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Abstract: Feature description is an important stage in many different vision algorithms. Image features detected by various detectors can 
be described using descriptors either with a binary or floating-point structure. This study presents the use of evolutionary algorithms, 
namely Genetic Algorithms (GA), in order to improve the robustness of the feature descriptors against increasing levels of photographic 
distortions such as noise or JPEG compression. Original feature descriptors were evolved in order to reduce the descriptor distance for 
the mentioned test cases. Results, tested using a statistical framework, suggest that the evolved descriptors offer better matching 
performance for two state-of-the-art descriptors. 
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1. Introduction 
A feature is an image primitive that contains valuable 
information about the content of the image. Every feature 
appearing in an image shadows a real-world object. A feature can 
be in form of a corner [1], an edge [2], a small region (blob) [3] 
or a segment [4]. Features are represented using descriptors, 
which are calculated using the pixel information around the 
feature using a variety of methods: A small patch of surrounding 
pixels can comprise the descriptor, or a more complex description 
like an oriented gradient histogram [5]. The literature presents 
many different feature detectors and descriptors. Evaluations of 
many feature detectors can be found in [6-8]. Based on the review 
given therein, a good feature detector should be able to detect 
features that are stable in terms of geometry under different 
viewing conditions [9, 10], should present significant amount of 
variation in its neighbourhood so that they will be prominent and 
provide useful information as well as presenting good localization 
accuracy [11]. It is also important for the detector to detect such 
features in a reasonable amount of time, a vital requirement for 
real-time applications.  
 
It is known that the quality of images can be seriously affected by 
various imaging conditions including motion, diffusive 
environment, high compression or low signal to noise rates [12]. 
The descriptors mentioned above display a significant amount of 
robustness, or invariance, against such distortions. The inherent 
methods used in the descriptor extraction algorithms employ a 
number of approaches to achieve high performance, for instance 
robustness against noise is achieved using Gaussian smoothing.  
 
The main research question tackled in this paper is whether 
algorithms for enhancing the results already achieved by these 
inherent methods can be developed using sophisticated 
approaches. Evolutionary computation methods such as GA can 
be a good candidate for improving the robustness of the 
descriptors. 
 

There are a very limited number of studies focused on the use of 
evolutionary algorithms [13] for enhancing the performance of 
features used in computer vision [14]. The work by Chen et al. 
[15] used Ant Colony Optimization for reducing the image 
features (not key-points as proposed in this paper) used in 
classification such as first/second order moments, entropy, etc. A 
different study conducted in [16] aimed to select the optimal key-
points extracted by SIFT to be used for face recognition. These 
optimal set of key-points were the ones producing the best 
matches. Referred work presented a theoretical approach rather 
than solid experimental results. A very recent study [17] 
employed GA for improving the coverage of image features 
across the image using a robust technique based on spatial 
statistics as proposed in [7]. 
 
A broad classification of the descriptors can be made by looking 
at their structure: binary and floating-point descriptors. The 
binary descriptors include BRIEF [18], ORB [19], BRISK [20], 
FREAK [21] and LATCH [22], whereas the integer and floating-
point descriptors are SIFT [23], SURF [24], KAZE [25] and 
AKAZE [26]. The work presented in this paper aims to improve 
the original descriptors generated by both binary and floating-
point descriptors in order to improve robustness against a variety 
of changes in imaging conditions such as noise, blur and JPEG 
compression. A GA was used here to improve the robustness of 
the image descriptors under severe cases of each condition. A 
detailed statistical analysis using Mc Nemar's test [27] showed 
that there are statistically significant differences between the 
performances of the original and the evolved descriptors. 
 
The rest of the paper is structured as follows: Section 2 gives 
details of the evolutionary approach for descriptors with binary 
and floating-point structure. The experimental design is presented 
in 3, followed by Section 4 where the results are presented with a 
detailed statistical analysis. Finally, conclusions are drawn in 
Section 5. 
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2. Evolutionary Approach for Feature Descriptors 
A feature descriptor is essentially a vector, either binary or 
floating-point, describing a local neighbourhood around a feature. 
This structure of a descriptor is very suitable for representation in 
form of a chromosome in GA context. The following sections 
will elaborate more on the chromosome representation, matching 
methods and the genetic operators used in the evolutionary 
process used to evolve original descriptors into a form that is 
more robust against a variety of distortions. 
 

2.1. Binary Descriptors 

2.1.1. Matching method 

A conventional method for matching binary descriptors is the 
Hamming distance [28] which can be defined based on the 
following quantities: 
 
f00: num. of positions where both descriptors have 0s. 

(1) 

f01: num. of positions where the first has 0 and the second has 
a 1. 

f10: num. of positions where the first has 1 and the second has 
a 0. 

f11: num. of positions where both descriptors have 1s. 
 
Based on these quantities, the Hamming distance 𝑑𝑑𝐻𝐻 is defined as 
follows: 
 

 

(2) 

 
  This distance can also be computed efficiently using options 
provided by modern processor instruction sets (e.g. X-OR 
operation) [28]. 
 
2.1.2. Chromosome representation 

A binary feature descriptor is a bit string with constant size, 
hence can be represented as a binary chromosome: 
 

 

(3) 

 
where 𝑛𝑛 is the descriptor size which can be 64, 128 or 256 bits for 
current binary descriptors. The gene size for the ORB descriptor 
was chosen as 256. 
 
Starting with an initial population of 20 individuals, the 
evolutionary operations create new individuals to be added to a 
population of maximum 100 individuals. 
 
2.1.3. Genetic operators 

Selection: The GA selects the most suitable (fittest) individuals 
in order to create new individuals using the cross-over. This 
selection was implemented using the tournament selection [13]. 
 
In this selection type, 10 tournaments are performed with a 
tournament size of 8. Randomly selected individuals are used to 

fill each tournament, then a mating pool is created by selecting 
the fittest individuals of the tournaments. 
 
Recombination: An important stage in evolutionary computing 
is the phase where new individuals are added to the population. 
This stage is called recombination (or cross-over). The new 
individuals carry genetic information inherited from the parents 
selected during selection.  
 
The recombination was implemented using two-point crossover 
for the binary descriptors. The length of the chromosome region 
to be exchanged (i.e. cut-length) was selected as 128 bits. 
 
Mutation: A third evolutionary operator in the GA is mutation 
where newly created individuals are subject to random changes in 
their chromosome structure. For a binary descriptor this change 
was trivially performed using negation or flip. 
 

2.2.  Floating-Point Descriptors 

2.2.1. Matching method 

The matching method used for comparing two floating-point 
descriptors is selected as the Euclidean distance between two 
vectors: 
 

 

(4) 

 
where 𝑚𝑚 is the size of the 128 bin floating-point KAZE 
descriptor for two descriptors 𝑥𝑥 and 𝑦𝑦. 
 
2.2.2. Chromosome representation 

The chromosome representation for the floating-point descriptors 
follows the same notation with the binary descriptor, except for 
the fact that the genes are from the real number domain (ℝ): 
 

 

(5) 

2.2.3. Genetic operators 

Selection: The selection mechanism for deciding the mating pool 
that will be used in the recombination phase follows the same 
structure described for the binary descriptors. 
 
Recombination: The gene structure in the floating-point 
description varies from the binary descriptors in nature, and 
hence requires different genetic operators. 
 
Whole arithmetic recombination was proposed in [29] for 
chromosomes with floating-point structure as: 
  

 

(6) 

𝑑𝑑𝐻𝐻 =
𝑓𝑓11 + 𝑓𝑓00

𝑓𝑓00 + 𝑓𝑓01 + 𝑓𝑓10 + 𝑓𝑓11
 

〈𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛〉, 𝑥𝑥𝑖𝑖 ∊ (0,1) 

𝑑𝑑𝐸𝐸 = �� (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1
 

〈𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛〉, 𝑥𝑥𝑖𝑖 ∊ ℝ 

𝑥𝑥𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖1 = 𝛼𝛼 ∙ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝1 + (1 − 𝛼𝛼) ∙ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝2
𝑥𝑥𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖2 = 𝛼𝛼 ∙ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝2 + (1 − 𝛼𝛼) ∙ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝1
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which uses 𝛼𝛼 as an aggregation weight for combining the 
information residing in alleles from both parents. In the equation, 
𝛼𝛼 ≠ 0.5, since this would result in the very same genetic 
information to be transferred to both children. 
 
Mutation: Individual diversity was ensured using the mutation 
operator which generated a random value between zero and unity 
to be employed as an offset. This offset is added to a randomly 
selected gene position based on the mutation rate. 
 

2.3. Fitness Definition 

The fitness of a chromosome regardless of the binary or the 
floating-point structure is based on the matching performance of 
the descriptor for a number of distortions described in the 
experimental framework in Section 3. 
 
The fitness of an individual in the GA is defined to minimize the 
total descriptor distance for different levels of distortions such as 
noise, blur or JPEG compression. Here, the Hamming distance 
was employed for the binary descriptors and the Euclidean 
distance was used for the floating-point descriptors. Let 𝑑𝑑𝑁𝑁, 𝑑𝑑𝐺𝐺  
and 𝑑𝑑𝐽𝐽 be the distances between the original descriptor and the 
ones that were extracted from images subject to noise, Gaussian 
blur and JPEG compression respectively, the fitness function 𝑓𝑓(𝑖𝑖) 
for an individual 𝑖𝑖 in the GA is designed as: 

 

(7) 

where 𝑙𝑙 is the distortion level described in Section 3.1.  
 
This fitness function will result in a lower fitness value for an 
evolved descriptor as the total distance for each distortion case 
increases. This enforces the descriptors to evolve so that they will 
result in lower distance values in case of different levels of a 
variety of distortions. 

3. Experimental Design 
The following sections will elaborate the experimental 
framework by presenting the dataset created for different cases of 
distortion levels and then describe the measures used in the 
evaluation along with the statistical test employed. 
 

3.1. Dataset 

The original Oxford database (which can be found at 
http://www.robots.ox.ac.uk/~vgg/research/affine/) was used to 
create the dataset used in testing the presented evolutionary 
approach. A new database was developed here by adding 
different levels of distortions as shown in Figure 1. 
 
Here there are 3 main levels with 5 different sub-levels of 
distortions including noise, blur and JPEG compression. Details 
for these levels are presented in Table 1. For the JPEG 
compression, a lower value from the 0 − 100 scale indicates a 
higher amount of compression and hence higher distortion in the 
image as can be seen from Figure 1. The original database 
included 8 datasets including bark, bikes, boat, graf, leuven, trees, 
wall and ubc. The newly created database includes a total of 
8 × 3 × 5 = 120 images, a relatively large enough database for 

drawing statistically meaningful conclusions [8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Distortion levels used to create the dataset 

 Minor 

Noise 0.01 0.02 0.03 0.04 0.05 

Blur 3 5 7 9 11 

JPEG Compression 1 85 90 95 100 

 Medium 

Noise 0.06 0.07 0.08 0.09 0.1 

Blur 7 9 11 13 15 

JPEG Compression 1 20 40 60 80 

 Major 

Noise 0.11 0.12 0.13 0.14 0.15 

Blur 11 13 15 17 19 

JPEG Compression 1 10 20 30 40 
 

3.2. Performance Measures 

The measures for evaluating the results are the same measures 
actually used for finding feature matches. The Hamming distance 
was used to measure the performance of the binary descriptor and 
the Euclidean distance was employed for the floating-point 
descriptor. 
 

3.3. Evaluation 

The evaluation method adopted for comparing the original 
descriptors with the evolved descriptors is the Mc Nemar’s test 
which is a non-parametric test, a variant of 𝜒𝜒2 test. The test 
creates 2 × 2 contingency tables in order to compute 𝑧𝑧 scores. 
This test has a published past of usage by medical research 
community [30] and has recently been used for performance 
comparison in computer vision for the first time by Clark [31] 
and later for machine learning by Bostanci [27]. The test is 
significantly robust against Type-I error, i.e. detecting a 
difference when there is none.  
 

3.4. Results 

This section presents results of the statistical analysis performed 
in order to compare the performances of the original descriptors 
with the evolved descriptors. Figure 2 demonstrates the effect of 
the evolutionary process for the binary and the floating-point 
descriptors. 
 
 

 
Figure 1 Generated dataset by addition of varying levels of distortions 

 

𝑓𝑓(𝑖𝑖) =
1.0

∑ 𝑑𝑑𝑁𝑁𝑖𝑖
𝑘𝑘=1 + ∑ 𝑑𝑑𝐺𝐺𝑖𝑖

𝑘𝑘=1 + ∑ 𝑑𝑑𝐽𝐽𝑖𝑖
𝑘𝑘=1
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(a) 

 
(b) 

Figure 2. Effect of evolution for 3 levels of distortions for different datasets for the (a) binary descriptor (ORB) (b) floating-point descriptor 
(KAZE). 
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In the plots given above, eight datasets created by adding varying 
levels of distortions were tested for the descriptors. The change 
from the original descriptor structure after the evolutionary 
process was demonstrated here. The binary descriptor had more 
changes in its gene structure as the level of distortion increased.  
 
Note that this distance is normalized by the total number of bins 
used by the descriptor, hence the normalized distance values. 
It is interesting to see that the floating-point descriptor required 
less change in its gene structure through the evolutionary process. 
Lower levels of distortions created a higher amount of need for 

change in the descriptor. 
 
Tables 2 and 3 show the actual descriptor distances between 
matched images for each couple of images in the datasets e.g. 
matching the first image from the bark dataset with the rest five 
images in the same dataset. The benefit of the evolutionary 
process presented in this work is clear from the results, i.e. the 
evolved descriptors result in a smaller descriptor distance for both 
binary and floating-point descriptors. 
 

Table 2. Average Hamming distance for the ORB descriptor for the datasets for five noise, blur and JPEG compression cases under each distortion level. 

  Minor Medium Major 
    Original Evolved Original Evolved Original Evolved 

bark 
Noise 4.8472 4.8288 11.2312 11.2264 17.8912 17.896 
Blur  6.5856 6.5144 11.3136 11.1424 16.7328 16.3232 

JPEG 8.4576 8.4728 10.5416 10.6024 13.0648 13.1624 

bikes 
Noise 6.9248 6.9056 15.224 15.2184 21.7992 21.7928 
Blur  7.4440 7.3768 12.448 12.2664 17.9360 17.4272 

JPEG 7.6624 7.6864 10.5400 10.5824 13.5680 13.6928 

boat 
Noise 4.4832 4.4864 9.884 9.9024 14.2824 14.2912 
Blur  8.5632 8.5232 14.3176 14.1600 20.5000 19.9824 

JPEG 5.7584 5.7744 7.6056 7.6544 9.5464 9.69920 

graf 
Noise 3.9064 3.9000 8.7128 8.6928 13.0112 13.0248 
Blur  6.9824 6.9696 12.4624 12.3464 18.5896 18.2944 

JPEG 5.3736 5.3784 7.0080 7.0584 8.8904 8.9840 

leuven 
Noise 4.6760 4.6448 10.5088 10.5192 15.2504 15.2208 
Blur  7.1376 7.0744 11.9624 11.7168 17.088 16.5608 

JPEG 5.5448 5.5824 7.5584 7.6312 9.6408 9.8096 

trees 
Noise 3.9712 3.9576 9.5112 9.4984 15.2728 15.2768 
Blur  7.2184 7.1840 12.6944 12.5264 18.7808 18.4072 

JPEG 6.6760 6.6848 8.3568 8.4208 10.2680 10.4112 

wall 
Noise 4.8616 4.8528 11.0976 11.0944 16.924 16.9232 
Blur  8.3664 8.3032 14.1552 13.936 20.7256 20.3696 

JPEG 6.6264 6.6496 8.8416 8.9088 10.9672 11.0688 

ubc 
Noise 5.6456 5.6176 13.4128 13.4072 21.368 21.3568 
Blur  8.4328 8.3632 14.3656 14.1712 21.0336 20.6096 

JPEG 10.4168 10.4368 13.0288 13.1176 15.8816 15.9920 
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Table 3. Average Euclidean distance for the KAZE descriptor for the datasets for five noise, blur and JPEG compression cases under each distortion level. 

  Minor Medium Major 
    Original Evolved Original Evolved Original Evolved 

bark 
Noise 0.3094 0.3043 0.3243 0.3204 0.3521 0.3496 
Blur  0.2489 0.2440 0.2378 0.2348 0.2562 0.2539 

JPEG 0.3427 0.3375 0.3395 0.3355 0.3461 0.3434 

bikes 
Noise 0.4666 0.4374 0.4742 0.4507 0.4754 0.4586 
Blur  0.4119 0.3849 0.3800 0.3605 0.3694 0.3555 

JPEG 0.4832 0.4544 0.4828 0.4592 0.4797 0.4615 

boat 
Noise 0.4159 0.4010 0.4169 0.4068 0.4339 0.4262 
Blur  0.3212 0.3120 0.2845 0.2779 0.2980 0.2931 

JPEG 0.4265 0.4127 0.4249 0.4152 0.4262 0.4187 

graf 
Noise 0.3817 0.3685 0.3862 0.3754 0.3896 0.3808 
Blur  0.3171 0.3058 0.2956 0.2872 0.3069 0.3017 

JPEG 0.3882 0.3757 0.3888 0.3778 0.3906 0.3819 

leuven 
Noise 0.4706 0.4362 0.4744 0.4494 0.4762 0.4566 
Blur  0.4031 0.3745 0.3668 0.3447 0.3557 0.3389 

JPEG 0.4794 0.4466 0.4796 0.4547 0.4751 0.4554 

trees 
Noise 0.3410 0.3348 0.3536 0.3483 0.3806 0.3765 
Blur  0.2591 0.2543 0.2476 0.2445 0.2867 0.2845 

JPEG 0.3677 0.3616 0.3635 0.3583 0.3631 0.3587 

wall 
Noise 0.4981 0.4699 0.5003 0.4798 0.5015 0.4853 
Blur  0.4079 0.3875 0.3808 0.3645 0.4074 0.3956 

JPEG 0.5069 0.4799 0.5038 0.4832 0.4998 0.4830 

ubc 
Noise 0.3103 0.3063 0.3356 0.3331 0.3697 0.3678 
Blur  0.2300 0.2277 0.2441 0.2429 0.3125 0.3112 

JPEG 0.3452 0.3414 0.3444 0.3418 0.3504 0.3485 
 
A robust statistical test was also performed in order to investigate 
whether the performance differences between the original and the 
evolved feature descriptors are indeed statistically significant. 
The results of the Mc Nemar's test are depicted in Tables 5 and 6. 
For both the binary descriptor and the floating-point descriptor, 
the evolution resulted in smaller distances (shown in the plots 
with 𝑐𝑐). Statistical significance of these comparisons are 

represented with 𝑧𝑧 scores. Note that these results should be 
analyzed using Table 4 (given in [27, 31]) which presents the 
confidence levels as an indicator of the statistical significance 
based on 𝑧𝑧 scores. In terms of statistical significance, the binary 
case resulted in significant results for 3 out of 8 datasets, while 
the floating-point descriptor yielded statistically significant 
results for the complete dataset. 

 

Table 4. Confidence levels corresponding to z scores for one-tailed and two-tailed predictions 

z score One-tailed Prediction Two-tailed Prediction 
1.645 95% 90% 
1.960 97.50% 95% 
2.326 99% 98% 
2.576 99.50% 99% 

Table 5. Mc Nemar's test results for the binary descriptor. 𝑐𝑐 is the number of times when the original and the evolved descriptor resulted in a smaller 
Euclidean distance. 𝑧𝑧is the measure of the statistical significance of 𝑐𝑐. Cases in which the performance difference was statistically significant for one and 
two-tailed predictions with confidence levels above 90% are denoted with *. 

 bark bikes boat graf leuven trees ubc wall 

 c z c z c z c z c z c z c z c z 

Original 17 1.3568 17 1.4907 21 0.2981 16 1.7889 18 1.1926 14 2.3851 18 1.1926 16 1.7889 
Evolved 28 28 24 29* 27 31* 27 29* 

Table 6. Mc Nemar's test results for the floating-point descriptor. 𝑐𝑐 is the number of times when the original and the evolved descriptor resulted in a 
smaller Euclidean distance. 𝑧𝑧is the measure of the statistical significance of 𝑐𝑐. Cases in which the performance difference was statistically significant for 
one and two-tailed predictions with confidence levels above 90% are denoted with *. 

 
 
 
 

 bark bikes boat graf leuven trees ubc wall 

 c z c z c z c z c z c z c z c z 

Original 0 6.5591 0 6.5591 0 6.5591 0 6.5591 0 6.5591 0 6.5591 0 6.5591 1 6.2610 
Evolved 45* 45* 45* 45* 45* 45* 45* 44* 
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4. Conclusion 
This paper presented an evolutionary approach for increasing the 
robustness of binary and floating-point descriptors. The test cases 
were comprised of photographic distortions such as noise, blur 
and JPEG compression of varying severity.  A comparison was 
conducted for analysing their performance against the original 
descriptor using a new dataset derived from a popular dataset.  
 
Results show that the evolved descriptors are different from the 
original descriptors since they were evolved in order to 
accommodate differences in local image regions due to the 
various types of distortions. It was shown that the performance of 
the evolved descriptor is significantly, in statistical terms, better 
than the original. Smaller descriptor distances between the 
evolved descriptor and the ones extracted from datasets suggest 
better matching performance under different conditions.  
 
This study has shown that current state-of-the-art feature 
description algorithms have still room for improvement for 
creating completely robust feature descriptors. The evolutionary 
algorithms require a significant amount of time to generate 
satisfactory results. Real-time applications require fast detection 
and description of image features. Future work will investigate 
how the lessons learned from these results can be incorporated 
into the descriptor extraction process.  
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