ANNs trained on PSO, an internal-fault 

detector 

 

A-Actual T-Target 

1*, 2**, 3***, 4****--The corresponding outputs of the 

1st, 2nd, 3rd, and 4th outputted neurons are in the 

following sequence, '1000' for the normal Condition, 

'0100' for inrush, '0010'-for over-excitation condition, and 

'0001' for CT-saturation condition 

Table 1.16. Monitoring Condition with PSO-Trained ANN 

 

Table 1.17. Internal-fault Detector employing WNN 

trained by PSO 

 

Table 1. 18. Condition Monitor using PSO-Trained WNN

 

A-Actual T-Target 

1*, 2**, 3***, 4****--firstThe corresponding outputs of 

the 1st, 2nd, 3rd, and 4th outputted neurons are in the 

following sequence, '1000' for the normal Condition, 

'0100' for inrush, '0010'-for over-excitation condition, and 

'0001' for CT-saturation condition. When compared to the 

previously mentioned techniques, the PSO-trained WNN 

network produced more accuracy with fewer iterations and 

a significantly shorter simulation time. Figure displays the 

convergence curve for the PSO trained wavelets neural-

network (WNN) for both IFD and CM. 

 

Fig 1.15 . The convergence curve for the WNN-scheme 

trained on PSO (IFD) 

 

Fig 1.16 .Convergence curve for PSO trained WNN 

scheme (CM) 

The performance evaluation of all the above four cases is 

shown in table 1.19. 

Table 1.19. Performance comparison of results 

 

shows that the wavelets neural-network that was trained 

using PSO yielded the best outcomes. In the case of the 

Internal-fault detector (IFD), 100% accuracy is reached in 

275 repetitions with an error of 10-15. In contrast, after 440 

trials, condition monitor (CM) attains 99.98% accuracy 

with an error of 10-2. The PSO approach has thoroughly 

optimized the weight adjustments when the accuracy 

reaches 100%. As a consequence, our proposed PSO 

trained wavelets neural-network generates more accurate 

outputs. It is also faster to react and better at distinguishing 

low-level internal trouble signals from other operational 

situations. PSO trained wavelets neural networks (WNNs) 

are also shown to drastically reduce convergence times and 

the number of iterations required for simulation. 
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MATLAB 6.5 version is utilized for all simulation 

investigations in this study effort, and a Pentium IV, 2.4 

GHz computing machine is utilized. This paper provides a 

novel method for differentiating between power 

transformer working modes using wavelet transformations 

and neural networks. The shortcomings of traditional 

transformer relays are addressed by this neural network-

based digital transformer differential relay. The results 

show that neural networks do fairly well when it comes to 

solving classification challenges. Additionally, they suggest 

that a digital differential relay could be thought of as a 

classifier that determines the type of event that takes place 

in a transformer. The current differential relaying approach 

for power transformers has several important limitations. 

The differential relaying principle, for instance, is not able 

to distinguish clearly between internal faults and other 

power transformer operating conditions, such as inrush 

magnetizing currents, stationary over-excitation of the 

transformer core, and external faults combined with current 

transformer saturation, some of which have been identified 

as major causes of relay mal-operation. This particularly 

needless trip in the differential relay is caused by 

'magnetizing inrush-current'. Power transformer differential 

relay blocking is frequently used to stop this by utilizing 

the second harmonic component. However, as power 

networks become more complex, different power 

transformer operations also result in the production of the 

second harmonic component. As such, the development of 

an accurate technique for distinguishing between the 

various working conditions of a power transformer is 

imperative [18]. Thus, ANN-based approaches were 

established in the previous chapter. The defensive method 

offered multiple potential for optimization through the use 

of ANN-based techniques. However, a variety of internal 

coefficients, functions, and thresholds need to be adjusted 

in order to fine-tune the relay for protection. Nonetheless, 

the fuzzy logic technique yields better internal relay 

settings[19,20]. It was selected for this investigation 

because of this. This chapter introduces a few new fuzzy 

logic techniques. This study combines wavelet transforms 

with fuzzy logic. By splitting the time domain into large 

time intervals at low frequencies and short time intervals at 

high frequencies, wavelets effectively capture the 

signal[21–23]. To differentiate between different power 

transformer working conditions, it is provided in three 

steps. This method can be used to transformer differential 

protection via digital relaying. 

4. Conclusions 

In conclusion, there is a chance that the application of 

artificial intelligence (AI) technologies—specifically, 

machine learning and neural networks—will greatly 

enhance the security of electrical transformers. Artificial 

intelligence (AI) has the potential to change conventional 

methods and meet new protection issues in predictive 

maintenance, fault detection, and real-time monitoring. 

Power transformers are subject to a range of security 

concerns, such as environmental conditions, operational 

hazards, ageing infrastructure, cyber attacks, and physical 

vulnerabilities. Incidents, natural catastrophes, and 

vandalism are examples of physical security threats that 

can cause power outages. Power transformers are 

vulnerable to cyber assaults that target communication 

networks and control systems. Performance deterioration 

and outages may result from outdated infrastructure and 

operating hazards. Transformer performance is also 

impacted by environmental variables including pollution 

and temperature swings. AI-driven solutions provide 

proactive, accurate, and economical ways to guarantee 

power transformer efficiency and dependability. Artificial 

intelligence (AI) solutions for predictive maintenance can 

minimize downtime, maximize operating expenses, and 

guarantee the lifespan of power transformers by analyzing 

the vast volumes of data and precisely forecasting probable 

malfunctions. When neural networks are used in 

conjunction with wavelet-transforms, for example, power 

transformers protection can effectively distinguish between 

various operating-conditions, such as normal-operation, 

inrush-current, over-excitation,  the CT-Saturation, and 

internal faults. Wavelet Transformations and Artificial 

Neural Networks (ANNs) can be used to monitor and 

safeguard the power transformers. All things considered, to 

be ground-breaking method for power transformer safety. 

They could question established methods, take on fresh 

difficulties, and raise the dependability and effectiveness of 

transformers used in the electrical energy industry. 

Proactive and economical transformer safety solutions can 

result from combining AI with fault-detection, predictive 

maintenance, and real-time monitoring. 
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