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Abstract: In recent years, the distributed lag non-linear Model(DLNM) has dominated over other techniques for measuring risk in 

environmental epidemiology. The impact of air pollutants or climate factors on schizophrenia is evident from the literature. This study 

aims to examine the influence of pollution and climate-related variables on the frequency of hospital admissions for individuals diagnosed 

with schizophrenia. We used DLNM and deep neural networks(DNNs) to explore the non-linear relationship between environmental 

variables and schizophrenia admissions in Bangalore City, India. The outcomes derived from the DLNM model reveal that the optimal 

forecast for hospital emergency visits is achieved with a lag of 3 days, resulting in a maximum RR value of 1.6 (95% confidence interval). 

Subsequently, DNN models, including the Convolutional Neural Network(CNN), hybrid CNN-LSTM, Long Short-Term Memory(LSTM), 

and the Gated Recurrent Unit(GRU), were employed, each with varying time steps, in the pursuit of refining predictive accuracy. These 

predictive models are evaluated by mean absolute error(MAE), the mean absolute percentage error(MAPE), mean square error(MSE), the 

root of mean square error(RMSE), and Symmetric Mean Absolute Percentage(SMAPE). We found results of deep learning models are 

consistent with the results of DLNM in predicting the number of admissions based on short-term environmental exposure. The short-term 

exposure-response relationship is evident in all models and it is proved through sensitivity analysis. CNN and GRU models have better 

performance than other models by using sigmoid activation functions. The CNN and GRU resulted with the lowest MAE(0.46, 0.49), 

MAPE(35.5%, 34.7%) and RMSE(0.73, 0.75).  
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1. Introduction 

In recent years, scholars have examined the intricate 

relationship between environmental elements and human 

medical outcomes[1][2][3]. A subject of considerable 

scientific focus is the possible relationship connecting 

climate-related variables and the incidence of 

schizophrenia[4][5][6]. The appearance of psychosis in 

individuals diagnosed with schizophrenia is subject to the 

effect of several environmental variables, including 

particulate matter(PM), ambient temperature, nitrogen 

dioxide(NO2), relative humidity, and sulfur 

dioxide(SO2)[7][8]. This results in an increase in their 

admissions to mental health facilities. A commonly used 

surrogate measure for the occurrence of diseases is the 

utilization of medical facility admission data[9][10]. The 

dynamic character of the exposure-response association in 

schizophrenia prevalence is often seen due to a temporal 

delay of a few days[8][11]. The phenomenon of delay, 

sometimes referred to as "lag," is a subject of interest in our 

study. The potential existence of a lagged impact suggests 

that the connection between the independent variable and 

outcome variables is non-linear.  

Several studies have examined the delayed effects of 

pollutants on admissions for schizophrenia with a particular 

focus on metropolitan regions, which are usually non-

linear[4][5]. The coexistence of many contaminants might 

result in a cumulative impact on health that surpasses the 

impact of each contaminant considered independently, 

which has not been investigated in these studies. Time-

series regression techniques provide an adaptable structure 

for assessing this problem. Because of the ability of 

DLNM[12] to look at the non-linear and delayed link, 

researchers have extensively used this technique. The 

previous studies documented the environmental influence 

on schizophrenia.  

The non-linear-lag impact of environmental variables on 

schizophrenia was studied across various parts of the world, 

such as Hefei,China[13][14] Queensland[37], 

TongLing,China[10], Sakai[8], Xi'an,China[15], Israel[3], 

Shandong[16] and Arizona[17]. These studies have shown 

that changes in air quality may have an immediate or 

delayed effect on schizophrenia patients, with a delay of 

three to six days. These studies used various pollutant 

variables, such as PM2.5[18][19], PM10, SO2, and 

NO2[7][10]. The primary climatic factors under 

investigation included atmospheric temperature 

(AT)[5][13][14] and sunshine[20]. Variables like relative 

humidity (RH)[20] and wind speed are used as cofounders, 

along with major contributor variables like 
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temperature[14][15]. A statistically significant impact of 

short-term exposure to environmental variables on 

schizophrenia is shown in all of the aforementioned 

research, particularly during the three- to six-day lag 

period[11]. 

Following our lag selection criteria, we have determined 

that an ideal lag of 3 days is appropriate for analysing the 

data collected from Bangalore City. In this study of the 

regression type, we use the count of hospital 

admissions(NoA) as a surrogate measure for the occurrence 

of schizophrenia onset. Previous research has mostly 

focused on the examination of a single pollutant or, at most, 

three environmental elements in their investigations. All 

models were single-lag models with individual pollutant 

variables. The integration of pollutant absorption and 

climatic factors, such as heat and humidity levels, plays a 

significant role in the prognostication of schizophrenia 

hospitalizations, especially in densely populated urban areas 

with high levels of pollution. This study explores the 

intricacy of the combined effect of air quality variables on 

hospital admission via the use of diverse deep neural 

network(DNN) models. The DLNM technique is used to 

ascertain the combined exposure, whereby one variable is 

considered the primary contributor while the others are 

regarded as cofounders. In this research, we used deep 

neural networks(DNNs) to construct predictive models that 

investigate the cumulative impact of PM2.5, PM10, NO2, 

SO2, ambient temperature, and relative humidity on daily 

hospital admissions for schizophrenia. 

Deep neural networks can acquire complex nonlinear 

associations of variables[21]. The effectiveness of 

conventional DLNM approaches may be limited when 

attempting to capture complex and nonlinear patterns that 

are complicated in nature. These models are specifically 

designed to effectively process and analyze data with a large 

number of dimensions, such as photos, text, and time-series 

data[22]. Deep learning models, such as recurrent neural 

networks(RNNs) have been specifically developed to 

effectively process sequential input that exhibits temporal 

relationships[23]. The mentioned models can accurately 

represent delayed effects and temporal patterns, both of 

which are crucial elements in the scope of DLNM. None of 

the literature on this particular problem is predictive; 

instead, it is a risk assessment type. 

The power of neural networks in addressing the issue of 

environmental effects on schizophrenia has not been 

explored yet. The purpose of this study is to do a 

comparative analysis of deep learning predictive models, 

evaluating their performance in the context of multi-variate 

predictions. Specifically, the study examines the 

implications of three different activation functions (AFs) on 

the performance of these models. In this study, we propose 

deep neural networks such as CNN, Recurrent Neural 

Networks(RNNs) such as GRU and LSTM, and a 

combination of CNN&LSTM(CNN-LSTM) to assess the 

non-linear and lagged impact of environmental variables 

and to predict schizophrenia admissions in hospitals. In the 

rest of the paper, we elucidate the methodology used for data 

collection and processing, the models we considered, and 

their structure. The results of the comparison are presented, 

followed by a discussion and conclusion of this paper. 

2. Data and Methods  

To determine the occurrence of schizophrenia, we relied on 

the daily count of hospital admission data as a surrogate, 

following the methodology utilized in earlier 

investigations[24][5]. Due to the absence of automated 

records in these institutions, we collected patient admission 

statistics from entry/exit physical logs, which don't include 

any personal or confidential information. The data used 

includes only the date and the count of hospital visits from 

the metropolitan region of Bangalore. The dataset included 

899 records collected over a period from 2018 to 2021. Day-

wise average pollution statistics for the city of Bangalore 

were acquired from the Central Pollution Control Board of 

India. A set of air pollutants was obtained, namely SO2, 

NO2, and PM10, PM2.5, and data on the climate variables, 

namely relative humidity (RH) and atmospheric 

temperature (AT), were obtained from the India 

Meteorological Department (IMD) for the city of 

Bangalore. The average values of these parameters were 

used for our study. Table 1 provides a summary of the 

parameters of air quality. Both the air quality data and the 

number of hospital admissions are time series in nature. The 

forward fill method was used to substitute the missing data. 

Table 2 displays a concise example of the gathered data. 

Determining the best suitable lag value is crucial in the 

context of the time series nature of data. The test developed 

by Dickey-Fuller[25] was used to ascertain the optimal lag 

value.  Among the many lag selection criteria used in the 

bound test, the lag is set at 3 days. In the context of time 

series, the knots have a logarithmic value system with a 

uniform distribution, and their greatest delay is 3 days. In 

our investigation, the autolag factor was assigned a value 

based on the Akaike Information Criterion (AIC). 

2. 1 The Distributed Lag Non-Linear Model(DLNM) 

The frequency of schizophrenic patient's admission follows 

a Poisson distribution. This study used a Poisson 

generalized linear regression technique along with a DLNM 

to investigate the association between the average 

concentration of environmental variables and 

hospitalizations for schizophrenia. Atmospheric 

temperature(AT) is considered a major contributor to 

schizophrenic onset, as per the literature. The other 

variables PM2.5, PM10, NO2, SO2, and relative 

humidity(RH) are considered cofounders. The typical model 

depiction proposed by Gasparrini et al.[26] is shown as ⱱt ~ 
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Poisson(µt).  

Log(µt)=βAVGTt,l+ 𝒮 (T,6)+(AVGP,3)+ 𝒮 (AVGH,3)+c    

(1) 

In this study, the variable "t" represents the day observed. 

The variable "ⱱt" represents the daily count of 

hospitalizations on a given day. The variable "𝐜" represents 

the model slope. The 𝑨𝑽𝑮𝑻𝒕’, "𝐀𝐕𝐆𝓟" and " 𝐀𝐕𝐆𝓗" are 

daily average temperature, pollutants, and humidity 

respectively. The cross-basis matrices ‘𝑨𝑽𝑮𝑻𝒕’, "𝐀𝐕𝐆𝓟" 

and " 𝐀𝐕𝐆𝓗" are created by using the DLNM 

methodology. The variable "𝛃" represents the vector of 

coefficients for "𝑨𝑽𝑮𝑻𝒕", and "l" represents the lag in terms 

of days. Here we examined a lag of 0 to 3 days. 𝓢 is the 

natural cubic spline function, which was used to include the 

effects of a long-lasting pattern and seasonality, using three 

degrees of freedom. For pollutants and humidity, the degree 

of freedom used is 3. The coefficient β represents the main 

contributor to temperature. To consider the possibility of 

long-term health consequences, we included several lag 

durations in sensitivity tests.  

    2.2 Convolutional Neural Network (CNN) 

CNNs are typically used for image data, but they can also 

be adapted for time series analysis, especially when spatial 

patterns are important[27[28]. We implemented a 1-

dimensional(1D) CNN for time series prediction using a 

dataset with lagged features. The model is trained to predict 

the target variable which is the ‘number of 

admissions’(NoA) based on the past four days' 

environmental values with six features as mentioned above. 

The architecture defines a sequential CNN model using 

Keras which includes various layers referred to as dense 

layers, which are a fundamental component of artificial 

neural networks. These layers consist of nodes, or neurons, 

that are linked to every neuron. The model is compiled using 

the Adam optimizer and the loss function used is MSE. The 

overall architecture is shown in figure1. 

Table 1: Statistics of environmental data used 

Env.Var

i-

ables→ 

PM2.

5 

PM1

0 
NO2 SO2 

A.T

. 

R.

H. 

µg/m

³ 

µg/m

³ 

µg/m
3 

µg/m
3 

°C % 

Total 

Entries 
899 899 899 899 899 899 

Average 30.9 67 22 5.2 26 69.

2 Std. 

deviatio

n 

12.8 36.1 9.7 2.1 4.2 17 

Min. 13 19 9 4 17 25 

Q1(25%

) quartile 
21 40 15 5 25 59 

Q2(50%

) 
27 57.5 22 6 27 71 

Q3(75%

) 
38 88 28 6 29 81 

Max. 68 180 54 14 32 118 

 

 

Table 2: Sample of the data set used 

Mon

th 

Da

te 

PM

2.5 

PM

10 

N

O2 

S

O2 

A.

T. 

R.

H. 

No

A 

8 3 33.1 
73.3

6 
26 4 27 78 4 

8 4 42.9 
98.0

4 
30 5 26 69 2 

8 5 40.6 
91.4

5 
31 3 25 70 2 

8 6 32.7 
73.4

7 
25 3 24 69 3 

8 7 34.8 
79.3

1 
25 3 24 62 1 

 

The layer of convolutional neural networks is defined as 

follows:        

  𝑍𝑖 = 𝜎(Ԝ𝑖 ∗ 𝑋𝑖𝑛 + 𝑏𝑖)       (2) 

Wi is the convolutional filter weights and bi is the bias for 

the ith convolutional layer. Xin is the input time series data 

then flatten the output from the last pooling layer into a 1D 

vector.  

   Zi
’=pooling(Zi)      (3) 

   Xflat=flatten(Zi
’)   (4) 

The model used one fully connected layer to make 

predictions. ReLU(Rectified Linear Unit), Tanh(Hyperbolic 

Tangent), and Sigmoid are activation functions and 

activation functions used to compare performance.   

                𝑌𝑜𝑢𝑡 = 𝜎(Ԝ𝑓𝑐 ∗ 𝑋𝑓𝑙𝑎𝑡 + 𝑏𝑓𝑐)   (5) 

2.3 Long Short-Term Memory Network(LSTM) 

Long Short-Term Memory is specifically developed to 

effectively collect and model long-term dependencies 

present in sequential data. We defined a simple Long Short-

Term Memory (LSTM) model mathematically based on the 

given time series data[29]. Figure 2 represents the LSTM 

model we used for regression using a time series dataset 

with lagged features. To model the impact of environmental 

factors as a prediction factor of schizophrenia admission we 

designed an LSTM model as follows. The LSTM layer with 

50 units is added to the model. 

The LSTM equations for one-time step t are given by: 

1. Input Gate (it ): 

   𝑖𝑡 = 𝜎(Ԝ𝑖𝑖 . 𝑥𝑡 + Ԝℎ𝑖 . ℎ𝑡−1 + 𝑏ℎ𝑖)  (6) 

Ԝ terms represent weight matrices, 𝑥𝑡  represents new input, 

𝑏ℎ terms represent bias vectors and ℎ𝑡−1 is the previous 

hidden state. The sigmoid activation function, denoted by σ, 
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is used in this context. Additionally, the symbol ⊙ is used 

to represent element-wise multiplication. 

2. Forget Gate (ft ): 

   𝑓𝑡 = 𝜎(Ԝ𝑖𝑓 . 𝑥𝑡 + 𝑏𝑖𝑓 + Ԝℎ𝑓 . ℎ𝑡−1 + 𝑏ℎ𝑓) 

 (7) 

3. Cell State Update (gt) 

  𝑔𝑡 = 𝑡𝑎𝑛ℎ(Ԝ𝑖𝑔 . 𝑥𝑡 + 𝑏𝑖𝑔 + Ԝℎ𝑔 . ℎ𝑡−1 + 𝑏ℎ𝑔) (8) 

4. Cell State (ct): 

   𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 ⊙ 𝑖𝑡 ⊙ 𝑔𝑡   (9) 

5. Output Gate (ot) 

   𝑜𝑡 = 𝜎(Ԝ𝑖𝑜 . 𝑥𝑡 + 𝑏𝑖𝑜 + Ԝℎ𝑜 . ℎ𝑡−1 + 𝑏ℎ𝑜) 

 (10) 

6. Hidden State(ht) : 

    ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡)   (11) 

7. Output Prediction(yt): 

yt =Some output layer operation on ht 

 

Fig 1: Input-output layered architecture of CNN model 

used with lagged features 

2.4 Gated Recurrent Unit(GRU) 

Similar to LSTMs but with a simpler structure, having only 

two gates (update and reset gates) compared to LSTM's 

three gates and used for sequential data processing[30]. To 

model the impact of environmental factors as a prediction 

factor of schizophrenia admission we designed the GRU 

model as follows. The first GRU layer is comprised of 64 

units, whereas the subsequent GRU layer consists of 32 

units. Figure 3 depicts the GRU model for regression using 

a time series dataset with lagged features. Here's a typical 

configuration for a GRU cell in terms of activation 

functions: 

1. Update Gate (z): Sigmoid activation is commonly used here 

to determine the extent to which historical knowledge 

should be transmitted to subsequent periods. 

              𝑧𝑡 = 𝜎(Ԝ𝑧 . [ℎ𝑡−1, 𝑥𝑡])                        (12) 

2. Reset Gate (r): Sigmoid activation is also frequently used to 

determine how much of the past information to forget. 

    𝑟𝑡 = 𝜎(Ԝ𝑟 . [ℎ𝑡−1, 𝑥𝑡])           (13) 

3. Candidate Hidden State (ht
’): Hyperbolic tangent (Tanh) is 

commonly used here to create a new candidate hidden state. 

   ℎ𝑡
′ = tanh (Ԝℎ . [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡])           (14) 

4.  Hidden State (ht): The ultimate latent state results from the 

amalgamation of the preceding implicit state and the 

potential hidden state, with their respective contributions 

determined by the update and reset gates. 

   ℎ𝑡 = (1 − 𝑥𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ𝑡])           (15) 

 

 

Fig 2: LSTM model for regression using a time series 

dataset with lagged features. 

 

Fig 3: GRU model for regression using a time series 

dataset with lagged features 
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2.5 CNN-LSTM HYBRID MODEL 

The formation of the CNN-LSTM hybrid model involves 

the merging of the CNN and LSTM architectures[31]. The 

CNN part is responsible for extracting spatial features from 

the input sequences, and the LSTM part captures temporal 

dependencies in the feature maps produced by the CNN. 

The input data consists of time series sequences with 

multiple features(e.g., PM2.5, PM10, NO2, SO2, AT, RH) 

and a target variable(NoA). Each sequence is represented as 

a matrix, where rows correspond to different time steps, and 

columns correspond to different features. The first part of 

the model is a CNN layer and the layer applies filters 

(kernels) to the input sequences, convolving over the time 

steps and features. The output of the CNN layer is a set of 

feature maps representing spatial patterns learned from the 

input sequences. The output of the CNN layer is reshaped to 

a 3D tensor to serve as input for the LSTM layer. The second 

part of the model is an LSTM layer, which captures 

temporal dependencies in the feature maps obtained from 

the CNN layer. The LSTM layer is responsible for 

processing the tensor that has been reshaped, namely along 

the time dimension. This procedure allows the layer to 

effectively learn and capture long-term relationships present 

in the data. The hidden states of the LSTM are updated by 

incorporating information from both the current input and 

the prior hidden state. This enables the model to effectively 

capture and represent sequential patterns. After the LSTM 

layer, one Dense layer for further processing and abstraction 

of features is added. This dense layer with a single neuron, 

represents the output for regression tasks. The activation 

function used is linear. The model is compiled with an 

appropriate optimizer and loss function (e.g., MSE for 

regression).  

 

Fig 4: CNN-LSTM architecture for time series dataset 

with lagged features 

2.6 Activation Functions(AF) 

ReLU (Rectified Linear Unit), Tanh (Hyperbolic Tangent), 

and Sigmoid are activation functions commonly used in 

neural networks[32]. In recent architectures, ReLU is often 

the default choice for hidden layers due to its training 

efficiency[33]. In the case of GRUs or LSTMs are 

specifically designed to collect and model long-term 

dependencies within data that is sequenced, the hyperbolic 

tangent (Tanh) and sigmoid activations are commonly used 

within the gates and cell states due to their ability to control 

the flow of information. We have applied all three activation 

functions and compared the results to find the best-fitting 

deep learning model to address the multivariate time series 

problem of the exposure of environmental variables and its 

response to schizophrenia admission.  

ReLU is Represented as   

   ƒ(y)=MAX(0,y)               (16) 

ReLU function is a mathematical operation that replaces all 

negative values with zero while leaving positive values 

unaltered. It is widely used in hidden layers due to its 

simplicity and the fact that it helps mitigate the vanishing 

gradient problem, allowing for faster training. 

Tanh is Represented as 

    (x) = tanh(x) =
𝑒2𝑥−1

𝑒2𝑥+1
              (17) 

Tanh squashes the input values to the range [-1,1] mapping 

negative values strongly negative and positive values 

strongly positive. It is often used in the hidden layers of the 

network. Tanh is zero-centered, which can be beneficial for 

optimization. 

Sigmoid is Represented as 

    ƒ(y) ==
1

1+𝑒−𝑦               (18) 

Sigmoid squashes provide input values within the range of 

[0,1]. It can also be used in hidden layers, but it is less 

common than ReLU and Tanh. 

3. Results and Discussion 

The research used the R and Python programming 

languages for its implementation. The assessment of the 

model's performance was carried out by using five error 

measures, namely MSE, RMSE, MAE, MAPE, and 

SMAPE. These metrics function as reference points for 

evaluating the efficacy of our regression-predicting models. 

A model that exhibits lower values of MAPE, MSE, MAE, 

and RMSE and the combination of these measures offers a 

full assessment of the predictive model's performance, 

providing valuable information into its level of accuracy and 

effectiveness in capturing the underlying patterns in the 

data. MSE and RMSE are sensitive to outliers because they 

involve squared differences. MAE is less sensitive. MAPE 
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and SMAPE handle the case when the actual value is zero 

more gracefully than other metrics. In our investigation, we 

identified a strong association between external factors and 

the occurrence of hospital admissions of schizophrenia 

within the dataset specific to Bangalore, India. Adhering to 

the lag selection standards used in our dataset, we limited 

the lag values to a period of 3 days in our study. This 

restriction in lag values was implemented based on the 

specific considerations and parameters outlined in our 

analysis. 

3.1. DLNM ANALYSIS RESULTS 

The three-dimensional graphic shown in Figure 5  illustrates 

the projected impacts linked to the combined effect of 

environment variables at specific periods. The presented 

graphic depicts the exposure of environmental factors and 

their response to Schizophrenia in hospitals located in 

Bangalore, India. The results of our study demonstrate 

positive correlations that exhibit non-linear trends 

throughout a range of zero to four days of delay for, SO2, 

particulate matters, NO2, ambient temperature, and 

humidity. Figure 5 emphasizes the lag effects within the 

time frames of 0 to 3 days and 0 to 4 days. These lagged 

effects are quantified and expressed in a measure of relative 

risk(RR). The computation of relative risk entails the 

assessment of the ratio between the probability of 

occurrence of hospital admission that has been subjected to 

environmental factors, and the probability of occurrence of 

hospital admission that wasn't subjected to environmental 

factors. The presented graphs illustrate several patterns 

regarding the influence of the pollutants at minimum, 

modest, and excessive levels, taking into account the lag 

time effects. The corresponding 95% confidence intervals 

serve as a means to quantify the level of uncertainty related 

to these estimations. The comprehensive investigation 

described here enhances our understanding of the soon-after 

effect of poor air quality on the frequency of hospital 

admissions located in the city of Bangalore with a lag of 

zero to four days. 

 

Fig 5: Relative Risk of temperature and its cofounders with a lag of 3(i) and lag of 4(ii) using DLNM 

In our detailed examination, it has been repeatedly observed 

that the DLNM exhibits the lowest values for RMSE, MSE, 

MAE, and MAPE among all lag models ranging from lag 

0 to lag 3. The steady performance shown in this study 

indicates that the DLNM is great when applied to the 

particular dataset about hospital admissions. In a broader 

framework, our examination discloses positive correlations, 

characterized by nonlinear temporal delays, among PM2.5, 

PM10, dioxides of nitrogen and sulfur, AT, RH, and the 

daily count of hospital admissions. Figure 6 depicts the 

results of the analysis, demonstrating that each pollutant and 

climatic factor displays distinct relationships with 

admissions about schizophrenia, distinctive to the lag 

period. Figure 6 shows single variable lag models in terms 

of relative risk using DLNM. The highest relative risk(RR) 

of schizophrenia admission is found with relative 

humidity(RH), 1.5 for high-level humidity at lag 0. The RR 

of 1.6 for low-level humidity at lag 3. The RR values at lag 

0, which is the immediate effect are high compared to lag3. 

The RR of temperature at lag 3 is less, which means the 

effect of temperature on schizophrenia admission is 

comparatively less. However, as per the result, all 

environmental variables have a significant effect on the 

number of admissions of schizophrenia.  

3.2 CNN, LSTM, AND GRU ANALYSIS RESULTS 

Figure 7 shows the training loss and validation loss of the 

CNN model performed on our data to predict hospital 

admission based on a 4-day lag of environmental factors. 

The various possibilities of the activation function(AF) are 

explored to find best suitable model. The ReLU and Tanh 

are showing signs of overfitting the training data. The 

sigmoid AF fitted fine with our data on CNN. As seen in 

Figures 7(i) and 7(ii), the training loss continues to decrease 

because the model is becoming increasingly tailored to the 

training set. This overfitting arises when a model acquires 

an excessive level of knowledge of the training data, leading 

to certain adverse effects. A comparison of the predicted 

number of admissions(NoA) versus actual NoA with 

various activation functions is shown in Figure8. The CNN 

performed well with the sigmoid activation function 

compared to ReLU and Tanh as shown in Figure8(c). With 

the MSE error metric CNN produced the least value of 0.53 

using sigmoidAF against 0.88 of ReLU. Table 4 and Table 

5 indicate similar results with RMSE and MAE metrics. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 583–596 |  589 

MAPE calculates the percentage difference between 

predicted NoA and actual NoA, averages these percentage 

differences, and expresses the result as a percentage. In 

MAPE evaluation SigmoidAF outperformed ReLU and 

Tanh with 35.56% against 48.01% and 37.40%. 

 

Figure 9 shows the training loss and validation loss of the 

LSTM model performed on our data to predict NoA. The 

data was prepared with additional features, which is the lag 

effect of environmental factors. As shown in this result both 

training and validation losses are decreasing and parallel 

movement suggests that the model is successfully acquiring 

knowledge from the training data and demonstrating strong 

generalization abilities when presented with new, unseen 

data. The parallel movement indicates that the model on the 

validation set is consistent with its effectiveness in the 

training data and capturing underlying patterns that 

generalize well. A comparison of the predicted number of 

admissions(NoA) versus actual NoA with activation 

functions(AF) ReLU, Tanh, and Sigmoid is shown in Figure 

10. In the context of examining the lagged association 

between climate and admissions, it is observed that the 

performance of LSTM is still behind that of CNN. In this 

LSTM model, sigmoidAF has slightly better results than 

other AFs as shown in Figure 10(c). In error metrics, LSTM 

produced the least MSE value of 0.627 and 0.682 with 

sigmoid and ReLU respectively, as shown in Table 3.  

Table 4 indicates similar results with the RMSE metric. In 

terms of MAE sigmoid looks better than other AFs, as 

shown in Table 5. In the evaluation of the percentage 

difference between predicted NoA and actual NoA, MAPE 

scored 49.4% with ReLU, 50.99%, and 50.38% with Tanh 

and Sigmoid AFs. Figure 11 depicts training loss vs 

validation loss in GRU prediction of NoA with various 

activation functions. As Figure 11 (i) and (ii) show both 

training and validation losses are decreasing indicating that 

the model is effectively gaining expertise from the provided 

training set and extrapolating to novel instances. With 

sigmoidAF the training loss is decreasing and parallel to the 

validation loss, implying that the model is exhibiting 

efficient learning capabilities and is not excessively fitting 

to the training data. GRU outperformed other deep learning 

techniques in consideration of all the error metrics. The 

MSE values of the GRU model are 0.666, 0.595, and 0.571 

for ReLU, Tanh, and Sigmoid AFs respectively. The 

corresponding MAE values are 0.587, 0.515, and 0.492. For 

mean absolute percentage error also GRU outperformed 

CNN and LSTM. MAPE and SAMPE values with Sigmoid 

AF are 34.72% and 0.515% respectively as shown in Table 

6 and Table 7. Figure 12 depicts a visual explanation of 

GRU prediction. The predicted number of admissions has 

excellent accuracy compared to other deep-learning models 

in our study.  

 

3.3 CNN-LSTM MODEL ANALYSIS RESULTS 

Finally, we explored a combination of CNN and LSTM on 

this particular problem of exposure-response 

relationship[33]. As mentioned above, six features of 

environmental variables and schizophrenia hospital 

admission variables along with their lag attributes were 

trained and tested. Results show that the training loss is 

decreasing and moving in parallel to the validation loss, as 

visualized in Figure 13. This observation implies that the 

model is exhibiting efficient learning behavior and is not 

excessively fitting to the training data. CNN-LSTM model 

has not performed as expected compared to traditional deep 

learning models. It produced high MSE values compared to 

other models which are 0.857, 1.079, and 1.079 for ReLU, 

Tanh, and Sigmoid respectively. As shown in Tables 3 to 5, 

the error metrics such as MSE, MAE, and RMSE showed 

poor performance with our dataset. The prediction of 

schizophrenia admission based on environmental variables 

is visualized in Figure 14. In effect, CNN-LSTM may not 

be a good choice in exposure-response kind of regression 

models using lag effect. The CNN-LSTM may not capture 

a non-linear relationship between environmental variables 

and schizophrenia admission. 

To assess the robustness and reliability of the models in 

studying the exposure of pollution and climate factors and 

its response on schizophrenia admission, performed 

sensitivity analysis. In sensitivity analysis, we trained these 

deep learning models and the DLNM model with various 

lags of 1 to 4 as shown in Table 8 and Figure 15.  Table 8 

and Figure 15 indicate the performance of various models 

with a lag effect of 1 to 4 in terms of MSE. DLNM model 

has the lowest MSE on Lag1, Lag 2, and Lag 4(days), 

indicating it performed the best among the specified models. 

At lag 3, the CNN model produced the lowest MSE. Lower 

MSE values generally indicate better predictive 

performance, as they indicate smaller errors between the 

predicted NoA and the actual NoA. Lag-based sensitivity 

analysis measured with MAPE is shown in Table 9. The 

visual comparison is depicted in Figure 16, where GRU has 

the lowest MAPE on lag 2 and lag 3(day), indicating better 

performance in predicting values with a lag of 2 and 3. For 

lag 1, LSTM has the lowest MAPE, suggesting better 

performance at predicting the soon-after effect of 

environmental variables on schizophrenia admissions. On 

lag 4, CNN has the lowest MAPE, suggesting better 

performance in predicting the number of admissions with a 

lag of 4.
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Table 3:  MSE values of various models in comparison with DLNM and various activation functions 

Activation 

function 
CNN LSTM GRU 

CNN-

LSTM 
DLNM 

RELU 0.88 0.682 0.666 0.857 

0.477 TANGENT 0.59 0.666 0.595 1.079 

SIGMOID 0.53 0.6269 0.571 1.079 

 

Table 4: RMSE values of various models in comparison with DLNM and various activation functions 

Activation 

function 

CNN LSTM GRU CNN-

LSTM 

DLNM 

RELU 0.94 0.826 0.816 0.925  

0.690 

 

TANGENT 0.77 0.816 0.771 1.038 

SIGMOID 0.73 0.791 0.755 1.038 

 

 
Fig 6: The use of DLNM for the assessment of risk associated with different environmental factors. 

 

 
Fig 7: Training loss vs validation loss in CNN prediction of number of admissions with various activation functions 
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Fig 8: Prediction vs actual for number of admissions using CNN with various activation functions 

 
Fig 9: Training loss vs validation loss in LSTM prediction of number of admissions with various activation functions 

 

 

Fig 10: Prediction vs actual for the number of admissions using LSTM with various activation functions 

 

 

Fig 11: Training loss vs validation loss in GRU prediction of number of admissions with various activation functions 
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Fig 12: Prediction vs actual for number of admissions using GRU with various activation functions 

 

Fig 13: Training loss vs validation loss in CNN-LSTM hybrid model 

 

 
Figure 14: Prediction vs actual for number of admissions using CNN-LSTM hybrid model 

 

Table 5: MAE values of various models in comparison with DLNM and various activation functions 

Activation 

function 
CNN LSTM GRU 

CNN-

LSTM 
DLNM 

RELU 0.64 0.603 0.587 0.587 

0.546 TANGENT 0.50 0.587 0.515 0.714 

SIGMOID 0.46 0.579 0.492 0.714 

 

Table 6: MAPE values in percentage for various models with activation functions 

Activation 

function 
CNN LSTM GRU 

CNN-

LSTM 
DLNM 

RELU 48.01% 49.40% 48.61% 36.50% 

38.41% TANGENT 37.40% 50.99% 33.53% 39.88% 

SIGMOID 35.56% 50.38% 34.72% 39.88% 
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Table 7: SMAPE values in percentage for various models with activation functions 

Activation 

function 

CNN LSTM GRU CNN-

LSTM 

DLNM 

RELU 0.65% 0.661% 0.654% 0.535%  

0.745% TANGENT 0.54% 0.675% 0.502% 0.570% 

SIGMOID 0.52% 0.677% 0.515% 0.570% 

 

Table 8: Lag effect of various models from day 1 to day 4 in terms of MSE 

Lag(Day) 
CNN 

(sigmoid) 

LSTM 

(sigmoid) 

GRU 

(sigmoid) 

CNN-LSTM 

(Relu) 
DLNM 

Lag1 0.70 0.9603 0.6190 1.134 0.4768 

Lag2 0.63 0.666 0.8888 0.9603 0.469 

Lag3 0.53 0.6269 0.57142 0.857 0.4772 

Lag4 0.66 0.66666 0.6587 0.97619 0.4779 

 

 

Fig 15: Lag effect of various models form day 1 to day 4 in terms of MSE 

 

Table 9: Lag effect of various models from day 1 to day 4 in terms of MAPE(%) 

 

 

 

 

 

 

 

 

Lag(Day) 
CNN 

(sigmoid) 

LSTM 

(sigmoid) 

GRU 

(sigmoid) 

CNN-

LSTM 

(Relu) 

DLNM 

Lag1 49.41 25.0 43.25 36.50 37.961 

Lag2 43.50 54.36 44.64 41.46 37.23 

Lag3 35.56 50.38 34.72 36.50 38.41 

Lag4 29.23 46.89 54.23 38.49 37.90 
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Fig 16: Lag effect of various models from day 1 to day 4 in terms of MAPE 

4. Discussion 

The results of deep learning models and DLNM using the 

data from Bangalore city, India is consistent with similar 

research happened in foreign cities, mainly in China. Our 

results using DLNM shows the highest correlation between 

PM2.5, PM10, NO2, SO2,AT,RH and hospital admission of 

schizophrenia during day 1 to 4 after exposure. This 

discovery is consistent with the results of several research 

that have successfully used Distributed Lag Non-linear 

Models to examine this issue and derive findings pertaining 

to lag-response associations. The exposure to PM2.5 

and hospitalization response for schizophrenia occurs on 

the second and third day after exposure, consistent with 

findings described in other scholarly works[8]. In another 

investigation conducted by Liang et al. (2019), it was shown 

that there was a shorter lag correlation, which was attributed 

to the increased concentration of PM10. The negative 

impacts resulting from significant temperature changes 

were seen up to a lag of six days[14]. As per the optimal lag 

selection criteria of our data, we used a lag of up to 4 days. 

The effect of the highest temperature with a lag of 1 day and 

the lowest temperature with a lag of 3 days is evident in 

Bangalore city. The study conducted by Wang et al.[5] 

examined the influence of temperature on the beginning of 

schizophrenia. The researchers watched the participants for 

three consecutive days after their exposure to varying 

temperatures. Prior studies have shown that the risk effects 

of pollutants, namely NO2 and PM10, were seen to occur 

from lag 0 to lag 5. Similarly, the risk effects of SO2 were 

found to occur from lag 0 to lag 10 [10][15]. which strongly 

proves our results.  

Most of the previous studies investigated the impact of a 

single environmental variable on hospital admission or a 

maximum of three pollutants. Multivariate exposure to 

pollutants and climate variables has been considered in our 

research. To get the exact sense of the combined effect of 

multiple variables on the dependent variable, which is NoA, 

and to get its non-linear effect we explored deep neural 

networks. The popular technique in literature was DLNM 

which may not measure the combined effect efficiently. 

Because DLNM considers one variable as a major 

contributor and other variables as cofounders. We consider 

our results using DNN to be more reliable for measuring the 

non-linear effect of the surrounding environment on sudden 

schizophrenia onset. There is no other research on this 

particular problem that investigated the possibility of deep 

learning techniques. So, we compare our results with 

DLNM and also with other studies that investigated non-

linear modeling using neural networks. The study conducted 

by Lu et al.[33] provided evidence supporting the use of 

Long Short-Term Memory as a viable approach for 

identifying the delayed impact of PM2.5 on respiratory 

ailments. Hossain et al.[34] used non-linear methods of 

analysis to reconstruct lengthy periodic climate patterns and 

demonstrated the superiority of artificial neural networks 

over linear models. LSTM was used to train and model daily 

cases of influenza based on meteorological daily values and 

proved that there is a significant relationship between 

meteorological factors and influenza[35]. The study 

conducted by Mahmudimanesh et al.[36] presents a 

predictive model for estimating the death rate among 

individuals with cardiovascular conditions. Their model 

takes into account several air pollution indicators and 

utilizes a CNN-LSTM technique. They found that NO2 was 

also significant in lag 6. As shown in Figure 15, the models 

used in our study such as CNN, LSTM, and GRU are good 

in predicting the number of admissions based on 

environmental factors. The highest association is found at 

lag 3 even though lag association is evident from lag 1 to lag 

4. Using the optimal lag of 3 the GRU has better 

performance in terms of error metrics as shown in table 3 to 

table 7.  
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5. Conclusion 

The purpose of this analysis was to explore deep learning 

techniques to determine non-linear exposure-response 

relationships in time series analysis with lag effect. In this 

analysis using DLNM and deep learning algorithms, there 

exists a noteworthy link between exposure to environmental 

factors and the presentation of signs related to schizophrenia 

inside the urban region. of Bangalore is evident. The 

association between pollutants(PM2.5, PM10, SO2, NO2), 

climate factors(Temperature and humidity) and 

hospitalizations for schizophrenia is well established, and 

the findings remain consistent in sensitivity analysis. The 

predicted link between exposure and reaction was non-

linear and models with combined effect of environment 

variables were performed under this assumption. Results 

indicate that the CNN and GRU models have better 

performance with sigmoid activation function in predicting 

hospital admissions. The efficiency of DNNs in finding 

underlying non-linear patterns is helpful in this problem. 

DLNM cannot represent the combined effect of all variables 

and so results are not reliable. This can be overcome using 

DNNs and it performed well with consistent results in all 

sorts of comparisons.  
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