

International Journal of
Intelligent Systems and Applications in Engineering

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 94

Use of NLP Techniques for an Enhanced Mobile Personal Assistant: The
Case of Turkish 1

Gokhan Celikkaya1, Gulsen Eryigit*1

DOI: 10.1039/b0000

Accepted : 05/06/2017 Published: 30/09/2017 DOI: 10.1039/b000000x

Abstract: This article introduces a Turkish mobile assistant application which produces state-of-the art results for the Turkish language by
using natural language processing (NLP) techniques. The voice-enabled mobile assistant application allows users to enter queries for nine
pre-defined tasks; namely, making calls, sending sms messages and emails, getting directions, querying exchange rates, weather forecast
and traffic information, searching on the internet and launching applications on the phone. Users’ queries are processed in a multi-stage
approach (viz., NLP, query classification and parameter extraction). Either the requested task is performed or the requested information is
displayed as the response of the application. The article presents the architecture of the introduced system, its comparison with some
prominent mobile assistants as well as the newly created data resources (viz., two query datasets annotated for classification and parameter
extraction, two specific datasets for domain adaptation of named entity recognition and syntactic parsing NLP modules) to be used in
further research. The evaluations on the impact of NLP preprocessing layers to the query classification performances reveal that the added
value by NLP may range from 0.2 to 10.7 percentage points depending on the preferred machine learning algorithm for the query
classification stage. The impact of NLP for the parameter extraction stage is also crucial since the outputs of NLP modules are used
systematically by the extraction rules. The overall performance of the introduced approach is measured as 70.8% accuracy score which is
very promising under the fact that the system is trained with very limited-size of annotated data. The technology introduced in this article
is basically designed for the case of a mobile assistant but it can also be used for every voice-enabled control system to improve the user
experience, such as smart homes or smart televisions.

Keywords: natural language processing, NLP, question answer system, mobile assistant, machine learning.

1. Introduction
Since the interaction with mobile devices increased enormously in
recent years, user friendly interfaces facilitating human-machine
interaction became very important. Natural language is the most
natural way of communicating for humans and this explains the
popularity of the mobile assistant applications. Unfortunately, the
challenges caused by the typological differences of some natural
languages also appear in mobile applications and the generated
systems which are mostly on English could not be adapted easily
to other languages such as Turkish. SIRI [2] and GoogleNow [3]
are the most popular applications on this topic and there are many
more. Even though SIRI has begun to support Turkish after IOS
8.3 update, its quality and coverage for different supported services
are not as good as for the English version. Moreover, the other
popular applications such as GoogleNow [3], Cortana [4], Robin
[5], Assistant [6] do not support the Turkish language at all.

There exist few other mobile assistant applications developed for
Turkish such as AsistanB [7] and CEYD-A [8], but these are
mostly working on a keyword-match or phrase-match basis and do
not make use of any NLP solutions. Therefore, their success rates
are very low. For example, for a query such as "Bugün hava
Ankara'da nasıl olacak?” (How is the weather today in Ankara),

such applications return the weather forecast of the current location
(e.g. Istanbul) instead of the requested location.

Turkish is an agglutinative language with a very rich
morphological structure. This property of the language increases
the need to use underlying sophisticated natural language
processing tools in order to correctly process a user request in a
mobile assistant application. In recent years, the accessibility of
basic NLP tools for Turkish (such as text normalizers,
morphological and syntactic analyzers [9], [10], [11], [12], [13],
[14], [15], [16]) makes their use possible in higher level
applications. The technology that we introduce in this article is
basically designed for the case of a mobile assistant but it can also
be used for every voice-enabled control system to improve the user
experience, such as smart homes or smart televisions.

This article presents the first academic study focusing on the
language related problems of a Turkish Mobile Assistant. The
voice-enabled mobile assistant application allows users to enter
queries for nine pre-defined tasks; namely, making calls, sending
sms messages and emails, getting (driving or walking) directions,
querying exchange rates, weather forecast and traffic information,
searching on the internet and launching applications on the phone.
Users’ queries are processed in a multi-stage approach and either
the requested task is performed or the requested information is
displayed as the response of the application. The multi-stage
approach basically consists of NLP of the input queries, their
classification into 9 distinct target classes by the use of a hybrid

1 Dep. of Computer Eng. Istanbul Technical University Istanbul, Turkey
Corresponding Author: Email: gulsen.cebiroglu@itu.edu.tr

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 95

classification approach, their parameter extraction by rule-based
task specific modules and finally the generation of the assistant’s
response.

This article, which is an extended version of a conference paper
[1], presents the architecture of the introduced system, its
comparison with some prominent mobile assistants as well as the
newly created data resources in order to be used in further research.
The developed data resources are two query datasets annotated
separately for the classification and parameter extraction stages,
two specific datasets for domain adaptation of named entity
recognition and syntactic parsing NLP modules. The evaluations
on the impact of NLP preprocessing layers on the query
classification performances reveal that the added value by NLP
may range from 0.2 (for support vector machines) to 10.7 (for
Bayesian networks) percentage points depending on the preferred
machine learning algorithm for the query classification stage. The
impact of NLP for the parameter extraction stage is also crucial
since the outputs of NLP modules are used systematically by the
extraction rules. The overall performance of the introduced
approach is measured as 70.8% accuracy score which is very
promising under the fact that the system is trained with very
limited-size of annotated data.

The article is structured as follows: Section 2 provides the related
works, Section 3 gives a brief information about Turkish
language’s challenging characteristics related to our domain,
Section 4 gives information about the newly introduced language
resources, Section 5 presents the system architecture; the mobile
side interfaces (Section 5.1) and the server-side application
(Section 5.2): NLP layer and domain adaptation (5.2.1), query
classification (5.2.2) and parameter extraction (5.2.3). Section 6
gives the conclusion and future work.

2. RELATED WORK
Mobil assistant applications enable users to use their mobile
phones and tablets via natural language and have become popular
in recent years. These applications provide relevant responses
according to users' query by using NLP solutions. In the literature,
there exist many applications (SIRI [2], GoogleNow [3], Cortana
[4], Robin [5], Assistant [6]), publications ([17], [18], [19], [20],
[21]) and patents ([22], [23], [24], [25]) related to the English
language. Apple's SIRI and Google Now applications are the most
popular ones in this domain. On the other hand, the studies for
Turkish are very limited in number and these are mostly inadequate
in terms of the number of supported services, usage of NLP
technology and success rate compared to the ones built for English.
Turkcell Mobil Asistan [26] has the most widely used local
application for Turkish. Although it supports services such as
weather, exchange, and call, it is mainly developed to query
company's own services. Beyond that, AsistanB [7] and CEYD-A
[8] are also commonly used local applications for Turkish. In
general, these applications were developed by rule based methods
and lack of NLP technology. CEYD-A uses a basic learning
mechanism that allows its users to define new rules. İdris [27]
application was developed with many deficiencies yielding to its
withdrawn from mobile markets. Since these applications were
developed with rule based approaches, queries must be asked
matching pre-defined templates. For example, weather forecast
information needs to be asked like "Ankara hava durumu” (Ankara
weather forecast). These are unable to respond correctly to a
natural question such as "Hava yarın Ankara'da nasıl olacak?”
(How is the weather like in Ankara tomorrow?)".

Beyond the above mentioned local applications, with the IOS 8.3
update released in April 2015, SIRI application has begun to
support the Turkish language as well. SIRI uses some natural
language processing components such as a pos-tagger and a named
entity recognizer and therefore has better performance compared
to the other applications developed for Turkish.

3. TURKISH & ITS CHALLENGES
Turkish is an agglutinative language and has a very rich
morphological structure. Since most of the syntactic information
appear at word level, Turkish comes out to be a free constituent
order language where the word order is very flexible compared to
fixed word order languages. These properties of the language
differentiate it from many languages for the automated language
processing applications. There exist many studies in the literature
which focus on specific and challenging features of the Turkish
language for this domain. In this section, we briefly detail its
outstanding properties which deserve attention for the mobile
application domain and explain the benefited NLP layers.

Since most of the NLP tools are originally developed for English,
their performances on Turkish are generally not as good as for
English even if the tool in focus claims multilingual support. An
example to this may be seen in speech recognition applications.
Although today’s speech recognizers are quite successful at
understanding the spoken inputs, it is quite common that their
outputs do not conform well to the written language formal rules;
e.g. the use of capital letters at the beginning of proper names
(newyork vs. New York), the writing of postpositions, prepositions
and enclitics, and their differentiation from agglutinated
inflectional suffixes in case of morphologically rich languages.
The erroneous outputs of these speech recognizers may not be
correctly processed by following NLP modules (such as a
morphological analyzer or syntactic parser) which are generally
developed to process well-written text. As a consequence, the
speech recognizers’ outputs need to be normalized by a text
normalization module. Table 1 provides an example query (‘Yarın
Ankara'da hava nasıl’ – What will be the weather like in Ankara
tomorrow). The original output from a speech recognizer is given
in the first line of the table where the text contains neither any
capital letter nor punctuation mark. The locative case marker (-da)
is also erroneously written separately from the location name
(Ankara). The normalized query is given in the second line of the
table.

Table 1 also provides the output for the input query from different
NLP layers of a classical NLP pipeline: a text normalizer, a
tokenizer, morphological analysis and disambiguation, named
entity recognition and syntactic parsing. A brief explanation of
these NLP layers is provided below. The reader may refer to [16]
for further references.

• Tokenization is the process of splitting the input into tokens.
• Text Normalization is the process of transforming text into

a canonical form.
• Morphological Analysis is the process of analyzing a word:

finding its lemma, parts-of-speech tag and inflectional
features as well as its derivational structure.

• Morphological Disambiguation is the process of selecting
the most probable morphological analysis sequence for an
input word sequence.

• Named Entity Recognition is the process of identifying the
named entities (e.g. person, location or organization names)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 96

within the input word sequence.
• Dependency Parsing is the process of constructing a

syntactic dependency tree to a given input sentence.

Table 1. An example query and its analysis by NLP modules

Query (output from a
speech recognizer [28]) yarın ankara da hava nasıl

Normalized Query
Yarın Ankara'da hava nasıl ?
Tomorrow - in Ankara – weather – how ?

Morphological Analysis
&

Disambiguation

Yarın yarın+Adverb

Ankara'da Ankara+Noun+Prop+A3sg+Pnon+Loc

hava hava+Noun+A3sg+Pnon+Nom

nasıl nasıl+Adverb

? ?+Punc

Named Entity
Recognition [TIME] [LOCATION] hava nasıl ?

Syntactic Dependency
Parsing

Yarın Ankara’da hava nasıl ?

Modifier
Locative adjunct

Subject

For a free constituent order language such as Turkish, writing fixed
patterns to match query inputs would reveal unsuccessful results
since the queries would most of the time not conform to these. For
example, all the following sentences and many more, with same
constituents but in different order, should match to the same pattern
with the English query “What will be the weather like in Ankara
tomorrow?”. Dependency parsing approach, which became a very
popular parsing technique in the last 15 years, is found to be
suitable especially for the syntactic analysis of free constituent
order languages.

Yarın hava Ankara’da nasıl?
Ankarada hava yarın nasıl?
Hava yarın ankarada nasıl?
Ankarada hava yarın nasıl?

As in all other areas of natural language processing, the lack of data
resources and the sparse data problem caused due to the
morphological nature of Turkish are the extra challenges
encountered in our current domain.

4. DATASETS
This section presents our newly annotated datasets in order to both
train and test our different system layers and adapt the NLP tools
to our new domain. Table 2 provides the number of queries in each
annotated dataset.

Table 2: Data Sets

Data Set Name # of
Queries Annotation Type

STT_Train 1000 Normalized, Category labels
NER_Train 750 Named Entities
Parser_Train 620 Dependency relations
Data_Validate 478 Category labels and responses
Data_Test 100 Category labels and responses

STT_Train consists of 1000 queries related to nine pre-defined
categories; making calls, sending sms messages and emails, getting
directions, querying exchange rates, weather forecast and traffic
information, searching on the internet and launching applications
on the phone. The queries are taken via a speech to text API
(described in Section 5) and manually normalized. STT_Train
consists of these queries and their manually marked category labels

in order to be used in the query classification layer. 578 queries
(478 in Data_validate, 100 in Data_Test) from this set are
manually prepared with expected server responses in order to be
used in the parameter extraction layer. Figure 1 gives an example
to the response structure which will be detailed in Section 5. The
figure provides the manually tagged responses for two sample
queries related to call and sms operations. The first query (“halamı
ara” – Call my aunt) is tagged with a call operationType and the
receivername whereas the second query (“engine mesaj at
yoldayım geliyorum” – Send an sms to Engin, I’m on my way, I’m
coming) is tagged with an sms operationType and both the receiver
name and the body text of the sms.

NER_Train and Parser_Train are the datasets prepared in order to
be used in domain adaptation of the named entity recognition and
the parsing modules. NER_Train consists of 750 queries annotated
with 7 named entity types namely ENAMEX, TIMEX and
NUMEX categories [29]. Parser_Train consists of 620
morphologically and syntactically annotated queries. Manual
annotation of this dataset is realized via ITU Treebank Annotation

Tool [30], [31]. In this annotation tool, the tokens of the input
queries are first automatically analyzed by a morphological
analyzer [16] and then human annotators are asked to select the
most probable morphological tag sequence for the given input. As
the syntactic layer, the tool allows to annotate the dependency
structure [11] for each given input.

5. SYSTEM ARCHITECTURE
In this section we describe the design of our system which is
composed of two main modules; a mobile client and a server-side
application. The mobile application is responsible for
1) capturing the spoken request, 2) converting it into written text,
3) transferring the user requests to the server side and 4) displaying
and/or performing the requested operation according to the result
received from the server. The server side module is responsible for
processing the user's query and understanding its true intention. It
also collects information from third party web services if needed,
and finally compiles the results and sends it back to the client. The
mobile application communicates with the server-side service

Figure 1: Two sample queries manually tagged with expected server
responses

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 97

using RESTful principles and via a defined JSON protocol. Figure
2 illustrates the main architecture of our system.

Figure 2: System architecture

The fields returned by the protocol message are as follows:

• Response Status (error or ok)
• Response Type (service or native_op)
• Operation Domain (call, sms, weather etc…)
• Content (parameters required by the determined query

class)
The response type field specifies whether the operation requires
results from third party web services (such as traffic information
or map services) (service) or may be realized locally (native_op).
As specified before, we have 9 supported request types specified
by the field operation domain. The number of returned parameters
(content field) varies depending on different request types. For
example, querying exchange information will return the amount to
be exchanged, the original and target currency types, and the
exchange rate whereas launching an application will only return
one parameter which will be an application’s name on the phone.
Figure 1 introduces two sample protocol messages.

As stated before, the application is designed to support nine types
of requests. Table 3 provides the name of these supported
operations together with the utilized third-party web services if
any.

Table 3: User Request Types

Response Type Request Type Third Party Service
native_op Starting calls -
native_op Sending sms -
native_op Sending e-mail -
Service Getting directions Google Maps
Service Querying currency

exchange info
Google Currency

Service
Service Querying weather

forecast
World Weather

Online
Service Querying traffic

information
Yandex Traffic

Service
Service Searching on the web Google search
native_op Launching phone

applications
-

5.1. MOBILE APPLICATION

Mobile application is responsible of taking the user request,
transferring it to the server side and displaying or realizing the
returned response. Google's speech recognition API for Android

[28] is used on the mobile application side in order to capture the
user spoken queries and convert them into written messages. The
speech recognizer returns more than one text suggestion for a given
entry and each suggestion has its own confidence level. A
suggestion with a higher confidence level is more likely to be true.
If any of the produced suggestions has more than a pre-defined
threshold value (0.7), it is assumed as the correct suggestion.
Otherwise, the application presents a list of text suggestions to the
user. Figure 3 illustrates the speech recognition outputs for a
sample request which will be sent to server: “gökhanı ara” (call
Gökhan). Since none of the speech recognition API’s results are
above the threshold, the top 5 results are displayed to user and
asked for manual selection.

After the speech recognition stage, the selected query text is sent
to the server along with the user's context, which includes user id
(device id), current location and time (provided on top of the figure
between Content block). The response from the server is then
either executed on the phone or displayed to the user. Figure 4
illustrates a sample result for a map query ("kadıköye nasıl
giderim" (how can I go to Kadıköy)) on the mobile application.

URL Address: IP:Port/SanalBilge/rest/info
Content:
{
 "username": "android",
 "query": "gökhanı ara",
 "latitude": 41.00527,
 "longitude": 28.97696,
 "timestamp": 1427735981599
}

Figure 3: Mobile Application Speech Recognition Interface

Figure 4: Screen shots of map result

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 98

5.2. SERVER-SIDE APPLICATION

The server-side application is responsible for processing the
incoming request and returning generated response back to the
client. Since the input data is the output of a speech recognizer and
may contain mistakes (e.g., capitalization, wrong transliteration of
proper nouns such as the example given in Figure 3), the incoming
user requests are firstly normalized in order to avoid grammatical
errors and then processed with different NLP layers. After these
pre-processing steps, requests are mapped to one of the supported
operations through a hybrid approach of rule-based and statistical
classification. Finally, the required parameters are extracted by an
extraction algorithm that is developed separately for each focused
domain. Figure 5 presents the basic flow of server-side operations.
Since the used 3rd party service for the traffic domain automatically
obtains the current location information from the phone and does
not take any additional parameter, the class based parameter
extraction box in Figure 5 only lists the remaining 8 categories.

Figure 5: The main flow of the server-side application

5.2.1. Normalization & Language Processing
In this stage, incoming query is first normalized in order to increase
success ratio of NLP tools and then processed by the Turkish NLP
pipeline described by Eryiğit [16]. Since the mentioned pipeline is
tailored for well-formed texts and the Web domain, it is noticed
that some of its components do not succeed well in our new
domain. An example to this phenomenon may be given from the
syntactic parsing stage. Since the training sentences of the
treebanks [32], [31] (used during the training stage of the utilized
dependency parser) mostly have a punctuation (e.g., a period, a
question mark) at the end, parsing model has difficulty in parsing
our outputs coming from the speech recognizer (Figure 3). That is
why, in the pre-processing stage, while some of the processors
(tokenizer, morphological analyzer [13], morphological
disambiguator) are directly used via the cited web service, some
(namely, the normalizer, the named entity recognizer and the
dependency parser) have to be adapted to our new domain.
Torunoğlu and Eryiğit [15] present a text normalizer for Web data
which consists of seven different modules: letter case

transformation, replacement rules and lexicon lookup, proper noun
detection, diacritization (recover Turkish characters like "c" to
"ç"), vowel restoration, accent normalization and a spelling
corrector. Our investigations on our development set revealed that
only two of these layers (capitalization of proper nouns and the
accent normalization) are valuable for the problem in hand and the
other normalization layers might create a harming effect on this
domain. Therefore, a specific normalizer on top of the Google
Speech API outputs was developed. In addition to these two
components, normalizer was extended to handle separately written
suffixes. To this end, we compiled a Turkish suffix list which is
used to merge the suffixes with the preceding proper noun (if any)
(after the insertion of an apostrophe sign and capitalization of the
proper noun). For example, "ali ye" is a typical erroneous output
of our speech recognizer and it is normalized as "Ali'ye" (to Ali (a
Turkish male name)) with this normalizer.
Studies related to Turkish named entity recognition on user
generated content displays a lower success rate compared to the
ones tested with formal texts [33] [29]. Mobile assistant data is
similar to UGC (User Generated Content) but it additionally
possesses the errors propagated from the speech recognition layer.
In this article, during the integration of the named entity
recognition layer into our system, we tested different scenarios. We
firstly used a NER system trained for ENAMEX, TIMEX and
NUMEX types. The original system which is tailored for well-
written text obtained a very low performance score in our dataset
with 15.81% as expected. When we use the NER model tailored
for Turkish UGC content from the social media sides, we obtained
43.83% which is still very low. In order to adapt this system to our
domain, we annotated a new dataset (NER_Train) as introduced in
Section 4 and used it for domain adaptation of named entity
recognition module. 3rd row in Table 4 provides the F-score
obtained at the end of 10-fold cross validation on this dataset. The
performance (76.31%) is much higher than the previous models
despite the very small size of the developed data set. The increase
of the annotated data size is expected to improve the performances
in this domain and reach the ones for English.

Table 4: Performance of the NER

 Training Test F-Score

NER for formal text
News
Articles[43]

NER_Test
15.81%

NER for UGC
News
Articles[43]

NER_Test
43.83%

NER for UGC (10 fold CV)
9/10
NER_Train

1/10
Ner_Train 76.31%

For the syntactic parsing of the user requests, we use Maltparser
[34] as described in Eryiğit et al.[11]. Unfortunately, the reported
performances could not be obtained in our new domain with the
provided Turkish model by the author. In order to alleviate the
performance loss due to the domain differences, we collected 620
user queries (Parser_Train Section 4) by asking people to enter
queries in all our supported domains (call, sms, map, weather .etc).
Since the queries are most of the time simple requests in our
domain such as asking for weather, sentences were accordingly
short (average word count per sentence is 4.6 vs. 10 in a formal
Turkish Treebank [11]). Although there is still room for
improvement with the annotation of additional training data,
Parser_Train reveals a labeled attachment score of 71.53% which
is comparable with the state of the art in Turkish dependency
parsing results. Below we introduce our tests for the domain
adaptation of the parsing model.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 99

We first tested our data with the model trained with IMST(
ITUMetuSabancıTreebank [32]) data. The results of this test are
given in Table 5. The performances are provided as labeled
attachment score, unlabelled attachment score and the label
accuracy.

Table 5: Performance of parsing model trained with IMST and tested on
Parser_Train

Labeled attachment score 27.55%

Unlabeled attachment score 52.94%

Label accuracy score 34.14%

As expected, the results on our new domain were very low when
compared to the reported performances (Labelled attachment score
(LAS): 75.3%, Unlabeled attachment score (UAS): 83.7%). In
order to alleviate the problem related to the sentence ending
punctuation marks, we repeated the same test with inserting a
period sign at the end of every sentence. This operation increased
the success rates (Table 6) of almost 30 percentage points, but the
results were still low when compared to the reported performances.

Table 6: Performance of parsing model with punctuation marks trained
with IMST and tested on Parser_Train

Labeled attachment score 57.05%

Unlabeled attachment score 76.79%

Label accuracy score 65.20%

As a final investigation, we re-trained the parsing model with the
collected queries in order to adapt the parser to our new domain.
Table 7 provides the results of 10-fold cross validation experiments
on Parser_Train. The highest performances were obtained with
this new setting (86,58% UAS, 71,53 LAS). In order to prepare the
parsing model to be used in the remaining stages, all the 620
queries are included to the training data and the parser is trained
with this.

Table 7: Performance of parsing model 10-fold cross validation
Parser_Train

Labeled attachment score 71.53%

Unlabeled attachment score 86.58%

Label accuracy score 74.80%

5.2.2. Query Classification

This stage aims to map the pre-processed query to one of the nine
supported request types. The used method is a hybrid approach
which makes use of both rule-based and machine-learning
methods. As a first step, the system looks for the rules if there is a
match with the query. If there is no match, the system classifies the
queries by using the statistical model that is generated by machine
learning algorithms.

5.2.2.1. Rule Based Classification
In this step, incoming queries that are processed via NLP tools are
processed with pre-defined rules and classified into a request type
if any match occurs. Rules can be added in a generic way by using
regular expressions [35]. Three different rule types are defined for
using NLP tools’ outputs.

1. PLAIN_TEXT: This type does not use the results of

NLP tools and matches on plain texts. E.g. “Hava nasıl
(How is the weather)”

2. NER_TEXT: Named entities in the query is replaced
with their labels. Rule is processed after this step. E.g.
“<Location> hava nasil” (How is the weather in
<Location>”

3. POS_PLAIN_TEXT: Some words in the query remain
the same and some replaced with part of speech tags. For
example, the rule to match "annemi ara (call my
mother)" is written like "<Noun> ara".

The rule engine allows to define rules by using regular expressions.
Each rule has 4 parts:

1. A sequence pattern that the query will be matched to,
2. How the rule will be handled,
3. Which domain that rule classifies into,
4. Rule’s priority value.

An example rule for Call domain is given below. The example rule
matches queries that start with “Lütfen (please)” (not mandatory)
and then a person (not mandatory) and “ara (call)”. For example
“Lütfen John’u ara (Please call John)” or “John’u ara (call John)”
queries will be mapped with this rule and system will classify the
query to the CALL domain.

^ (Lütfen)? (<Person>)? ara, NER_TEXT, CALL, 1
(^ (Can you)? (please)? call (<Person>)?, CALL, 1)

5.2.2.2. Statistical Classification
Defining and processing rules are easy and fast. Each rule contains
a specific case and rules have very high precision rate but a low
recall rate. On the other hand, managing too many rules is very
difficult and defining rules to handle all queries is neither possible
nor practical. Therefore, only 38 rules are defined to cover basic
query templates and the system is supported with statistical
classification. For the statistical classification experiments,
STT_Train is used with 10-fold cross-validation. Different
machine learning algorithms (Logistic Regression [36], Support
Vector Machines (SVM) [37],[38], Naive Bayes [39], Decision
Tree [40] with different confidence factors and K-Nearest
Neighbors [41]) are experimented by the use of Weka [42] tool.
In order to alleviate the data sparseness problem caused by the
agglutinative nature of Turkish, the lemmas are used in the feature
representation and the named entities are replaced with their entity
types. Thereby a query like "erdinçi arar mısın lütfen” (can you
please call Erdinç) is converted to “Erdinç ara mı lütfen" and then
“Erdinç” is tagged as a person name and query converted to
“<PERSON> ara mı lütfen". After this pre-processing stage on
training data, Bag of Words [43] approach is used to convert
sentences to number vectors where each word is represented by a
numeric value. In this approach each column in the vector stands
for a unique word and feature values represent the occurrence
count of the related word within the sentence.

The impact of using stemming and named entity recognition NLP
layers on the success of statistical classification is measured and
provided in Table 10. The results reveal that the added value by
NLP pre-processing ranges between 0.2 (for support vector
machines) and 10.7 (for Bayesian networks) percentage points
depending on the preferred machine learning algorithm for the
query classification stage. The best results are obtained with the
SVM algorithm and pre-processing steps. The remaining

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 100

experiments are performed by selecting this best performing
algorithm.
Table 8 provides the success rates of the SVM algorithm on each
separate request type. It is observed that the highest results are
obtained for the "Weather" and "Traffic" domains since most of
the queries in these domains contain similar patterns or words, e.g.
"Londra'da hava nasıl” (how is the weather in London), "Bugün
trafik nasıl” (how is the traffic today). The algorithm has the lowest
score with 92.1% on the web Search domain where the queries
vary more.

Statistical classification alone reaches a 95.8% F-measure with the
SVM algorithm. When the approach is merged into a hybrid model
together with the rule-based classification introduced above, the
success improves to 98.3%.

Table 8: Class based success results of the SVM algorithm

Domain Accuracy F-Measure

Call 99.0% 95.7%

Exchange 97.0% 97.0%

Email 94.0% 96.9%

Map 93.90 95.1%

Weather 100.0% 98.6%

Message 96.8% 96.8%

Traffic 100.0% 100,0%

Application 93.4% 92.4%

Search 92.1% 93.8%

Average 95.8% 95.8%

5.2.3. Parameter Extraction

The last stage of the server-side application is the parameter
extraction where related parameters (listed in Hata! Başvuru
kaynağı bulunamadı.) should be extracted for each supported
tasks. Each domain has its own parameter extraction algorithm
which uses morphological analysis, named entity recognition and
dependency parser outputs. Data_Validate is used for the tuning of
this stage. As an example, Hata! Başvuru kaynağı bulunamadı.
illustrates the parameter extraction flow for the weather domain.

The overall system performance on Data_Test is compared with

Turkcell Mobil Asistan, Asistan B, CEYD-A and SIRI
applications.

Table 11 provides the success results of applications on each
request types. Fields with "N/A" value in the table means that the
related application does not support the relevant request type.

As may be observed from

Table 11, the architecture introduced in this article and the SIRI
application, which use natural language processing techniques,
give better performances compared to other applications. 70.8%
success rate of our introduced architecture is treated to be very
promising despite the fact that the system is trained with a very
modest size of training data compared to commercial applications;
e.g. SIRI 69.62%. The performances obtained with Turkcell Mobil
Asistan, AsistanB and CEYD-A applications, which use rule based
approaches, fall very behind when compared to the two top
performing ones. The main reason for this may be related to the
fact that these applications do not make use of NLP solutions
adequately and try to directly map the queries to pre-defined fixed
patterns. Within these applications, CEYD-A has a richer rule
structure and it allows its users to define their own rules. Moreover
a new language is developed in order to allow its users to define
rules easily. As a result, CEYD-A application provides better
results compared to the other rule based applications.

When SIRI and the introduced approach are compared more
closely on each specific request type, we may see that the
introduced approach in this article performs better on weather,
exchange, email, map and call related request types whereas SIRI
performs better on web search, message and launching related
tasks.

Table 9: The parameters to be extracted for each domain.

Class Parameters
Call receiver name, phone number
Sms body text, receiver name, phone number
Email body text, receiver name, email address
Web Search query text, web site
Start Apps application name
Map departure, destination, PoI
Weather location, time
Exchange from/to currency pair

Table 10: Statistical Classification Results Before and After NLP Pre-Processing Stages

 Before Stemming and NER Steps After Stemming and NER Steps

Algorithm Acc. F-Measure Acc. F-Measure
Decision Tree 0.25 85.9% 86.1% 89.9% 90.0%

Decision Tree 0.5 85.7% 86.0% 90.3% 90.4%

Decision Tree Unprunned 85.4% 85.8% 90.3% 90.4%

Logistic Regression 94.1% 94.1% 95.2% 95.2%

NaiveBayes Multinominal 92.6% 92.2% 93.8% 93.5%

NaiveBayes 92.2% 92.2% 93.8% 93.8%

Bayes Net 82.5% 83.0% 92.3% 92.3%

KNN 87.9% 87.8% 90.4% 90.4%

SVM 95.3% 95.5% 95.8% 95.8%

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 101

The advantage of collecting high-volume of sample data from
different patterns and integration with semantic web
technologies is obvious on SIRI’s performance for web search
and message sending tasks. SIRI may directly respond to queries
like "Atatürk'ün doğum tarihi kaç” (When was Atatürk born) due
to the integration of semantic web technologies and to queries
like "gökhana sor neredesin” (ask gökhan where are you) due to
the availability of more training data. In this later example, since
the verb “sormak” (ask) never occurred in our collected small-
sized training data set, our system could not react properly to this
sample. This shows that the introduced approach has still room
for improvement by the addition of more training data. While
our developed application successfully operates queries like
"Gökhan'a daha sonra geri döneceğimi email at” (send mail to
Gökhan that I will come back later) and extract required
parameters without asking for new information, SIRI asks user
additional questions such as "who would you like to send mail"
and "what would you like to say". SIRI is found inadequate for
extracting parameters in calling someone from contacts and
extracting road directions. As discussed earlier, SIRI’s English
version is much better than its Turkish localization. This
validates our claim that using more sophisticated natural
language processing techniques tailored for Turkish helps
significantly to the success of such applications.

6. CONCLUSION AND FUTURE WORK
This article introduces a Turkish mobile assistant architecture
and a prototype application. The aim of the study is to show the
impact and the potential of using basic natural language
processing techniques in this new domain. Comparisons with
similar applications are provided within the article. The
evaluations on the impact of NLP pre-processing layers on the

query classification performances reveal that the added value by
NLP may range from 0.2 to 10.7 percentage points depending on
the preferred machine learning algorithm for the query
classification stage. The impact of NLP for the parameter
extraction stage is also crucial since the outputs of NLP modules
are used systematically by the extraction rules. The overall
accuracy of the introduced approach is measured as 70.8%
which is very promising under the fact that the system is trained
with very limited-size of annotated data when compared to its
competitors.

To the best of our knowledge, this article is the first academic
study on this topic. The technology introduced in this article is
basically designed for the case of a mobile assistant but it can be
used for every voice-enabled control system to improve the user
experience, such as smart homes or smart televisions.

As future work, dialog management and text to speech features
should also be investigated. Basic natural language processing
layers are just a first step for a successful Turkish mobile
assistant application. Semantic technologies are also very crucial
in this new domain and more research is needed to obtain high-
performing and more natural assistant applications.

Acknowledgements
This work is supported by Turkey’s Ministry of Science,
Industry and Technology under SANTEZ grant no: 0073-
STZ.2013-1. The conclusions and remarks given in this article
are not the official views of the ministry.

Table 11: Domain Based Performances of Tested Applications (tested on May 2015)

Domain /Application AsistanB Turkcell CEYD-A SIRI This
article

Weather 0.00% 50.00% 50.00% 83.33% 91.67%
Search 0.00% 0.00% 27.27% 63.64% 36.36%
Exchange 60.00% 30.00% 40.00% N/A 90.00%
E-Mail N/A N/A 0.00% 36.36% 63.64%
Map 0.00% 16.67% 66.67% 66.67% 75.00%
Call 0.00% 0.00% 27.27% 63.64% 81.82%
Launch 50.00% N/A 58.33% 91.67% 83.33%
Message 0.00% 50.00% 10.00% 70.00% 40.00%

Average 70.8%

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 102

Figure 6: Weather Extraction Flow

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 103

References

[1] Celikkaya, G. and G. Eryiğit, A mobile assistant for Turkish.
TÜRKİYE BİLİŞİM VAKFI BİLGİSAYAR BİLİMLERİ ve
MÜHENDİSLİĞİ DERGİSİ, 2014. 7(1 (Basılı 8).

[2] Apple. SIRI. 2011; Available from:
http://www.apple.com/ios/siri/.

[3] Google. Google Now. 2015; Available from:
https://play.google.com/store/apps/details?id=com.google.a
ndroid.googlequicksearchbox.

[4] Microsoft. Cortana. 2014; Available from:
https://en.wikipedia.org/wiki/Cortana_(software).

[5] Labs, R. Robin - the Siri Challenger. Available from:
https://play.google.com/store/apps/details?id=com.magnifis.
parking.

[6] Speaktoit. Assistant 2011; Available from:
https://en.wikipedia.org/wiki/Assistant_(by_Speaktoit).

[7] Asistan B - Turkçe Sesli Asist. 2015; Available from:
https://play.google.com/store/apps/details?id=com.buronya.
asistanb.

[8] CEYD-A Turkçe Sesli Asistan. 2015; Available from:
https://play.google.com/store/apps/details?id=com.cenker.ya
rdimci.app.

[9] Oflazer, K., Two-level description of Turkish morphology.
Literary and linguistic computing, 1994. 9(2): p. 137-148.

[10] Yuret, D. and F. Türe. Learning morphological
disambiguation rules for Turkish. in Proceedings of the main
conference on Human Language Technology Conference of
the North American Chapter of the Association of
Computational Linguistics. 2006. Association for
Computational Linguistics.

[11] Eryiğit, G., J. Nivre, and K. Oflazer, Dependency parsing of
Turkish. Computational Linguistics, 2008. 34(3): p. 357-389.

[12] Seker, G.A. and G. Eryigit. Initial Explorations on using
CRFs for Turkish Named Entity Recognition. in COLING.
2012.

[13] Sahin, M., U. Sulubacak, and G. Eryigit. Redefinition of
Turkish morphology using flag diacritics. in Proceedings of
The Tenth Symposium on Natural Language Processing
(SNLP-2013), Phuket, Thailand, October. 2013.

[14] Eryigit, G., et al. Turksent: A sentiment annotation tool for
social media. in Proceedings of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse. 2013.

[15] Torunoglu, D. and G. Eryigit. A cascaded approach for social
media text normalization of Turkish. in Proceedings of the
5th Workshop on Language Analysis for Social Media
(LASM)@ EACL. 2014.

[16] Eryigit, G. ITU Turkish NLP Web Service. in EACL. 2014.
[17] Neustein, A. and J.A. Markowitz, Mobile speech and

advanced natural language solutions. 2013: Springer Science
& Business Media.

[18] Bellegarda, J.R., Spoken language understanding for natural
interaction: The siri experience, in Natural Interaction with
Robots, Knowbots and Smartphones. 2014, Springer. p. 3-14.

[19] Ward, W. and S. Issar. Recent improvements in the CMU
spoken language understanding system. in Proceedings of the
workshop on Human Language Technology. 1994.
Association for Computational Linguistics.

[20] He, Y. and S. Young. A data-driven spoken language
understanding system. in Automatic Speech Recognition and

Understanding, 2003. ASRU'03. 2003 IEEE Workshop on.
2003. IEEE.

[21] Dowding, J., et al. Gemini: A natural language system for
spoken-language understanding. in Proceedings of the 31st
annual meeting on Association for Computational
Linguistics. 1993. Association for Computational
Linguistics.

[22] Hawkins, J.C., et al., Integrated personal digital assistant
device. 2008, Google Patents.

[23] Acero, A., et al., System for using statistical classifiers for
spoken language understanding. 2012, Google Patents.

[24] Bangalore, S., N.K. Gupta, and M.G. Rahim, System and
method of spoken language understanding in human
computer dialogs. 2013, Google Patents.

[25] Dusan, S. and J. Flanagan, System and method for adaptive
language understanding by computers. 2002, Google Patents.

[26] Turkcell. Turkcell - Mobil Asistan. 2015; Available from:
http://www.turkcell.com.tr/tr/hakkimizda/video-
galeri/reklam-filmleri/mobil-asistan-cell-in.

[27] Idris. 2014; Available from:
https://forum.shiftdelete.net/threads/idris-2-turkce-sesli-
sanal-asistan-cikti.384057/.

[28] Google. Google Speech Recognition API Available from:
https://developer.android.com/reference/android/speech/Spe
echRecognizer.html.

[29] Seker, G.A. and G. Eryigit. Extending a CRF-based Named
Entity Recognition Model for Turkish Well Formed Text and
User Generated Content. in Semantic Web Journal. 2016.

[30] Eryiğit, G. ITU treebank annotation tool. in Proceedings of
the Linguistic Annotation Workshop. 2007. Association for
Computational Linguistics.

[31] Pamay, T., et al. The Annotation Process of the ITU Web
Treebank. in The 9th Linguistic Annotation Workshop held
in conjuncion with NAACL 2015. 2015.

[32] Sulubacak, U., T. Pamay, and G. Eryiğit, IMST: A revisited
Turkish dependency treebank, in The First International
Conference on Turkic Computational Linguistics - TurCLing
2016 2016: Konya, Turkey. p. 1-6.

[33] Çelikkaya, G., D. Torunoğlu, and G. Eryiğit. Named entity
recognition on real data: a preliminary investigation for
Turkish. in Application of Information and Communication
Technologies (AICT), 2013 7th International Conference on.
2013. IEEE.

[34] Nivre, J., et al., MaltParser: A language-independent system
for data-driven dependency parsing. Natural Language
Engineering, 2007. 13(02): p. 95-135.

[35] Regular Expression. Available from:
http://en.wikipedia.org/w/index.php?title=Regular_expressi
on&oldid=654317915.

[36] Le Cessie, S. and J.C. Van Houwelingen, Ridge estimators in
logistic regression. Applied statistics, 1992: p. 191-201.

[37] El-Manzalawy, Y. and V. Honavar, WLSVM: integrating
libsvm into weka environment. Software available at
http://www. cs. iastate. edu/yasser/wlsvm, 2005.

[38] Chang, C. and C. Lin, {LIBSVM}: a Library for Support
Vector Machines (Version 2.3). 2001.

[39] John, G.H. and P. Langley. Estimating continuous
distributions in Bayesian classifiers. in Proceedings of the
Eleventh conference on Uncertainty in artificial intelligence.
1995. Morgan Kaufmann Publishers Inc.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(3), 94-104 | 104

[40] Quinlan, J.R., C4. 5: Programming for machine learning.
Morgan Kauffmann, 1993: p. 38.

[41] Aha, D.W., D. Kibler, and M.K. Albert, Instance-based
learning algorithms. Machine learning, 1991. 6(1): p. 37-66.

[42] Holmes, G., A. Donkin, and I.H. Witten. Weka: A machine
learning workbench. in Intelligent Information Systems,
1994. Proceedings of the 1994 Second Australian and New
Zealand Conference on. 1994. IEEE.

[43] Zhang, Y., R. Jin, and Z.-H. Zhou, Understanding bag-of-
words model: a statistical framework. International Journal
of Machine Learning and Cybernetics, 2010. 1(1-4): p. 43-
52.

