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Abstract: An extensive collection of artifacts, antiquities that are historically and archaeologically significant monuments is housed in 

the Indian state of Karnataka. Tradition and culture are intricately linked. Karnataka boasts a multitude of Neolithic and Megalithic 

structures, which have withstood the test of time for millennia. These architectural marvels are remnants of esteemed ruling dynasties. 

They possess unique wonders characterized by their distinctive style, inherent sculptural and architectural qualities, technical prowess, 

vastness, and grandeur. Nevertheless, the current generation is ill-prepared to extract archaeological knowledge pertaining to empires or 

reigning dynasties of these ancient Karnataka temples under the instruction of archaeologists. Therefore, it is necessary to adopt a novel 

method to effectively deliver this vital information to the contemporary age through a suitable platform. Archaeologists have numerous 

intricate challenges due to the absence of reliable digital techniques for automatically segmenting Vimana. Automated segmentation of 

Vimana poses challenges due to the variability in image acquisition, intricate architectural designs, noise, time difficulties, and 

photographic artifacts. As per our knowledge techniques for segmentation have not been proposed in the literature for vimana 

segmentation. Our work introduces a optimized fully convolutional network (FCN) model designed specifically for the automated 

segmentation of Vimana. The suggested approach mitigates the variability of image noise and trains Fully Convolutional Network (FCN) 

models using images from our custom dataset. Additionally, it has been demonstrated that employing appropriate data augmentation and 

model hyper-parameterization effectively mitigates over-fitting in the context of vimana area segmentation. The proposed methodology 

is evaluated using the test dataset, attaining a rate of recall of 0.9302 and a precision rate of 0.8977. The recommended method 

outperforms four other methods with lower depths in the segmentation problem, earning a Dice correlation coefficient of 0.8894 & with 

very min loss of around 0.1106. Finally a comparison of same methods with & without edge-smoothing is carried out. An improvement 

of 12%, 28% is achieved in DICE & PRECISION by an optimized FCN(U-Net) for the segmentation of vimana.  

Keywords: Archaeology; segmentation; vimana; Fully Convolutional Network (FCN); hyper parameters; recall; precision; Dice 

correlation coefficient. 

1. Introduction 

The captivating state of Karnataka in India boasts a plethora of 

historically and archaeologically significant ancient sites that are 

truly awe-inspiring. The intertwining of culture and tradition is 

evident in its essence. Throughout the annals of time, a myriad of 

awe-inspiring historical monuments have stood the test of 

centuries, meticulously crafted by the visionary empires and 

illustrious governing dynasties of yore. The hallmark of their 

architectural approach lies in their unique methodology of spatial 

organization, characterized by their distinct style, intrinsic 

sculptural elements, innovative use of architectural technology, 

grandiose proportions, and sheer magnitude. 

 

The illustrious and prominent ruling lineages of Karnataka 

encompassed the esteemed Gangas,    Kadambas, Chalukyas of 

Badami and Hoysalas, Rashstrakutas, Kalayana, as well as the 

distinguished sultanate dynasties including the Barid Shahis, Adil 

Shahis, Bahmanies, the esteemed rulers of Vijayanagara, and the 

revered Wodeyars of Mysore, among an array of other notable 

entities. During the construction phase, it is noteworthy that these 

temples, such as Dravida, Nagara, and Vesara, were meticulously 

crafted in accordance with their respective architectural styles. In 

the contemporary era, there exists a compelling need for the 

broader populace as well as scholarly practitioners in the field of 

archaeology to engage in the extraction of archaeological wisdom 

by means of digitalization. An exemplary instance entails the 

exploration of a historic Karnataka temple. Hence, it became 

imperative to devise a novel approach that would effectively 

disseminate this crucial information within a contemporary 

societal framework. This research endeavor shall serve as a 

digitized instrument for future archaeologists (research scholars) 

within the realm of archaeology, specifically for the meticulous 

undertaking of temple field surveys. It shall operate with utmost 

efficiency, taking into account a multitude of factors such as cost, 

time, and precision. This endeavor shall serve as a guiding 

beacon, illuminating the path for esteemed archaeologists in their 

noble pursuit of temple restoration. By unraveling the intricate 

tapestry of architectural design choices made in times past, we 
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shall empower these scholars to navigate the restoration processes 

with unparalleled insight and wisdom. 

Currently, archaeologists are addressing the aforementioned 

matters through manual means, as there has been no 

implementation of digitalization in relation to the temples of 

India. In this context, it is imperative to incorporate an 

exceedingly efficient image segmentation technique for the 

purpose of conducting image segmentation as an integral 

component of the image pre-processing phase. This particular 

step primarily concentrates on the identification and delineation 

of the temple's architectural elements, with a specific emphasis on 

the vimana structure. 

 

Segmentation of the image stands as an imperative technique 

within the realm of image processing. The pre-processing stage 

holds significant importance within the realms of image analysis , 

computer vision and pattern recognition [1]. Image segmentation 

is a sophisticated methodology employed to meticulously dissect 

a digital image into distinct components, each comprising a 

unique collection of pixels. In the realm of architectural design, 

the utilization of image segmentation is a common practice to 

discern and delineate various objects and boundaries within 

images. This technique involves the meticulous identification of 

lines, curves, and other visual elements, allowing for a 

comprehensive understanding and analysis of the image's 

composition. When an image undergoes the process of 

segmentation, it has the potential to yield a collection of segments 

that encompass the entirety of the image or a series of extracted 

image outlines achieved through edge detection. In terms of 

various attributes or calculated characteristics, such as hue, 

saturation, or pattern, there exists a cohesive connection among 

all the pixels within a given region. The user's text is too short to 

rewrite in the style of an architectural designer. Please provide 

more information In relation to the identical attributes, the 

neighboring regions exhibit notable disparities. Image 

segmentation is a pivotal technique employed in various 

industries, including medical imaging, face recognition, digital 

libraries, computer vision, image processing, and picture and 

retrieval of video [2]. 

 

Image segmentation methods encompass a wide range of 

techniques, including clustering-based, edge-based, feature-

based, thresholding, and artificial neural networks based 

segmentation. Segmenting images can be effectively achieved by 

grouping of all the photographic images together [3]. The 

segmentation process's efficiency was enhanced through the 

utilization of various methods, specifically K-means clustering, 

level set, active contour and Fuzzy clustering, as described by 

ArtiTaneja et al. [4]. The author thoroughly examines the 

performance of algorithms for image segmentation. This level set 

methodology has two distinct levels: texture-based and intensity-

based segmentation of images. The integration of both intensity 

and texture-based image segmentation yields superior outcomes 

compared to conventional techniques. 

 

The authors in Maria Mercede et al [5] present a novel color 

image segmentation strategy using the fast marching numerical 

method. This technique is exclusively used to the boundaries of 

the specific area being analyzed. Furthermore, they introduced a 

comprehensive concept, namely, the potential extraction of decay 

zones from the entire image; these regions were spatially separate 

but had identical colorimeter values.In this study, A. Masiero et 

al [6] provide a detailed analysis of the identification of 

deterioration on building surfaces. They propose the use of an 

advanced technique for image segmentation utilizing a level sets 

technique. This method of segmentation reduces the cost of 

monitoring and guarantees that the eventual output is unbiased. 

K. Kamnitsas et al. [7,8] provide a detailed account of the 

encouraging outcomes achieved through the utilization of 

convolutional neural networks (CNNs) for segmenting biological 

pictures, in comparison to older methods. CNNs, or 

Convolutional Neural Networks, are a distinct neural network 

architecture that employ iterative Conducting convolution 

techniques to obtain specific features relevant regarding the 

segmentation task, it involves processing an input image. The 

neurons' learnable biases and weights provide convolution filters. 

Different configurations of these filters can be utilized to create 

architectural solutions for specific segmentation challenges. 

  

The U-Net architecture, created by Ronneberger et al, is a widely 

used CNN model for various clinical segmentation of images 

applications [9]. The Fully convolutional network (FCN), U-Net 

gained popularity through its introduction by Long et al [10]. If 

an input image is provided, the output will be the corresponding 

segmentation mask. Milletari and other authors in [11] modified 

the model belonging to them by utilizing stacks of 3D images as 

input, so advancing this kind of  approach. The ResNet discusses 

the idea of residual connections design by X. Zhang et al in [12], 

was also introduced by them.The choice to utilize FCN in the 

context of architecture-independent vimana segmentation 

challenges is motivated by the inherent ability of CNNs to engage 

in self-learning processes and abstract learning, enabling them to 

discern subtle spatial distinctions. The segmentation of vimanas 

within ancient temples has not yet been accomplished through the 

utilization of Fully Convolutional Networks (FCNs).  

 

In order to effectively classify the diverse array of vimanas & 

discern the different styles of architecture adopted in their 

meticulous construction, archaeologists have the capacity to 

identify the specific structural characteristics of these vimanas 

through the utilization of automated segmentation methods. This 

will aid them in making more informed decisions during the 

process of temple reconstruction. In this endeavor, we have opted 

to employ CNN-based segmentation methodologies as our 

approach. Our meticulous examination of the existing literature 

has demonstrated that these methods have exhibited superior 

performance compared to other segmentation techniques. 

 

In the contemporary architectural discourse, a plethora of cutting-

edge convolutional neural network (CNN) segmentation 

methodologies have been proffered. In accordance with our 

current understanding, the selection of acquisition and 

visualization-specific parameters is executed through established 

methodologies that rely on human intervention. The dynamic 

nature of the noise level and the diverse range of pixel intensities 

observed in the vimana images pose a considerable challenge 

when it comes to the segmentation of vimanas. Figure 1 

showcases a collection of visually captivating vimanas, captured 

with meticulous attention to the intricate architectural forms they 

embody. The proposed approach effectively tackles the 

challenges that arise during the development of an automated, 

self-sufficient vimana segmentation method. 

 

This work presents two pivotal contributions. Presented here is a 

highly versatile and innovative Fully Convolutional Network 

(FCN) model, meticulously designed to effortlessly segment 
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vimanas from images, even when they are accompanied by 

extraneous backgrounds that are not desired. In relation to the 

objectives of vimana area segmentation, we thoroughly examine 

how sensitive some model parameters, like the number of layers, 

filter size, and network depth, which are the fundamental 

dimensions. Additionally, we assess the training accuracy, testing 

accuracy, and validation accuracy as crucial metrics. In our 

analysis, we have discovered that by skillfully parameterizing the 

model, we can reach a commendable recall-rate of 0.9302, while 

simultaneously upholding a precision-rate of 0.8977 across a 

different range of vimana types. This performance surpasses that 

of existing approaches, which boast a superior Dice coefficient of 

0.8894. 

 

    

                 (a) Nagara                                         (b) Dravida 

 

(c) Vesara 

Fig 1.  Different Styles of Vimanas (a), (b) and (c) Based on 

ancient architecture. 

 

The remaining components of this research work are re-organized 

in the following section explained manner. Section II delves into 

the intricate realm of data-sets and presents the proposed FCN 

methodology for the purpose of auto-segmentation. The 

elucidation of the experimental setups can be found in Section III. 

The presentation and discussion of the conducted experimental 

results can be explained in Section IV. Section V, in its 

culmination, serves as the platform for drawing insightful 

conclusions and engaging in meaningful discussions. 

 

Archaeologists can utilize automated segmentation methods to 

determine the structural properties of temple vimanas and classify 

them according to their architectural styles. This will assist them 

in making more informed judgments during the process of 

reconstructing the temple. In this study, we opted to utilize CNN-

based segmentation methods due to the findings of our literature 

review, which demonstrated their superior performance compared 

to other segmentation techniques. Several CNN segmentation 

approaches have been proposed in recent literature. As far as we 

know, the selection of acquisition and visualization-specific 

parameters is currently done using approaches that rely on human 

intervention. The vimana segmentation process is challenging due 

to the fluctuating noise level and varying pixel brightness 

observed in the vimana photos recorded at different times. Figure 

1 exhibits images of Vimanas captured according to the degree of 

intricacy in their shapes and embellishments. The proposed 

methodology tackles the challenges that arise in developing an 

automated independent vimana segmentation algorithm. 

This paper makes two significant contributions. The initial 

demonstration showcases a versatile and state-of-the-art FCN 

model capable of automatically distinguishing vimanas from 

pictures that contain both vimanas and unwanted backgrounds. 

We examine the impact of model parameters, such as core 

dimensions and layer count, on the objectives of vimana area 

segmentation. Upon examination, we find that a well-configured 

model may attain a recall rate of 0.9698, surpassing state-of-the-

art techniques, while simultaneously upholding a precision rate of 

0.9284 across various types of vimanas. An optimized FCN (U-

Net) achieves a significant improvement of 12% and 28% in 

DICE and PRECISION, respectively, for the segmentation of 

vimana. 

 

The remaining sections of the work are structured as follows. The 

methods and data are discussed in Section II. The experimental 

circumstances are elucidated in Section III. Section IV shows and 

analyzes the results obtained from the experiment. The debates 

are concluded in Section V. 

2. Data-sets and proposed FCN methodology 

Experiments have been conducted on our internally curated data-

set of ancient-temple vimanas to evaluate the efficacy of the new 

proposed method. Within the realm of architectural severity, this 

curated assortment of ancient temple vimanas showcases three 

distinct typologies. The dataset has been graciously made 

available exclusively only for research purposes through our 

esteemed J.N.N.C.E college web-site and the esteemed Kaggle 

web-portal [13, 14].The diverse typologies of vimanas have been 

duly validated by esteemed archaeologists with their expertise. 

The dataset comprises a collection of meticulously curated 

images, each of which is accompanied by an expertly assigned 

label denoting distinct architectural styles, categorized according 

to the severity levels of architectural elements. These styles 

include the illustrious Nagara, the elegant Dravida, and the 

refined Vesara, as visually depicted in Figure 1. This ancient-

temple vimana dataset has been partitioned into distinct training 

and test subsets. The dataset description is elegantly presented in 

the exquisite Table 1. The provided visual representation in 

Figure 1 showcases a meticulously curated assortment of vimana 

images, each belonging to its respective category. 

 

Pre-processed Vimana images are segmented to exclude the 

backdrop so that vimana images are localized. An optimized U-

Net model which draws inspiration from Ronneberger's U-Net 

design [9], is employed for the semantic segmentation of vimana.  
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Fig 2. The proposed FCN model consists of 18 convolutional layers, each composed of a network architecture comprising between 32 

and 512 kernels. 

 

The suggested model's architecture is depicted in Figure 2. 

Optimized U-Net model consists of a contracting path (encoder) 

on the left side, bottleneck at the bottom and a expansive path 

(decoder) on the right side which makes it an ’U’ shaped 

architecture. As shown in Figure 2, all the open boxes 

corresponds to a multi-channel feature map, shaded box in 

encoder indicates the input layer and shaded box in decoder part 

represents the copied feature map from the encoder. The number 

of channels of the feature map were denoted on top of the each 

box. Proposed U-Net model contains total 23 convolution layers. 

Encoder: It has five depth levels, with two 3×3 convolutions 

layers, ReLU activation, Batch-Normalization [16], and a 2 × 2 

max pooling operation with stride 2 at the end of each depth 

level. Number of feature channels in the first depth level is 16 

and these feature channels were doubled for each further depth 

level of encoder as shown in the Figure 2. The operation in the 

encoder is called down-sampling performed using max pooling 

layer, in which image size is decreased by half in each depth level 

of the encoder. 

Table 1. Dataset Description 

Sl.No 
Vimana 

Type 

Train 

set 

Valid 

set 

Test 

set 

No of images 

per each type 

of vimanas 

1.  Nagara 607 173 86 253 

2.  Dravida 607 173 86 313 

3.  Vesara 607 173 86 300 

Total Images in the Vimana Ancient Temple 

Dataset. 
866 

 
 

 

 

 

The bottleneck consists of two 3 × 3 convolution layers, which 

are then followed by ReLU activation function and Batch-

Normalization process. The bottleneck contains a total of 512 

feature channels. The Decoder block is designed to reverse the 

activations of the encoder in order to obtain a probability feature-

map that is the equal size as of the original input image. 

Transposed convolution is employed to provide localization, and 

this technique is referred to as up-sampling. The decoder unit is 

structured with multiple depth levels. Each depth level includes a 

2 × 2 up-sampling convolution, which augments the dimensions 

of the feature-map. The up-sampled feature map is then 

concatenated with the corresponding feature map from the 

encoder using a skip connection. After the concatenation, there 

are two 3 × 3 convolution layers, which have the same size 

feature map as the encoder block depth level. Each convolution 

layer is followed by a ReLU activation function and a Batch-

Normalization operation. The last layer employs a 1 × 1 

convolution operation, followed by sigmoid activation, to 

transform each 16-component feature vector into its matching 

class label. Table 1 displays the primary distinctions between the 

proposed optimized U-Net model and Ronneberger's U-Net 

model [9]. 

 

The final result of the [1 x 1] layer is utilized to construct the 

network's loss function. The binary cross-entropy loss function is 

used to transform the input onto a probability mapping that has 

the exact dimensions as the input image. The loss function for an 

individual input image without any pixels is given in (1). 

 

𝐿 =  − ∑(𝑡𝑖 log(𝑠𝑖) + (1 − 𝑡𝑖) log(1 − 𝑠𝑖))                     (1)

𝑛𝑜𝑢𝑡

𝑖=1

 

 
where si is the anticipated binary output for pixel i and ti is the 

actual binary output (target). The weighted total of the inputs and 
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the final output, y, as well as the sigmoid activation function S, 

are presented in (2). 

 

𝑠𝑖 =  
1

1 +  𝑒−𝑦𝑖
 , 𝑦𝑖 =  ∑ 𝑥𝑗𝑤𝑗𝑖

𝑛

𝑗=1

             (2) 

3. Experimental Investigation 

Keras 1.0 integrates the recommended convolutional neural 

network (CNN) model architecture [31] in Google Colab with 

GPU support. 

3.1. Optimization of FCN Model by Training and Hyper 
Parameterization. 

To achieve the desired results, it is necessary to finely adjust the 

model hyper-parameters. The key parameters/hyper-parameters 

that require optimization in the context of FCNs include the 

weight and bias quantities, layer count, filter/kernel count in 

every layer, and the learning rate of the model. The ideal 

amalgamation of these elements characteristics is determined by 

utilizing the hold-out strategy in grid-search [17]. Ultimately, an 

evaluation of the trained model is conducted using the test 

dataset. In order to verify the FCN framework architecture, as 

outlined in Section 2 (Fig 2), several experiments have been 

conducted. As stated by reference [9], it is customary to place a 

layer with maximum pooling or a the deconvolution layer after 

two convolutional layers. The number of layers in different 

architectures can vary while yet preserving this characteristic, as 

stated in reference [9].  

 

 

Table 2 presents a concise overview of different FCN 

architectures. Depth corresponds to the quantity of max-pooling 

layers, parameters correspond to the quantity of weights as well 

as biases in the network, and layers correspond to the quantity of 

convolutional layers. Timings for Training, Validation & Testing 

for different FCN architectures are also shown. 

 

The training sets, validation sets, and test sets consist of 607, 173, 

and 86 images, respectively, representing each of the three 

architectural styles. These sets are meticulously curated to assess 

the experimental performance of the Fully Convolutional 

Network (FCN) parameters across various design variations. The 

visual representations are subsequently scaled down utilizing 

bilinear interpolation to adhere to a standardized resolution of 

[256X512]. In the realm of vimana segmentation tasks, we have 

discovered that the incorporation of supplementary data 

generated through techniques such as horizontal flipping, random 

shear, height and breadth adjustments, as well as zoom shifts, 

yields commendable results. This discovery aligns with the 

notion that vimanas exhibit a diverse array of forms, 

compositions, and alignments, while still maintaining a cohesive 

semblance to the surrounding anatomical structures, as per the 

expert perspective of archaeologists. Upon careful examination, it 

becomes evident that the incorporation of a domain-specific data 

augmentation process is of utmost importance in order to bestow 

upon an FCN model the coveted attribute of generalizability. The 

architectural design effectively mitigates storage concerns by 

implementing instantaneous data transformations for 

augmentation during the training process.  

 

 

 

Table 2. Various FCN architectures are generated by altering the number of layers and depths, with a filter size of (ω × η × k) = (3 × 

3 × 64). 

Sl.No 
No of 

Layers 

Depth 

 

Total No of 

Parameters 

 

Trainable 

params 

Non-

trainable 

params 

Training 

Time 

elapsed 

(Mins) 

 

Validation 

Time 

elapsed 

(ss:ms) 

Testing 

Time 

elapsed 

(s:ms) 

1 04 0 39169 38913 256 12 Mins 
16s 

162ms/step 
1s 79ms/step 

2 06 1 409345 408321 1024 19 Mins  
17s 

448ms/step 
2s 50ms/step 

3 10 2 1886977 1884417 2560 16 Mins  
25s 

659ms/step 

1s 

115ms/step 

4 14 3 
 

7791361 
7785729 5632 20 Mins 

29s 

768ms/step 

2s 

149ms/step 

5 18 4 31396609 31384833 11776 24 Mins 
32s 

855ms/step 
1s 19ms/step 

6 22 5 125793025 125768961 24064 34 Mins 
44s 

1ms/step 

2s 

358ms/step 
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The proposed architectural design entails training the model for a 

total of 240 epochs, with each depth consisting of 40 epochs. 

Beyond this point, no further modifications to the model's 

accuracy and loss are observed. Additionally, it is worth noting 

that a decline in validation accuracy becomes apparent, as 

depicted in Figure 3(f). 

Figure 3 showcases the training and validation procedure for 

diverse FCN model designs. The architectural design encompasses 

models of varying depths, ranging from 0 to 5, as depicted in 

Figure 3(a)-(f). These models exhibit a limited capacity for 

learning, as evidenced by their inability to significantly reduce 

training loss and dice-coefficient. Further exploration can be 

conducted to analyze the receptive fields of the Depth 5 model, as 

depicted in Figure 3(f). It is worth noting that the achievement of 

minimal training losses, coupled with significantly reduced over-

fitting tendencies, is observed when utilizing a filter size of 64 at 

the initial stage (k = 64). 

Consequently, given its heightened capacity for generalization and 

diminished susceptibility to over-fitting, the model boasting a 

greater abundance of parameters, which exhibits the most 

favorable dice coefficient, is chosen as the ultimate design. The 

proposed Depth 5 FCN model undergoes an average training 

duration of 32 seconds and 855 milliseconds per epoch, with a 

total of 607 samples in the training set. 

 

 

 

 

 
  (a)                                                                                         (b) 

 
  (c)                                                                                         (d) 

 
   (e)                                                                                        (f) 

 

Fig 3. Graphs of Model Performance versus Dice-Coefficient Value for the FCN model after model training, depth: [0, 1, 2, 3, 4, 5] 

architectures. Blue: Accuracy in training. Saffron: Accuracy in Validation. (a)Depth = 0, Layers = 4.  (b) Depth = 1, Layers = 6. (c) 

Depth = 2, Layers = 10. (d) Depth = 3, Layers = 14. (e) Depth = 4, Layers = 18. (f) Depth = 5, Layers = 22. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 568–576 |  574 

4. Results Findings and Interpretations 

The outcomes of the suggested approach's segmentation are 

juxtaposed with the meticulously curated ground truth (GT) that 

accompanies the images of dataset and has been meticulously 

vetted by a team of esteemed archaeology specialists. In order to 

ascertain the False Negatives, False Positives, and True Positives a 

meticulous pixel-wise analysis was conducted. The true positives 

(TP) correspond to the pixels that are identified as belonging to the 

object and indeed do belong to the object. On the contrary, the true 

negatives (TN) refer to the pixels located outside the object, 

included in the segmentation as well as the actual data (ground 

truth). The Dice score serves as a performance metric in the realm 

of image segmentation challenges. In the realm of architectural 

design, we encounter a distinction between accuracy and its 

counterpart, where the primary aim is to align the values, as 

opposed to dice, which not only aligns the value but also the 

position. To find the dice coefficient, following formula is used: 

 

Dicecoefficient  = 2 x
|𝐴 ∩ B|

|𝐴| + |B|
=

2(TP)

(2TP + FP + FN)
   (3) 

 

Where : A- Detected, B- Ground Truth & FP-False Negative. The 

following are the precision and recall metrics: 

 

Precision =
TP

TP + FP
  , Recall =

TP

TP + FN
        (4) 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Fig 4. Results (a) to (f) of proposed optimized different FCN 

networks segmentation with edge-smoothing on vimana images 

from depth=0 to 5 w.r.t Figure 3. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Fig 5. Results (a) to (f) of proposed optimized different FCN 

networks segmentation with-out edge-smoothing on vimana 

images from depth=0 to 5 w.r.t Figure 3. 
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Figure 4 displays the outcomes of the segmentation performed by 

the proposed FCN network on several vimana categories with 

edge-smoothing. Various varieties of original vimana images are 

seen in the image on the left of these figures. A GTs Image and 

its mask are displayed in the second and third columns, 

respectively. A mask created using the suggested FCN U-Net 

model is shown in the fourth column, and the segmentation 

output is shown in the last column. The findings are displayed in 

figure 4, with (a) to (f) representing the six different FCN 

structures. These architectures were generated by adjusting the 

number of layers and depths, while keeping the filter size 

constant at 64. Figure 3 illustrates this relationship between (a) to 

(f) and the filter size. 

 

Table 3. Mean (standard deviation) of recall and precision using 

the presented method at distinct depths with edge-smoothing. 

Sl.No Depth 
Evaluation parameters 

Loss Dice Recall Precision 

1.  Depth 0 0.1679 0.8312 0.9162 0.7549 

2.  Depth 1 0.1473 0.8518 0.9189 0.7976 

3.  Depth 2 0.1371 0.8621 0.9178 0.8164 

4.  Depth 3 0.1296 0.8696 0.8840 0.8598 

5.  Depth 4 0.1106 0.8894 0.9302 0.8977 

6.  Depth 5 0.1976 0.8003 0.7266 0.8652 

 

Table 4. Mean (standard deviation) of recall and precision using 

the presented method at distinct depths with-out edge-smoothing. 

Sl.No Depth 
Evaluation parameters 

Loss Dice Recall Precision 

1 Depth 0 0.2150 0.7814 0.9162 0.6881 

2 Depth 1 0.1872 0.8091 0.8949 0.7452 

3 Depth 2 0.1645 0.8325 0.8585 0.8149 

4 Depth 3 0.1727 0.8254 0.8619 0.8294 

5 Depth 4 0.1431 0.8517 0.8725 0.8421 

6 Depth 5 0.1502 0.8455 0.8600 0.8404 

 

Figure 5 displays the outcomes of the segmentation performed by 

the proposed FCN network on several vimana categories with-out 

edge-smoothing. The findings are displayed in figure 5, with (a) 

to (f) representing the six different FCN structures with-out edge-

smoothing. These architectures were generated by adjusting the 

number of layers and depths, while keeping the filter size 

constant at 64. 

 

Table 3 showcases the exquisite manifestation of the suggested 

methodology with edge-smoothing, wherein the loss, Dice 

coefficient, recall and mean precision results are elegantly 

presented. The proposed approach exhibits a remarkable 

performance, as evidenced by the highest achieved Dice 

coefficient of 0.8894, recall of 0.9302, precision of 0.8977, and 

the optimal loss value of 0.1106, all of which were obtained from 

the depth4 model. Table 4 showcases the exquisite manifestation 

of the suggested methodology with-out edge-smoothing, wherein 

the loss, Dice coefficient, recall and mean precision results are 

0.1431, 0.8517, 0.8725, 0.8421, all of which were obtained from 

the depth4 model.  

Table 5. Comparison of Original FCN(U-Net) with Optimized 

FCN(U-Net) for Segmentation. 

Sl.No Parameters Original Optimized 

1.  Number of Depth 
Level in encoder 

and decoder part.  

03 04 

2.  Filters Size 16 64 

3.  Each Depth level 

in encoder part 

contains. 

Two 3x3 

convolutions+ 

ReLU and a 
2x2 max 

pooling 

Two 3x3 

convolutions+ 

ReLU+BatchNor
malization and a 

2x2 max pooling 

4.  Number of feature 

channels in each  
depth level. 

64,128,256,51

2 
16,32,64 

5.  Padding in 
convolution 

operation. 

Padding is not 
used. Because 

of that size of 
the feature 

maps will be 

reduced after 
each 

convolution 

operation. 

Padding is used 
so that size of the 

feature maps 
before and after 

the convolution 

is same. 

6.  Input and Output 

size 

Input: 

572*572*1 
Output: 

388*338*2 

Input: 224 * 

224*3 
Output 224 * 

224*1 

7.  Data augmentation 

during the model 

Used training 

Used Not used 

8.  DICE  0.7599 0.8894 

9.  RECALL  1.0000 0.9302 

10.  PRECISION 0.6133 0.8977 

 

Figure 4, Figure 5, Table 3 & Table 4, showcases the results of 

the suggested methodology with and with-out edge-smoothing. 

The proposed optimized-FCN exhibits a remarkable performance 

in segmentation with edge-smoothing rather than the with-out 

edge-smoothing. This shows how a edge-smoothing plays a very 

important role in image segmentation. 

 

Table 5 presents a comparison between the original FCN(U-Net) 

and the optimized FCN(U-Net) for the segmentation of vimana. 

The table's findings demonstrate the superior performance of the 

optimized method compared to the existing FCN. An 

improvement of 12%, 28% is achieved in DICE & PRECISION 

by an optimized FCN(U-Net) for the segmentation of vimana. 

5. Conclusion and future work  

This paper presents a technique for segmenting vimana areas 

using an FCN model-based approach, which is designed to be 

style-independent. In the realm of architectural design, it has been 

observed through meticulous investigation of the 

hyperparameters of the model that deeper networks possess a 

heightened capacity for acquiring robust features in comparison 

to shallower networks. This behavior continues until the 

occurrence of overfitting, wherein the model turns into 

excessively customized according to training data. It is worth 

noting that an increase in depth to four levels yields amplified 

training accuracy and diminished losses. Conversely, a further 
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increase to a depth of five levels leads to elevated losses and 

reduced training accuracy, potentially resulting in the undesirable 

consequence of over-fitting the model. 

 

When evaluating the proposed architectural design for the dataset 

of ancient temple vimanas, a comprehensive assessment is 

conducted both in terms of quantity and quality. The results 

indicate that the suggested approach successfully partitions the 

vimana by achieving a Dice coefficient of 0.8894, recall of 

0.9302, precision of 0.8977, and a minimal loss value of 0.1106. 

These metrics were obtained by evaluating the method on vimana 

using six different FCN Segmentation network Models with 

edge-smoothing. The results show how a edge-smoothing plays a 

very important role in image segmentation. Equally an 

improvement of 12%, 28% is achieved in DICE & PRECISION 

by an optimized FCN(U-Net) for the segmentation of vimana. 

 

Future study could prioritize the segmentation of idol tasks or the 

identification of idol boundaries within vimana by adjusting the 

FCN parameters, objectives, and loss functions accordingly. 

Moreover, the segmented vimana pictures can serve as input for 

DCNN models that categorize and recognize the specific type or 

style of Vimana architecture. 
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