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Abstract: This article introduces a Turkish mobile assistant application which produces state-of-the art results for the Turkish language by 
using natural language processing (NLP) techniques. The voice-enabled mobile assistant application allows users to enter queries for nine 
pre-defined tasks; namely, making calls, sending sms messages and emails, getting directions, querying exchange rates, weather forecast 
and traffic information, searching on the internet and launching applications on the phone. Users’ queries are processed in a multi-stage 
approach (viz., NLP, query classification and parameter extraction). Either the requested task is performed or the requested information is 
displayed as the response of the application. The article presents the architecture of the introduced system, its comparison with some 
prominent mobile assistants as well as the newly created data resources (viz., two query datasets annotated for classification and parameter 
extraction, two specific datasets for domain adaptation of named entity recognition and syntactic parsing NLP modules) to be used in 
further research. The evaluations on the impact of NLP preprocessing layers to the query classification performances reveal that the added 
value by NLP may range from 0.2 to 10.7 percentage points depending on the preferred machine learning algorithm for the query 
classification stage. The impact of NLP for the parameter extraction stage is also crucial since the outputs of NLP modules are used 
systematically by the extraction rules. The overall performance of the introduced approach is measured as 70.8% accuracy score which is 
very promising under the fact that the system is trained with very limited-size of annotated data. The technology introduced in this article 
is basically designed for the case of a mobile assistant but it can also be used for every voice-enabled control system to improve the user 
experience, such as smart homes or smart televisions. 
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1. Introduction 
Since the interaction with mobile devices increased enormously in 
recent years, user friendly interfaces facilitating human-machine 
interaction became very important. Natural language is the most 
natural way of communicating for humans and this explains the 
popularity of the mobile assistant applications. Unfortunately, the 
challenges caused by the typological differences of some natural 
languages also appear in mobile applications and the generated 
systems which are mostly on English could not be adapted easily 
to other languages such as Turkish. SIRI [2] and GoogleNow [3] 
are the most popular applications on this topic and there are many 
more. Even though SIRI has begun to support Turkish after IOS 
8.3 update, its quality and coverage for different supported services 
are not as good as for the English version. Moreover, the other 
popular applications such as GoogleNow [3], Cortana [4], Robin 
[5], Assistant [6] do not support the Turkish language at all. 

There exist few other mobile assistant applications developed for 
Turkish such as AsistanB [7] and CEYD-A [8], but these are 
mostly working on a keyword-match or phrase-match basis and do 
not make use of any NLP solutions. Therefore, their success rates 
are very low. For example, for a query such as "Bugün hava 
Ankara'da nasıl olacak?” (How is the weather today in Ankara), 

such applications return the weather forecast of the current location 
(e.g. Istanbul) instead of the requested location.  

Turkish is an agglutinative language with a very rich 
morphological structure. This property of the language increases 
the need to use underlying sophisticated natural language 
processing tools in order to correctly process a user request in a 
mobile assistant application. In recent years, the accessibility of 
basic NLP tools for Turkish (such as text normalizers, 
morphological and syntactic analyzers [9], [10], [11], [12], [13], 
[14], [15], [16]) makes their use possible in higher level 
applications. The technology that we introduce in this article is 
basically designed for the case of a mobile assistant but it can also 
be used for every voice-enabled control system to improve the user 
experience, such as smart homes or smart televisions. 

This article presents the first academic study focusing on the 
language related problems of a Turkish Mobile Assistant. The 
voice-enabled mobile assistant application allows users to enter 
queries for nine pre-defined tasks; namely, making calls, sending 
sms messages and emails, getting (driving or walking) directions, 
querying exchange rates, weather forecast and traffic information, 
searching on the internet and launching applications on the phone. 
Users’ queries are processed in a multi-stage approach and either 
the requested task is performed or the requested information is 
displayed as the response of the application. The multi-stage 
approach basically consists of NLP of the input queries, their 
classification into 9 distinct target classes by the use of a hybrid 
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classification approach, their parameter extraction by rule-based 
task specific modules and finally the generation of the assistant’s 
response.  

This article, which is an extended version of a conference paper 
[1], presents the architecture of the introduced system, its 
comparison with some prominent mobile assistants as well as the 
newly created data resources in order to be used in further research. 
The developed data resources are two query datasets annotated 
separately for the classification and parameter extraction stages, 
two specific datasets for domain adaptation of named entity 
recognition and syntactic parsing NLP modules. The evaluations 
on the impact of NLP preprocessing layers on the query 
classification performances reveal that the added value by NLP 
may range from 0.2 (for support vector machines) to 10.7 (for 
Bayesian networks) percentage points depending on the preferred 
machine learning algorithm for the query classification stage. The 
impact of NLP for the parameter extraction stage is also crucial 
since the outputs of NLP modules are used systematically by the 
extraction rules. The overall performance of the introduced 
approach is measured as 70.8% accuracy score which is very 
promising under the fact that the system is trained with very 
limited-size of annotated data.  

The article is structured as follows: Section 2 provides the related 
works, Section 3 gives a brief information about Turkish 
language’s challenging characteristics related to our domain, 
Section 4 gives information about the newly introduced language 
resources, Section 5 presents the system architecture; the mobile 
side interfaces (Section 5.1) and the server-side application 
(Section 5.2): NLP layer and domain adaptation (5.2.1), query 
classification (5.2.2) and parameter extraction (5.2.3). Section 6 
gives the conclusion and future work. 

2. RELATED WORK 
Mobil assistant applications enable users to use their mobile 
phones and tablets via natural language and have become popular 
in recent years. These applications provide relevant responses 
according to users' query by using NLP solutions. In the literature, 
there exist many applications (SIRI [2], GoogleNow [3], Cortana 
[4], Robin [5], Assistant [6]), publications ([17], [18], [19], [20], 
[21]) and patents ([22], [23], [24], [25]) related to the English 
language. Apple's SIRI and  Google Now applications are the most 
popular ones in this domain. On the other hand, the studies for 
Turkish are very limited in number and these are mostly inadequate 
in terms of the number of supported services, usage of NLP 
technology and success rate compared to the ones built for English. 
Turkcell Mobil Asistan [26] has the most widely used local 
application for Turkish. Although it supports services such as 
weather, exchange, and call, it is mainly developed to query 
company's own services. Beyond that, AsistanB [7] and CEYD-A 
[8] are also commonly used local applications for Turkish. In 
general, these applications were developed by rule based methods 
and lack of NLP technology. CEYD-A uses a basic learning 
mechanism that allows its users to define new rules. İdris [27] 
application was developed with many deficiencies yielding to its 
withdrawn from mobile markets. Since these applications were 
developed with rule based approaches, queries must be asked 
matching pre-defined templates. For example, weather forecast 
information needs to be asked like "Ankara hava durumu” (Ankara 
weather forecast). These are unable to respond correctly to a 
natural question such as "Hava yarın Ankara'da nasıl olacak?” 
(How is the weather like in Ankara tomorrow?)".  

Beyond the above mentioned local applications, with the IOS 8.3 
update released in April 2015, SIRI application has begun to 
support the Turkish language as well. SIRI uses some natural 
language processing components such as a pos-tagger and a named 
entity recognizer and therefore has better performance compared 
to the other applications developed for Turkish.  

3. TURKISH & ITS CHALLENGES 
Turkish is an agglutinative language and has a very rich 
morphological structure. Since most of the syntactic information 
appear at word level, Turkish comes out to be a free constituent 
order language where the word order is very flexible compared to 
fixed word order languages. These properties of the language 
differentiate it from many languages for the automated language 
processing applications. There exist many studies in the literature 
which focus on specific and challenging features of the Turkish 
language for this domain. In this section, we briefly detail its 
outstanding properties which deserve attention for the mobile 
application domain and explain the benefited NLP layers.  

Since most of the NLP tools are originally developed for English, 
their performances on Turkish are generally not as good as for 
English even if the tool in focus claims multilingual support. An 
example to this may be seen in speech recognition applications. 
Although today’s speech recognizers are quite successful at 
understanding the spoken inputs, it is quite common that their 
outputs do not conform well to the written language formal rules; 
e.g. the use of capital letters at the beginning of proper names 
(newyork vs. New York), the writing of postpositions, prepositions 
and enclitics, and their differentiation from agglutinated 
inflectional suffixes in case of morphologically rich languages. 
The erroneous outputs of these speech recognizers may not be 
correctly processed by following NLP modules (such as a 
morphological analyzer or syntactic parser) which are generally 
developed to process well-written text. As a consequence, the 
speech recognizers’ outputs need to be normalized by a text 
normalization module. Table 1 provides an example query (‘Yarın 
Ankara'da hava nasıl’ – What will be the weather like in Ankara 
tomorrow). The original output from a speech recognizer is given 
in the first line of the table where the text contains neither any 
capital letter nor punctuation mark. The locative case marker (-da) 
is also erroneously written separately from the location name 
(Ankara). The normalized query is given in the second line of the 
table.  

Table 1 also provides the output for the input query from different 
NLP layers of a classical NLP pipeline: a text normalizer, a 
tokenizer, morphological analysis and disambiguation, named 
entity recognition and syntactic parsing. A brief explanation of 
these NLP layers is provided below. The reader may refer to [16] 
for further references. 

• Tokenization is the process of splitting the input into tokens. 
• Text Normalization is the process of transforming text into 

a canonical form. 
• Morphological Analysis is the process of analyzing a word: 

finding its lemma, parts-of-speech tag and inflectional 
features as well as its derivational structure.  

• Morphological Disambiguation is the process of selecting 
the most probable morphological analysis sequence for an 
input word sequence. 

• Named Entity Recognition is the process of identifying the 
named entities (e.g. person, location or organization names) 
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within the input word sequence.  
• Dependency Parsing is the process of constructing a 

syntactic dependency tree to a given input sentence. 

Table 1. An example query and its analysis by NLP modules 

Query (output from a 
speech recognizer [28]) yarın ankara da hava nasıl 

Normalized Query 
Yarın Ankara'da hava nasıl ? 
Tomorrow - in Ankara – weather – how ? 

Morphological Analysis 
& 

Disambiguation 

Yarın yarın+Adverb 

Ankara'da Ankara+Noun+Prop+A3sg+Pnon+Loc 

hava hava+Noun+A3sg+Pnon+Nom 

nasıl nasıl+Adverb 

? ?+Punc 

Named Entity 
Recognition [TIME] [LOCATION] hava nasıl ? 

Syntactic Dependency 
Parsing 

Yarın    Ankara’da     hava        nasıl ?

Modifier
Locative adjunct

Subject

 
For a free constituent order language such as Turkish, writing fixed 
patterns to match query inputs would reveal unsuccessful results 
since the queries would most of the time not conform to these. For 
example, all the following sentences and many more, with same 
constituents but in different order, should match to the same pattern 
with the English query “What will be the weather like in Ankara 
tomorrow?”.  Dependency parsing approach, which became a very 
popular parsing technique in the last 15 years, is found to be 
suitable especially for the syntactic analysis of free constituent 
order languages. 

Yarın hava Ankara’da nasıl? 
Ankarada hava yarın nasıl? 
Hava yarın ankarada nasıl? 
Ankarada hava yarın nasıl? 

As in all other areas of natural language processing, the lack of data 
resources and the sparse data problem caused due to the 
morphological nature of Turkish are the extra challenges 
encountered in our current domain.  

4. DATASETS 
This section presents our newly annotated datasets in order to both 
train and test our different system layers and adapt the NLP tools 
to our new domain.  Table 2 provides the number of queries in each 
annotated dataset. 

Table 2: Data Sets 

Data Set Name # of 
Queries Annotation Type 

STT_Train 1000 Normalized, Category labels 
NER_Train 750 Named Entities  
Parser_Train 620 Dependency relations  
Data_Validate 478 Category labels and responses 
Data_Test 100 Category labels and responses 

STT_Train consists of 1000 queries related to nine pre-defined 
categories; making calls, sending sms messages and emails, getting 
directions, querying exchange rates, weather forecast and traffic 
information, searching on the internet and launching applications 
on the phone. The queries are taken via a speech to text API 
(described in Section 5) and manually normalized. STT_Train  
consists of these queries and their manually marked category labels 

in order to be used in the query classification layer. 578 queries 
(478 in Data_validate, 100 in Data_Test) from this set are 
manually prepared with expected server responses in order to be 
used in the parameter extraction layer. Figure 1 gives an example 
to the response structure which will be detailed in Section 5. The 
figure provides the manually tagged responses for two sample 
queries related to call and sms operations. The first query (“halamı 
ara” – Call my aunt) is tagged with a call operationType and the 
receivername whereas the second query (“engine mesaj at 
yoldayım geliyorum” – Send an sms to Engin, I’m on my way, I’m 
coming) is tagged with an sms operationType and both the receiver 
name and the body text of the sms.  

NER_Train and Parser_Train are the datasets prepared in order to 
be used in domain adaptation of the named entity recognition and 
the parsing modules. NER_Train consists of 750 queries annotated 
with 7 named entity types namely ENAMEX, TIMEX and 
NUMEX categories [29]. Parser_Train consists of 620 
morphologically and syntactically annotated queries. Manual 
annotation of this dataset is realized via ITU Treebank Annotation 

Tool [30], [31]. In this annotation tool, the tokens of the input 
queries are first automatically analyzed by a morphological 
analyzer [16] and then human annotators are asked to select the 
most probable morphological tag sequence for the given input. As 
the syntactic layer, the tool allows to annotate the dependency 
structure [11] for each given input.  

5. SYSTEM ARCHITECTURE 
In this section we describe the design of our system which is 
composed of two main modules; a mobile client and a server-side 
application. The mobile application is responsible for  
1) capturing the spoken request, 2) converting it into written text,  
3) transferring the user requests to the server side and 4) displaying 
and/or performing the requested operation according to the result 
received from the server. The server side module is responsible for 
processing the user's query and understanding its true intention. It 
also collects information from third party web services if needed, 
and finally compiles the results and sends it back to the client. The 
mobile application communicates with the server-side service 

Figure 1: Two sample queries manually tagged with expected server 
responses 
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using RESTful principles and via a defined JSON protocol. Figure 
2 illustrates the main architecture of our system. 

 
Figure 2: System architecture 

The fields returned by the protocol message are as follows: 

• Response Status (error or ok) 
• Response Type (service or native_op) 
• Operation Domain (call, sms, weather etc…) 
• Content (parameters required by the determined query 

class) 
The response type field specifies whether the operation requires 
results from third party web services (such as traffic information 
or map services) (service) or may be realized locally (native_op). 
As specified before, we have 9 supported request types specified 
by the field operation domain.  The number of returned parameters 
(content field) varies depending on different request types. For 
example, querying exchange information will return the amount to 
be exchanged, the original and target currency types, and the 
exchange rate whereas launching an application will only return 
one parameter which will be an application’s name on the phone. 
Figure 1 introduces two sample protocol messages.  

As stated before, the application is designed to support nine types 
of requests. Table 3 provides the name of these supported 
operations together with the utilized third-party web services if 
any. 

Table 3: User Request Types 

Response Type Request Type Third Party Service 
native_op Starting calls - 
native_op Sending sms - 
native_op Sending e-mail - 
Service Getting directions Google Maps 
Service Querying currency 

exchange info 
Google Currency 

Service 
Service Querying weather 

forecast 
World Weather 

Online 
Service Querying traffic 

information 
Yandex Traffic 

Service 
Service Searching on the web Google search 
native_op Launching phone 

applications 
- 

5.1. MOBILE APPLICATION 

Mobile application is responsible of taking the user request, 
transferring it to the server side and displaying or realizing the 
returned response. Google's speech recognition API for Android 

[28] is used on the mobile application side in order to capture the 
user spoken queries and convert them into written messages. The 
speech recognizer returns more than one text suggestion for a given 
entry and each suggestion has its own confidence level. A 
suggestion with a higher confidence level is more likely to be true. 
If any of the produced suggestions has more than a pre-defined 
threshold value (0.7), it is assumed as the correct suggestion. 
Otherwise, the application presents a list of text suggestions to the 
user. Figure 3 illustrates the speech recognition outputs for a 
sample request which will be sent to server: “gökhanı ara” (call 
Gökhan). Since none of the speech recognition API’s results are 
above the threshold, the top 5 results are displayed to user and 
asked for manual selection.  

After the speech recognition stage, the selected query text is sent 
to the server along with the user's context, which includes user id 
(device id), current location and time (provided on top of the figure 
between Content block). The response from the server is then 
either executed on the phone or displayed to the user. Figure 4 
illustrates a sample result for a map query ("kadıköye nasıl 
giderim" (how can I go to Kadıköy)) on the mobile application. 

URL Address: IP:Port/SanalBilge/rest/info 
Content: 
{ 
    "username": "android", 
    "query": "gökhanı ara", 
    "latitude": 41.00527, 
    "longitude": 28.97696, 
    "timestamp": 1427735981599 
} 

 
Figure 3: Mobile Application Speech Recognition Interface 

 

Figure 4: Screen shots of map result 
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5.2. SERVER-SIDE APPLICATION 

The server-side application is responsible for processing the 
incoming request and returning generated response back to the 
client. Since the input data is the output of a speech recognizer and 
may contain mistakes (e.g., capitalization, wrong transliteration of 
proper nouns such as the example given in Figure 3),  the incoming 
user requests are firstly normalized in order to avoid grammatical 
errors and then processed with different NLP layers. After these 
pre-processing steps, requests are mapped to one of the supported 
operations through a hybrid approach of rule-based and statistical 
classification. Finally, the required parameters are extracted by an 
extraction algorithm that is developed separately for each focused 
domain. Figure 5 presents the basic flow of server-side operations. 
Since the used 3rd party service for the traffic domain automatically 
obtains the current location information from the phone and does 
not take any additional parameter, the class based parameter 
extraction box in Figure 5 only lists the remaining 8 categories. 

 

Figure 5: The main flow of the server-side application 

5.2.1. Normalization & Language Processing 
In this stage, incoming query is first normalized in order to increase 
success ratio of NLP tools and then processed by the Turkish NLP 
pipeline described by Eryiğit [16]. Since the mentioned pipeline is 
tailored for well-formed texts and the Web domain, it is noticed 
that some of its components do not succeed well in our new 
domain. An example to this phenomenon may be given from the 
syntactic parsing stage. Since the training sentences of the 
treebanks [32], [31] (used during the training stage of the utilized 
dependency parser) mostly have a punctuation (e.g., a period, a 
question mark) at the end, parsing model has difficulty in parsing 
our outputs coming from the speech recognizer (Figure 3). That is 
why, in the pre-processing stage, while some of the processors 
(tokenizer, morphological analyzer [13], morphological 
disambiguator) are directly used via the cited web service, some 
(namely, the normalizer, the named entity recognizer and the 
dependency parser) have to be adapted to our new domain.  
Torunoğlu and Eryiğit [15] present a text normalizer for Web data 
which consists of seven different modules: letter case 

transformation, replacement rules and lexicon lookup, proper noun 
detection, diacritization (recover Turkish characters like "c" to 
"ç"), vowel restoration, accent normalization and a spelling 
corrector. Our investigations on our development set revealed that 
only two of these layers (capitalization of proper nouns and the 
accent normalization) are valuable for the problem in hand and the 
other normalization layers might create a harming effect on this 
domain. Therefore, a specific normalizer on top of the Google 
Speech API outputs was developed. In addition to these two 
components, normalizer was extended to handle separately written 
suffixes. To this end, we compiled a Turkish suffix list which is 
used to merge the suffixes with the preceding proper noun (if any) 
(after the insertion of an apostrophe sign and capitalization of the 
proper noun). For example, "ali ye" is a typical erroneous output 
of our speech recognizer and it is normalized as "Ali'ye" (to Ali (a 
Turkish male name)) with this normalizer. 
Studies related to Turkish named entity recognition on user 
generated content displays a lower success rate compared to the 
ones tested with formal texts [33] [29]. Mobile assistant data is 
similar to UGC (User Generated Content) but it additionally 
possesses the errors propagated from the speech recognition layer. 
In this article, during the integration of the named entity 
recognition layer into our system, we tested different scenarios. We 
firstly used a NER system trained for ENAMEX, TIMEX and 
NUMEX types. The original system which is tailored for well-
written text obtained a very low performance score in our dataset 
with 15.81% as expected. When we use the NER model tailored 
for Turkish UGC content from the social media sides, we obtained 
43.83% which is still very low. In order to adapt this system to our 
domain, we annotated a new dataset (NER_Train) as introduced in 
Section 4 and used it for domain adaptation of named entity 
recognition module. 3rd row in Table 4 provides the F-score 
obtained at the end of 10-fold cross validation on this dataset. The 
performance (76.31%) is much higher than the previous models 
despite the very small size of the developed data set. The increase 
of the annotated data size is expected to improve the performances 
in this domain and reach the ones for English. 

Table 4: Performance of the NER 

 Training Test F-Score 

NER for formal text 
News 
Articles[43] 

NER_Test 
15.81% 

NER for UGC 
News 
Articles[43] 

NER_Test 
43.83% 

NER for UGC (10 fold CV) 
9/10 
NER_Train 

1/10 
Ner_Train 76.31% 

 
For the syntactic parsing of the user requests, we use Maltparser 
[34] as described in Eryiğit et al.[11]. Unfortunately, the reported 
performances could not be obtained in our new domain with the 
provided Turkish model by the author. In order to alleviate the 
performance loss due to the domain differences, we collected 620 
user queries (Parser_Train Section 4) by asking people to enter 
queries in all our supported domains (call, sms, map, weather .etc). 
Since the queries are most of the time simple requests in our 
domain such as asking for weather, sentences were accordingly 
short (average word count per sentence is 4.6 vs. 10 in a formal 
Turkish Treebank [11]). Although there is still room for 
improvement with the annotation of additional training data, 
Parser_Train reveals a labeled attachment score of 71.53% which 
is comparable with the state of the art in Turkish dependency 
parsing results. Below we introduce our tests for the domain 
adaptation of the parsing model. 
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We first tested our data with the model trained with IMST( 
ITUMetuSabancıTreebank [32]) data. The results of this test are 
given in Table 5. The performances are provided as labeled 
attachment score, unlabelled attachment score and the label 
accuracy. 

Table 5: Performance of parsing model trained with IMST and tested on 
Parser_Train 

Labeled attachment score 27.55% 

Unlabeled attachment score 52.94% 

Label accuracy score 34.14% 

As expected,  the results on our new domain were very low when 
compared to the reported performances (Labelled attachment score 
(LAS): 75.3%, Unlabeled attachment score (UAS): 83.7%). In 
order to alleviate the problem related to the sentence ending 
punctuation marks, we repeated the same test with inserting a 
period sign at the end of every sentence. This operation increased 
the success rates (Table 6) of almost 30 percentage points, but the 
results were still low when compared to the reported performances.  

Table 6: Performance of parsing model with punctuation marks trained 
with IMST and tested on Parser_Train 

Labeled attachment score 57.05% 

Unlabeled attachment score 76.79% 

Label accuracy score 65.20% 

As a final investigation, we re-trained the parsing model with the 
collected queries in order to adapt the parser to our new domain. 
Table 7 provides the results of 10-fold cross validation experiments 
on Parser_Train. The highest performances were obtained with 
this new setting (86,58% UAS, 71,53 LAS). In order to prepare the 
parsing model to be used in the remaining stages, all the 620  
queries are included to the training data and the parser is trained 
with this.  

Table 7: Performance of parsing model 10-fold cross validation 
Parser_Train 

Labeled attachment score 71.53% 

Unlabeled attachment score 86.58% 

Label accuracy score 74.80% 
 
5.2.2. Query Classification 

This stage aims to map the pre-processed query to one of the nine 
supported request types. The used method is a hybrid approach 
which makes use of both rule-based and machine-learning 
methods. As a first step, the system looks for the rules if there is a 
match with the query. If there is no match, the system classifies the 
queries by using the statistical model that is generated by machine 
learning algorithms. 

5.2.2.1. Rule Based Classification 
In  this step, incoming queries that are processed via NLP tools are 
processed with pre-defined rules and classified into a request type 
if any match occurs. Rules can be added in a generic way by using 
regular expressions [35]. Three different rule types are defined for 
using NLP tools’ outputs. 

1. PLAIN_TEXT: This type does not use the results of 

NLP tools and matches on plain texts. E.g. “Hava nasıl 
(How is the weather)” 

2. NER_TEXT: Named entities in the query is replaced 
with their labels. Rule is processed after this step. E.g. 
“<Location> hava nasil” (How is the weather in 
<Location>” 

3. POS_PLAIN_TEXT: Some words in the query remain 
the same and some replaced with part of speech tags. For 
example, the rule to match "annemi ara (call my 
mother)" is written like "<Noun> ara". 

The rule engine allows to define rules by using regular expressions. 
Each rule has 4 parts:  

1. A sequence pattern that the query will be matched to, 
2. How the rule will be handled,  
3. Which domain that rule classifies into, 
4. Rule’s priority value.  

An example rule for Call domain is given below. The example rule 
matches queries that start with “Lütfen (please)” (not mandatory) 
and then a person (not mandatory) and “ara (call)”. For example 
“Lütfen John’u ara (Please call John)” or “John’u ara (call John)” 
queries will be mapped with this rule and system will classify the 
query to the CALL domain. 

^ (Lütfen)?  (<Person>)? ara, NER_TEXT, CALL, 1 
(^ (Can you)? (please)?  call ( <Person>)?, CALL, 1) 

5.2.2.2. Statistical Classification 
Defining and processing rules are easy and fast. Each rule contains 
a specific case and rules have very high precision rate  but a low 
recall rate. On the other hand, managing too many rules is very 
difficult and defining rules to handle all queries is neither possible 
nor practical. Therefore, only 38 rules are defined to cover basic 
query templates and the system is supported with statistical 
classification. For the statistical classification experiments, 
STT_Train is used with 10-fold cross-validation. Different 
machine learning algorithms (Logistic Regression [36], Support 
Vector Machines (SVM) [37],[38], Naive Bayes [39], Decision 
Tree [40] with different confidence factors and K-Nearest 
Neighbors [41]) are experimented by the use of Weka [42] tool.   
In order to alleviate the data sparseness problem caused by the 
agglutinative nature of Turkish, the lemmas are used in the feature 
representation and the named entities are replaced with their entity 
types. Thereby a query like "erdinçi arar mısın lütfen” (can you 
please call Erdinç) is converted to “Erdinç ara mı  lütfen" and then 
“Erdinç” is tagged as a person name and query converted to 
“<PERSON> ara mı lütfen".  After this pre-processing stage on 
training data, Bag of Words [43] approach is used to convert 
sentences to number vectors where each word is represented by a 
numeric value. In this approach each column in the vector stands 
for a unique word and feature values represent the occurrence 
count of the related word within the sentence.  

The impact of using stemming and named entity recognition NLP 
layers on the success of statistical classification is measured and 
provided in Table 10. The results reveal that the added value by 
NLP pre-processing ranges between 0.2 (for support vector 
machines) and 10.7 (for Bayesian networks) percentage points 
depending on the preferred machine learning algorithm for the 
query classification stage. The best results are obtained with the 
SVM algorithm and pre-processing steps. The remaining 
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experiments are performed by selecting this best performing 
algorithm. 
Table 8 provides the success rates of the SVM algorithm on each 
separate request type. It is observed that the highest results are 
obtained for the "Weather" and "Traffic" domains since most of 
the queries in these domains contain similar patterns or words, e.g. 
"Londra'da hava nasıl” (how is the weather in London), "Bugün 
trafik nasıl” (how is the traffic today). The algorithm has the lowest 
score with 92.1% on the web Search domain where the queries 
vary more. 

Statistical classification alone reaches a 95.8% F-measure with the 
SVM algorithm. When the approach is merged into a hybrid model 
together with the rule-based classification introduced above, the 
success improves to 98.3%. 

Table 8: Class based success results of the SVM algorithm 

Domain Accuracy F-Measure 

Call 99.0% 95.7% 

Exchange 97.0% 97.0% 

Email 94.0% 96.9% 

Map 93.90 95.1% 

Weather 100.0% 98.6% 

Message 96.8% 96.8% 

Traffic 100.0% 100,0% 

Application 93.4% 92.4% 

Search 92.1% 93.8% 

Average 95.8% 95.8% 
 

5.2.3. Parameter Extraction 

The last stage of the server-side application is the parameter 
extraction where related parameters (listed in Hata! Başvuru 
kaynağı bulunamadı.) should be extracted for each supported 
tasks. Each domain has its own parameter extraction algorithm 
which uses morphological analysis, named entity recognition and 
dependency parser outputs. Data_Validate is used for the tuning of 
this stage. As an example, Hata! Başvuru kaynağı bulunamadı. 
illustrates the parameter extraction flow for the weather domain. 

The overall system performance on Data_Test is compared with 

Turkcell Mobil Asistan, Asistan B, CEYD-A and SIRI 
applications.  

Table 11 provides the success results of applications on each 
request types. Fields with "N/A" value in the table means that the 
related application does not support the relevant request type.   

As may be observed from  

Table 11, the  architecture introduced in this article and the SIRI 
application, which use natural language processing techniques, 
give better performances compared to other applications.  70.8% 
success rate of our introduced architecture is treated to be very 
promising despite the fact that the system is trained with a very 
modest size of training data compared to commercial applications; 
e.g. SIRI 69.62%. The performances obtained with Turkcell Mobil 
Asistan, AsistanB and CEYD-A applications, which use rule based 
approaches,  fall very behind when compared to the two top 
performing ones. The main reason for this may be related to the 
fact that these applications do not make use of NLP solutions 
adequately and try to directly map the queries to pre-defined fixed 
patterns. Within these applications, CEYD-A has a richer rule 
structure and it allows its users to define their own rules. Moreover 
a new language is developed in order to allow its users to define 
rules easily. As a result, CEYD-A application provides better 
results compared to the other rule based applications. 

When SIRI and the introduced approach are compared more 
closely on each specific request type, we may see that the 
introduced approach in this article performs better on weather, 
exchange, email, map and call related request types whereas SIRI 
performs better on web search, message and launching related 
tasks. 

Table 9: The parameters to be extracted for each domain. 

Class    Parameters                         
Call     receiver name, phone number               
Sms      body text, receiver name, phone number    
Email    body text, receiver name, email address 
Web Search   query text, web site               
Start Apps   application name                  
Map      departure, destination, PoI  
Weather  location, time            
Exchange from/to currency pair           

 

 

Table 10: Statistical Classification Results Before and After NLP Pre-Processing Stages 

  Before Stemming and NER Steps After Stemming and NER Steps 

Algorithm Acc. F-Measure Acc. F-Measure 
Decision Tree 0.25 85.9% 86.1% 89.9% 90.0% 

Decision Tree 0.5 85.7% 86.0% 90.3% 90.4% 

Decision Tree Unprunned 85.4% 85.8% 90.3% 90.4% 

Logistic Regression 94.1% 94.1% 95.2% 95.2% 

NaiveBayes Multinominal 92.6% 92.2% 93.8% 93.5% 

NaiveBayes 92.2% 92.2% 93.8% 93.8% 

Bayes Net 82.5% 83.0% 92.3% 92.3% 

KNN 87.9% 87.8% 90.4% 90.4% 

SVM 95.3% 95.5% 95.8% 95.8% 
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The advantage of collecting high-volume of sample data from 
different patterns and integration with semantic web 
technologies is obvious on SIRI’s performance for web search 
and message sending tasks. SIRI may directly respond to queries 
like "Atatürk'ün doğum tarihi kaç” (When was Atatürk born) due 
to the integration of semantic web technologies and to queries 
like "gökhana sor neredesin” (ask gökhan where are you) due to 
the availability of more training data. In this later example, since 
the verb “sormak” (ask) never occurred in our collected small-
sized training data set, our system could not react properly to this 
sample. This shows that the introduced approach has still room 
for improvement by the addition of more training data. While 
our developed application successfully operates queries like 
"Gökhan'a daha sonra geri döneceğimi email at” (send mail to 
Gökhan that I will come back later) and extract required 
parameters without asking for new information, SIRI asks user 
additional questions such as "who would you like to send mail" 
and "what would you like to say". SIRI is found inadequate for 
extracting parameters in calling someone from contacts and 
extracting road directions. As discussed earlier, SIRI’s English 
version is much better than its Turkish localization. This 
validates our claim that using more sophisticated natural 
language processing techniques tailored for Turkish helps 
significantly to the success of such applications. 

6. CONCLUSION AND FUTURE WORK 
This article introduces a Turkish mobile assistant architecture 
and a prototype application. The aim of the study is to show the 
impact and the potential of using basic natural language 
processing techniques in this new domain. Comparisons with 
similar applications are provided within the article.  The 
evaluations on the impact of NLP pre-processing layers on the 

query classification performances reveal that the added value by 
NLP may range from 0.2 to 10.7 percentage points depending on 
the preferred machine learning algorithm for the query 
classification stage. The impact of NLP for the parameter 
extraction stage is also crucial since the outputs of NLP modules 
are used systematically by the extraction rules. The overall 
accuracy of the introduced approach is measured as 70.8% 
which is very promising under the fact that the system is trained 
with very limited-size of annotated data when compared to its 
competitors.  

To the best of our knowledge, this article is the first academic 
study on this topic. The technology introduced in this article is 
basically designed for the case of a mobile assistant but it can be 
used for every voice-enabled control system to improve the user 
experience, such as smart homes or smart televisions.    

As future work, dialog management and text to speech features 
should also be investigated. Basic natural language processing 
layers are just a first step for a successful Turkish mobile 
assistant application. Semantic technologies are also very crucial 
in this new domain and more research is needed to obtain high-
performing and more natural assistant applications. 
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Table 11: Domain Based Performances of Tested Applications (tested on May 2015) 

Domain /Application AsistanB Turkcell CEYD-A SIRI This 
article 

Weather 0.00% 50.00% 50.00% 83.33% 91.67% 
Search 0.00% 0.00% 27.27% 63.64% 36.36% 
Exchange 60.00% 30.00% 40.00% N/A 90.00% 
E-Mail N/A N/A 0.00% 36.36% 63.64% 
Map 0.00% 16.67% 66.67% 66.67% 75.00% 
Call 0.00% 0.00% 27.27% 63.64% 81.82% 
Launch 50.00% N/A 58.33% 91.67% 83.33% 
Message 0.00% 50.00% 10.00% 70.00% 40.00% 

Average     70.8% 
 

 

 

 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104  |  102 

 

 

Figure 6: Weather Extraction Flow 
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