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Abstract: Timely detection of Diabetic Retinopathy (DR) is critical in preventing vision impairment among diabetic individuals. This 

research introduces Dynamic SwishNet-181, a novel neural network architecture tailored for classifying DR severity levels (ranging from 

0 for No DR to 4 for Proliferative DR). Unique to this study is the integration of Contrast Limited Adaptive Histogram Equalization 

(CLAHE) and Anisotropic Diffusion Filtering (ADF) as preprocessing techniques, refining retinal images by enhancing contrast and 

reducing noise. The evaluation of Dynamic SwishNet-181 includes a comparison against established CNN models such as VGG16, 

EfficientNET, and RESNET using performance metrics like accuracy, precision, recall, and F1-score. This comprehensive analysis aims 

to empower medical professionals by providing a reliable and accurate tool for diagnosing DR efficiently. By merging advanced deep 

learning models with image enhancement methods, this research offers a promising approach for accessible and dependable DR screening, 

potentially preventing vision loss in diabetic patients. 

Keywords: Diabetic Retinopathy Detection, Dynamic SwishNet-181, Image Preprocessing Techniques, Deep Learning Evaluation Metrics, 

Vision Impairment Prevention. 

1. Introduction 

Early detection of Diabetic Retinopathy (DR) is essential 

in mitigating vision impairment among individuals with 

diabetes, as the condition progresses through various 

stages of severity. This necessitates accurate identification 

and timely intervention. To address this critical need, this 

research integrates advanced image enhancement 

techniques—such as Contrast Limited Adaptive 

Histogram Equalization (CLAHE) and Anisotropic 

Diffusion Filtering (ADF)—to refine retinal images, 

enhancing contrast and reducing noise. These 

preprocessing methods aim to ensure high-quality images 

crucial for precise analysis and diagnosis. 

Deep learning methodologies, specifically convolutional 

neural networks (CNNs), play a pivotal role in achieving 

accurate and efficient Diabetic Retinopathy diagnosis. 

The task involves classifying DR across its spectrum of 

severity, ranging from symptom absence to advanced 

proliferative stages. The introduction of Dynamic 

SwishNet-181, a specialized neural network architecture, 

becomes imperative for this research. Dynamic SwishNet-

181 is uniquely tailored for precise classification of 

diverse DR severity levels, offering enhanced capabilities 

for nuanced identification and classification, addressing 

the complexities inherent in DR diagnosis [1]. 

Furthermore, the comparative evaluation of Dynamic 

SwishNet-181 with established CNN models like VGG16, 

EfficientNET, and RESNET holds paramount 

importance. This comparative analysis serves as a vital 

step in discerning the performance characteristics and 

suitability of these architectures in accurately classifying 

the varied stages of Diabetic Retinopathy. By comparing 

Dynamic SwishNet-181 against these established models, 

this research aims to identify its efficacy and potential 

superiority in providing precise and reliable DR detection 

and classification. This comparison helps in elucidating 

the strengths and weaknesses of each model, guiding the 

selection of the most effective architecture for enhancing 

DR diagnosis. 
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Fig.1. Proposed Framework 

This research encompasses a comprehensive 

methodology aiming to enhance diabetic retinopathy 

detection. The process begins with the collection of retinal 

images, followed by preprocessing steps involving 

CLAHE and ADF. These techniques are applied both with 

and without noise removal, enabling a comparative study. 

Subsequently, deep learning models are employed for 

classification. The study evaluates the performance of 

these models using key metrics like Accuracy, Precision, 

Recall, and F1-Score. The novel contribution lies in the 

systematic comparison of these models under different 

preprocessing conditions, facilitating a nuanced 

understanding of their efficacy in diabetic retinopathy 

detection. The architecture (depicted in Fig.1) illustrates 

this sequential workflow, underscoring the research's 

methodology and its significance in refining diagnostic 

approaches for diabetic retinopathy. 

 

 

2. Literature Survey  

Research on diabetic retinopathy detection utilizing deep 

learning models and image preprocessing techniques like 

CLAHE and ADF has been actively pursued. Here are 

some existing studies and authors' works that align with 

the mentioned concepts: 

"Deep Learning for Diabetic Retinopathy Detection" by 

Gulshan et al. (2019): This seminal work explores the use 

of deep learning, particularly convolutional neural 

networks (CNNs), for the automated detection of diabetic 

retinopathy. It highlights the potential of CNNs in 

accurately classifying retinal images for disease severity 

[2]. 

"Application of Contrast Limited Adaptive Histogram 

Equalization (CLAHE) in Retinal Image Preprocessing" 

by Singh et al. (2019): This study delves into the efficacy 

of CLAHE as a preprocessing technique for enhancing 

contrast in retinal images. It investigates its impact on 
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improving the quality of images and subsequent analysis 

in diabetic retinopathy detection [3]. 

"Anisotropic Diffusion Filtering for Retinal Image 

Enhancement" by Martinez et al. (2019): Martinez et al. 

explore the application of Anisotropic Diffusion Filtering 

(ADF) specifically for retinal image enhancement. This 

work examines how ADF can effectively reduce noise in 

retinal images, potentially aiding in disease identification 

and analysis [4]. 

"Comparative Study of Preprocessing Techniques for 

Diabetic Retinopathy Detection" by Lee et al. (2020): Lee 

et al. conduct a comparative analysis of various 

preprocessing methods, including CLAHE and ADF, and 

their impact on diabetic retinopathy detection. Their study 

evaluates the effectiveness of these techniques in 

enhancing image quality and subsequent classification 

accuracy [5]. 

"Evaluation of Deep Learning Models for Diabetic 

Retinopathy Classification" by Chen et al. (2021): Chen 

et al. compare different deep learning models, such as 

VGG16, EfficientNET, and RESNET, for diabetic 

retinopathy classification. They assess the models' 

performance using metrics like Accuracy, Precision, 

Recall, and F1-Score [6].  

Table 1. Existing system 

Author Proposed Solution Database Number of 

Images  

Accuracy 

ZUBAIR 

KHAN et al.  

[7] 

VGG16, spatial pyramid pooling 

layer (SPP), and network-in-

network (NiN)-based model 

EyePACS 88,702 85%  

Cheena 

Mohanty [8] 

DenseNet 121 APTOS 2019  13,000 97% 

Varun Gulshan 

et al. [9]  

Deep neural network (DNN)-

based algorithm  

Custom-developed at Aravind Eye 

Hospital and Sankara Nethralay 

between May 2016 and April 2017  

1,03,634  92.1% 

Hidenori 

Takahashi et al. 

[10] 

Deep neural network-based 

Google-Net 

Medical University between May 

2011 and June 2015 

9939 81% 

Kh Tohidul 

Islam et al. [11] 

DenseNet-201 OCT image database  109,309 97% 

 

The existing studies demonstrate effective deep learning 

models for diabetic retinopathy detection but lack a 

comprehensive integration of preprocessing techniques 

and innovative deep learning architectures. This study 

bridges this gap by combining CLAHE and ADF as 

preprocessing methods. These refine retinal images by 

enhancing contrast and reducing noise. Additionally, it 

introduces Dynamic SwishNet-181, a novel deep learning 

model for precise multi-classification of diabetic 

retinopathy severity levels. This integration aims to 

enhance diagnostic accuracy, addressing prior limitations 

in diabetic retinopathy detection. 

3. Materials and Methodology 

The Diabetic Retinopathy Detection methodology 

comprises collecting retinal images and applying 

preprocessing techniques (CLAHE an ADF) with and 

without noise removal for comparative analysis. 

Subsequently, a range of deep learning models including 

VGG16, EfficientNET, RESNET, and the novel Dynamic 

SwishNet-181 are employed for classification. 

Performance assessment utilizes key metrics like 

Accuracy, Precision, Recall, and F1-Score, enabling a 

comprehensive evaluation of preprocessing and diverse 

deep learning architectures in enhancing detection 

accuracy for Diabetic Retinopathy. 

3.1. Dataset Description 

The EyePACS dataset available on Kaggle is a crucial 

resource within ophthalmology and medical imaging, 

encompassing more than 88,000 color fundus images 

meticulously selected for the purpose of detecting diabetic 

retinopathy. These high-quality retinal images are 

annotated and categorized based on various levels of 

diabetic retinopathy severity, offering a wide array of 

visual data for researchers. With its ease of access and 
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detailed annotations, the EyePACS dataset serves as an 

essential benchmark for driving advancements in research 

focused on enhancing the precision and effectiveness of 

automated methods for detecting and classifying diabetic 

eye diseases [12]. This public dataset, obtained via 

Kaggle.com as of March 24, 2021, consists of fundus 

images of the retina labeled by ophthalmologists and 

classified into five distinct categories: normal, mild, 

moderate, severe, and proliferative DR. 

Table. 2. Class Distribution and Testing Image Proportion (%) in DR Dataset 

Class No. of Images Testing Images 

(20%) 

Normal 25,810 73.15 

Mild 2,443 6.96 

Moderate 5,292 15.07 

Severe 873 2.81 

PDR 708 2.01 

 

 

Fig. 2. Class Distribution and Testing Image Proportion (%) in DR Dataset 

The Kaggle EyePACS dataset comprises a total of 88,702 

images categorized into 5 stages of diabetic retinopathy 

(DR). Among these, 35,126 images are allocated to the 

train set, while the test set includes 53,576 images. Figure 

2 and Table 2 reveals an evident class imbalance within 

the dataset due to the distribution of classes among the 

different stages of diabetic retinopathy. 

3.2.  Image Pre-processing  

In diabetic retinopathy analysis using fundus images, 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) and Anisotropic Diffusion Filtering (ADF) 

serve as pivotal pre-processing techniques. CLAHE 

dynamically enhances contrast without overly amplifying 

noise, preserving vital details in retinal structures. 

Complementing this, ADF efficiently suppresses noise 

while preserving edges and key image features. Together, 

these techniques refine retinal images, enhancing their 

quality for more accurate disease detection and clinical 

assessments in diabetic retinopathy screenings [13]. 

i. CLAHE algorithm steps 

1. Image Division into Tiles (Sub-images): 

• Let 𝐼 represent the original image. 

• 𝐼𝑖,𝑗  denotes the pixel intensity at position 

(i,j) within the image.  

Divide the image I into N tiles, denoted as Ti 

where i = 1, 2, ...... N. 

2. Histogram Equalization for Tiles: 

• For each tile Ti, calculate the histogram Hi 

and the cumulative distribution function 

(CDF) Ci  of pixel intensities. 

3. Contrast Limitation by Clipping:  

• Clip the histogram Hi to prevent over-

amplification by limiting intensities 

exceeding a threshold L. 
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Hclipped  (i)=min(Hi(i),L) for each intensity bin i. 

4. Combining Processed Tiles: 

• Interpolate the clipped histograms to 

reconstruct the final enhanced image. 

ADF algorithm Steps: 

1. Computation of Image Gradients: 

• Calculate the gradient magnitude and direction for 

each pixel in the image. 

2. Calculation of Diffusion Coefficients: 

• Based on gradient information, compute diffusion 

coefficients ((c(x,y,t)) that determine the diffusion 

process for each pixel at position (x,y) at time t. 

3. Application of Diffusion Process: 

• Apply the diffusion process iteratively to smoothen 

the image, governed by the heat equation, with 

diffusion along edges constrained by gradient 

directions. 

The ADF algorithm involves partial differential equations 

(PDEs) that describe the diffusion process. The basic 

equation of anisotropic diffusion is represented as: 

𝜕𝐼

𝜕𝑡
 = ∇ . (c (∇ I). ∇ I) 

Where 

• I represents the image. 

• t is time. 

• ∇ denotes the gradient operator. 

• C is the diffusion coefficient. 

The diffusion coefficient c is computed based on the 

gradient of the image and controls the diffusion process 

according to the image's edge information.  

 

                     

             (a)                                            (b)                                              (c) 

Fig.3. Pre-Processing of diabetic retinopathy fundus images 

((a) Original Images (b) Noise filtered image (c) Contrast enhanced images 

Figure 3 illustrates the pre-processing steps for diabetic 

retinopathy fundus images: (a) displays the original 

images, (b) showcases noise-filtered images, and (c) 

demonstrates contrast-enhanced versions, depicting 

image enhancement stages for improved diagnostic 

analysis. CLAHE and ADF techniques improve diabetic 

retinopathy detection by enhancing image contrast, 

reducing noise, and preserving crucial features like lesions 

and edges in fundus images, potentially aiding automated 

algorithms in accurately identifying retinopathy signs 

[13]. 

3.3. Classification  

The classification of diabetic retinopathy fundus images, 

spanning from 0 (No DR) to 4 (Proliferative DR), involves 

leveraging advanced convolutional neural network 

architectures such as VGG16, EfficientNet, and ResNet. 

Additionally, the proposed Dynamic SwishNet-181 

model aims to enhance classification accuracy, employing 

innovative dynamic activation functions for more 

effective feature extraction and classification in this 

medical imaging domain [14]. 

 

Fig.4. The proposed method for classification of fundus images using DL models.  
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1. VGG16 

The VGG16 algorithm, is employed for the classification 

of diabetic retinopathy fundus images across severity 

levels ranging from 0 (indicating no signs of diabetic 

retinopathy, or No DR) to 4 (indicating Proliferative DR). 

• Architecture: VGG16 consists of 16 layers, 

including 13 convolutional layers and 3 fully 

connected layers. The convolutional layers are 

organized into 5 blocks, each containing multiple 

convolutional layers followed by max-pooling 

layers. 

• Feature Extraction: The initial layers of VGG16 

perform feature extraction by convolving the input 

fundus images with a series of filters of different 

sizes, capturing diverse image features at various 

hierarchical levels. 

• Classification Layers: The extracted features are 

then flattened and passed through fully connected 

layers, culminating in a softmax layer with 5 output 

nodes corresponding to the severity levels (0 to 4) of 

diabetic retinopathy. 

Algorithm steps: 

Convolutional Layers: Each convolutional layer applies 

a set of filters to the input image using the convolution 

operation: 

Z [l]  =W [l]  ∗A [l−1] +b [l] 

Here, Z [l]  represents the output, W [l]  and b [l] are the 

weights and biases of the layer, A [l-1]  denotes the 

activation from the previous layer, and * signifies the 

convolution operation.  

Pooling Layers: Max-pooling layers reduce spatial 

dimensions and retain important features:  

MaxPooling (𝐴[𝑙], pool_size = (f,f)) 

This operation selects the maximum value within each f×f 

window in the activation map. 

Fully Connected Layers: These layers perform matrix 

multiplications followed by activation functions: 

Z [l]  =W [l]  . A [l−1] +b [l] 

Activation functions like ReLU are applied to introduce 

non-linearity: 

A [l] = ReLU (Z [l] ) 

Softmax Activation: In the final layer, the softmax 

function normalizes the output into a probability 

distribution over the 5 severity levels: 

P (y=i|X) = 
𝑒𝑍𝑖

[𝐿]

𝑒
𝑍𝑗

[𝐿]

𝑗−1
5

 

Here, Z [L] represents the final layers output, and P(y=i|X) 

denotes the probability of input X belonging to severity 

level i. VGG16's deep architecture and hierarchical 

feature extraction capabilities enable it to learn 

discriminative features, aiding in the accurate 

classification of diabetic retinopathy fundus images 

across different severity levels [15]. 

2. ResNet 

Utilizing the ResNet algorithm for diabetic retinopathy 

classification across a spectrum from 0 (indicating No 

DR) to 4 (representing Proliferative DR) involves 

harnessing a sophisticated deep residual neural network 

architecture. This approach is designed to effectively 

handle the complexities inherent in precisely categorizing 

retinal images depicting varying severity levels of the 

disease. 

• Residual Learning: ResNet introduces residual 

connections, or skip connections, that enable the 

network to learn residual mappings instead of 

directly fitting desired mappings. This is achieved by 

adding skip connections that bypass one or more 

layers, allowing the network to learn residuals. 

• Identity Mapping: Residual blocks within the 

architecture aim to learn the residual functions 

(F(x)=H(x)−x), where H(x) represents the mapping 

to be learned and x denotes the input to the block. 

The identity function x acts as a shortcut, aiding in 

gradient flow during training. 

• Feature Extraction: ResNet's deep structure 

facilitates effective feature extraction by allowing 

the network to learn increasingly abstract and 

discriminative features from fundus images, 

capturing intricate patterns associated with diabetic 

retinopathy. 

• Classification Layers: Extracted features pass 

through fully connected layers, culminating in a 

softmax layer with 5 output nodes corresponding to 

severity levels ranging from 0 to 4 for diabetic 

retinopathy classification.              

The fundamental structure of ResNet introduces skip 

connections or residual blocks, enabling the network to 

learn residual functions. Mathematically, a residual block 

can be represented as: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 + 𝐹 (𝐼𝑛𝑝𝑢𝑡)  

In diabetic retinopathy classification, the ResNet 

architecture is adapted to process fundus images, where 

each severity level (0 to 4) corresponds to a specific class 

label. The network's objective is to learn discriminative 

features from these images, capturing important patterns 

indicative of different disease stages. The training process 

involves minimizing a loss function, often represented by 

a cross-entropy loss equation: 
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𝐿𝑜𝑠𝑠 =  − 
1

𝑁
  𝑦𝑖𝑖=1

𝑁 log(p(𝑦𝑖|𝑥𝑖)) 

Where: 

• 𝑁 is the total number of samples.  

• 𝑦𝑖  represents the true label of sample i. 

• p(𝑦𝑖|𝑥𝑖) denotes the predicted probability 

distribution over the classes given the input 𝑥𝑖. 

During training, the model optimizes its parameters 

(weights and biases) through backpropagation using 

optimization algorithms like Stochastic Gradient Descent 

(SGD) or its variants. The goal is to minimize the loss 

function, thereby improving the network's ability to 

accurately classify diabetic retinopathy severity levels in 

fundus images. Upon successful training, the ResNet 

model can predict the severity of diabetic retinopathy in 

unseen fundus images, assigning the appropriate severity 

level (ranging from 0 for No DR to 4 for PDR). This 

classification assists clinicians in diagnosing and 

managing diabetic retinopathy effectively, contributing to 

timely interventions and patient care [16]. 

3. EfficientNet 

• Compound Scaling: EfficientNet employs 

compound scaling, balancing model depth, 

width, and resolution for optimal performance. It 

scales network dimensions (depth, width, and 

resolution) uniformly using a compound 

coefficient (ϕ). 

• Efficient Building Blocks: The architecture 

includes efficient building blocks like MBConv 

(Mobile Inverted Bottleneck Convolution) using 

depth-wise separable convolutions, optimizing 

computation while capturing rich features. 

• Feature Extraction: Initial layers perform 

feature extraction by convolving the input fundus 

images with filters, capturing diverse image 

features at various levels of abstraction critical 

for diabetic retinopathy detection. 

• Classification Layers: Extracted features pass 

through fully connected layers, culminating in a 

softmax layer with 5 output nodes corresponding 

to severity levels from 0 to 4 for diabetic 

retinopathy classification. 

Algorithm: 

Compound Scaling: EfficientNet scales network 

dimensions (depth=d,width=w,resolution=r) using a 

compound coefficient ϕ to balance these factors 

uniformly: 

𝑑 =  𝛼ϕ , 𝑤 =  𝛽ϕ, 𝑟 =  𝑟ϕ 

Efficient Building Blocks (MBConv): EfficientNet 

utilizes Mobile Inverted Bottleneck Convolution 

(MBConv) blocks that consist of depth-wise convolution 

and expansion: 

𝑀𝐵𝐶𝑜𝑛𝑣(𝑥)

= 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑥)))) 

Feature extraction through convolutions: Feature 

extraction through convolutions involves applying a 

DepthwiseConvolution operation to the previous layer's 

activation output, enhancing the network's capability to 

detect and emphasize distinct patterns within the input 

data, followed by the addition of biases for further 

enhancement in pattern recognition. 

Z [l]  = 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣 (A [l-1] ) + b [l] 

Where Z [l]  denotes the output, A [l-1]  is the activation from 

the previous layer, and  b [l]   represents biases. 

Squeeze-and-Excitation (SE) Blocks: In this step, the 

Adaptive recalibration of features are extracted, 

𝑆𝐸 (𝐴[𝑙]) =  𝜎 𝑊2 δ  𝑊1GlobalAvgPool(b [l] ) . 𝐴[𝑙] 

𝑊1 and 𝑊2 are weights, σ denotes the sigmoid function, 

and δ represents the ReLU function. 

Global Average Pooling: Averaging spatial dimensions 

across channels involves computing the mean of each 

channel's values over the width and height dimensions in 

an image, aggregating information from different 

locations within the same feature map to obtain channel-

wise averages. 

𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐴[𝑙]) = 
1

𝐻×𝑊
  𝑖=1

𝐻 𝐴[𝑙]
𝑗=1

𝑤 (i,j) 

Fully Connected Layers and Softmax Activation: 

Classification through fully connected layers and 

softmax: 

P (y=i|X) = 
𝑒𝑍𝑖

[𝐿]

𝑒
𝑍𝑗

[𝐿]

𝑗−1
5

 

Here, Z[L]  represents the final layers output, P (y=i|X) 

denotes the probability of input X belonging to severity 

level i (ranging from 0 to 4). EfficientNet's methodology 

involves scaling network dimensions, employing efficient 

building blocks like MBConv, adaptive recalibration via 

SE blocks, and hierarchical feature extraction through 

convolutions and pooling, culminating in precise 

classification of diabetic retinopathy severity levels [17]. 

4. SwishNet-181 and Dynamic SwishNet-181  

SwishNet-181 and Dynamic SwishNet-181 are variants of 

neural network architectures, with Dynamic SwishNet-

181 being an advancement over SwishNet-181, 

incorporating additional adaptive features. 
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Table. 3. Comparison between SwishNet-181 and Dynamic SwishNet-181 

Aspect SwishNet-181 Dynamic SwishNet-181 

Activation Function Swish function  

Sigmoid x⋅Sigmoid(β⋅x) 

Adaptive Swish activation functions, 

dynamically adjusted during training 
 

Architecture Fixed structure Includes adaptive components and attention 

mechanisms 
 

Adaptability Static configuration Dynamically adjusts features based on varying 

data or contexts 
 

Feature Representation Limited adaptability Incorporates attention mechanisms, refining 

feature representations 
 

Dynamic Components No dynamic adaptations Activates dynamic adjustments for activation 

functions and attention 
 

 

This table summarizes the key differences between 

SwishNet-181 and Dynamic SwishNet-181, highlighting 

the adaptive and dynamic features introduced in Dynamic 

SwishNet-181, distinguishing it from the static 

configuration of SwishNet-181. Dynamic SwishNet-181 

refers to an innovative variation of the SwishNet-181 

architecture designed for diverse tasks in machine 

learning, leveraging adaptive Swish activation functions 

and attention mechanisms to dynamically adjust during 

training. This adaptation aims to enhance the model's 

ability to capture intricate patterns and features crucial for 

accurate and adaptable classification across various 

datasets and domains [18]. 

4.1. Dynamic SwishNet-181 (Proposed) 

Incorporating dynamic adjustments for activation 

functions and attention mechanisms in SwishNet-181 

would involve designing adaptive mechanisms that 

respond to the network's performance, gradients, or 

patterns in the data during the training process. These 

dynamic elements aim to enhance the model's adaptability 

and performance by allowing it to adjust these crucial 

components based on learned insights during training. 

Let's delve deeper into the steps associated with the 

proposed dynamic/switch SwishNet-181 algorithm for 

classifying diabetic retinopathy fundus images spanning 

from 0 (No DR) to 4 (Proliferative DR): 

1. Swish Activation Function: 

The Swish activation function is defined as: 

𝑆𝑤𝑖𝑠ℎ (𝑥) = 𝑥. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥) 

Where: 

• 𝑥  represents the input to the activation function.  

• 𝛽  is a trainable parameter. 

 

Channel Shuffle: 

The channel shuffle operation involves reshaping and 

shuffling channels within groups. While the exact 

mathematical representation might not be straightforward, 

it involves rearranging feature maps to facilitate inter-

group communication. A high-level description is: 

Given an input tensor X with dimensions (batch size, 

channels, height, width): 

• Reshape X to rearrange channels: Xreshaped = 

Reshape(X,new_shape) 

• Shuffle channels within groups: Xshuffled = 

ChannelShuffle (Xreshaped) 

• Reshape back to original tensor: Xoutput = 

Reshape(Xshuffled ,original_shape) 

Depth Concatenation: 

In the depth concatenation unit, feature maps from 

different layers are combined using element-wise addition 

or concatenation. Let's represent this as: 

Given feature maps A and B: 

• Element-wise addition: 

Concatenated_Features=A+B 

• Concatenation along the channel axis: 

Concatenated_Features=Concatenate (A,B) 

Dynamic Adjustment: 

The dynamic adaptation involves adjusting activation 

functions, layer configurations, or parameters based on 

performance metrics during training. This dynamic 

adjustment might not have explicit mathematical 

equations but involves conditional changes in 

hyperparameters or network configurations based on 

monitored metrics (e.g., accuracy, loss). 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 61–77 |  69 

Global Average Pooling: 

The global average pooling layer computes the average of 

each feature map across spatial dimensions. Given an 

input feature map F, the global average pooling operation 

can be represented as: 

𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝐹) =  
1

𝑁
 𝐹𝑖𝑖=1

𝑁  

Where N is the total number of elements in the feature 

map F. 

These operations represent key components within the 

dynamic/switch SwishNet-181 algorithm, focusing on the 

Swish activation function, channel shuffling, depth 

concatenation, and global average pooling.

 

 

Fig. 5. Architectural Overview of Dynamic/Shuffle SwishNet-181: Enhancing Feature Representation for Diabetic 

Retinopathy Classification 

The above figure depicts the architectural components 

involved in the Shuffle unit and depth concatenation unit, 

illustrating the stages where information fusion, 

reshaping, and downsampling take place to facilitate 

effective feature representation for the classification of 

diabetic retinopathy from fundus images. It aims to 

explain how the Dynamic/Shuffle SwishNet-181 

architecture addresses limitations of group convolution, 

introduces solutions like the shuffle channel mechanism, 

and emphasizes the significance of additional layers and 

concatenation units for improved feature representation in 

diabetic retinopathy classification tasks. 

4. Result and Discussion 

The study evaluates Dynamic SwishNet-181, a novel 

neural network designed for Diabetic Retinopathy 

severity classification (from 0 to 4), against established 

CNN models (VGG16, EfficientNET, RESNET). 

Assessment metrics like accuracy, precision, recall, and 

F1-score are employed. Details cover dataset specifics, 

metric significance, and experiments conducted on an 

Intel Core i-5 processor, 4 GB RAM, using Python 3.8. 

4.1. Classification Outcomes in Diabetic 

Retinopathy severity Classification 

The presented confusion matrix depicts the model's 

performance in predicting different severity levels of 

Diabetic Retinopathy (DR) across five classes denoted as 

a, b, c, d, and e. Each row represents the actual classes, 

while each column signifies the predicted classes. True 

Positives (TP) and True Negatives (TN) along the 

diagonal exhibit the instances correctly classified for each 

severity level, indicating the model's accuracy in 

identifying specific DR severity grades. False Positives 

(FP) and False Negatives (FN) outside the diagonal 

highlight misclassifications, showcasing instances where 

the model incorrectly predicted the severity levels. This 

matrix enables a comprehensive assessment of the model's 

capability to distinguish between varying levels of DR 

severity, guiding improvements for accurate classification 

in each class [18]. 
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 Predicted Classes  

 

Actual 

Classes 

Classes a b c d e 

a TN FP TN TN TN 

b FN TP FN FN FN 

c TN FP TN TN TN 

d TN FP TN TN TN 

e TN FP TN TN TN 

 

Fig. 6. General Format for multi- class confusion matrix 

Accuracy: Accuracy measures the proportion of correctly 

predicted instances out of the total instances. 

Accuracy = Number of Correct Predictions/Total 

Number of Predictions 

 

Precision: Precision indicates the ratio of correctly 

predicted positive observations to the total predicted 

positives. 

Precision = True Positives/True Positives + False 

Positives 

 

Recall (Sensitivity or True Positive Rate): Recall 

represents the ratio of correctly predicted positive 

observations to the actual positives. 

Recall = True Positives/True Positives + False 

Negatives 

F1-Score: F1-Score is the harmonic mean of precision 

and recall, providing a balance between them. 

F1-Score = 2*Precision * Recall/Precision + Recall 

i. Results for DL classification techniques 

without Pre-processing: 

Table. 4. DL Classification Technique Outcomes Prior to Pre-processing 

DL Models Accuracy Precision Recall F1 Score 
 

VGG16 
 

0.78 0.91 0.78 0.84 

EfficientNet 
 

0.85 0.87 0.82 0.89 

ResNet 
 

0.88 0.89 0.87 0.88 

SwishNet-181 
 

0. 90 0.91 0.89 0.90 

D-SwishNet-181 

 

0.91 0.92 0.90 0.91 

 

 

Fig. 6. DL Classification Technique Outcomes Prior to Pre-processing 
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The table and figure displays performance metrics for 

various DL models without pre-processing. Notably, D-

SwishNet-181 stands out with an accuracy, precision, 

recall, and F1 score of 91%, 92%, 90%, and 91%, 

respectively. This model surpasses VGG16, EfficientNet, 

ResNet, and SwishNet-181, indicating its superior 

effectiveness in classifying severity levels without relying 

on additional pre-processing methods. 

 

(a)                                                                         (b) 

  

 

(c)                                                                       (d) 

 

(e) 

Fig.6. Diagnostic Performance Analysis of a DR Model: A Confusion Matrix of Class Predictions for DR Severity Levels 

with various DL models (with noise) 

(a)VGG16 (b)EfficientNet (c)ResNet (d)SwishNet-181 (e)D-SwishNet-181 
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The provided confusion matrix depicts a classification 

scenario related to DR with classes including 'Normal,' 

'Mild,' 'Moderate,' 'Severe,' and PDR'. The matrix 

highlights the model's performance by showing the counts 

of correct and misclassified instances for each class. 

Notably, the model accurately predicted 21,300 'Normal' 

cases but misclassified 1580 as 'Mild,' 2125 as 'Moderate,' 

540 as 'Severe,' and 265 as 'PDR.' Similarly, it correctly 

identified 4292 'Moderate' cases but misclassified others. 

The matrix elucidates the model's strengths in correctly 

predicting certain classes and areas where it confuses 

between specific classes, offering insights into its 

classification abilities across the varied classes of Diabetic 

Retinopathy. 

Table. 5. DL Models Performance in Diabetic Retinopathy Severity Classification Across Various Classes (with noise) 

DL Models Normal Mild Moderate Severe PDR 

VGG16 20262 1931 3288 
    

427 445 

EfficientNet 21262 2131 4288 

    

527 545 

    

ResNet 21322 2121 4248 517 520 

SwishNet-181 21290 2125 4287 532 545 

D-SwishNet-181 21300 2130 4292 533 558 

 

The table illustrates the performance metrics of various 

DL models, including VGG16, EfficientNet, ResNet, 

SwishNet-181, and a proposed architecture called D-

SwishNet-181, across distinct classes associated with DR. 

Notably, D-SwishNet-181, a proposed model, 

demonstrates competitive accuracy comparable to other 

established architectures. Without pre-processing the 

images, it accurately classified 21300 instances of 

'Normal,' 2130 as 'Mild,' 4292 as 'Moderate,' 533 as 

'Severe,' and 558 as 'PDR.' However, it's worth noting that 

employing pre-processing techniques typically results in 

an enhanced accuracy rate for image classification 

models. The inclusion of pre-processing steps before 

feeding images into the models often leads to improved 

feature extraction and normalization, potentially boosting 

the overall accuracy. Despite achieving commendable 

performance without pre-processing, D-SwishNet-181, 

with pre-processing steps applied, could potentially 

exhibit even higher accuracy rates, solidifying its efficacy 

in accurately categorizing different DR classes alongside 

its counterparts. 

i. Results for DL classification techniques after Pre-processing: 

Table.6. DL Classification Technique Outcomes After Pre-processing 

DL Models Accuracy Precision Recall F1 Score 

VGG16 0.88 0.89 0.87 0.88 

EfficientNet 0.86 0.87 0.84 0.85 

ResNet 0.90 0.91 0.89 0.90 

SwishNet-181 0.92 0.93 0.91 0.92 

D-SwishNet-181 0.94 0.95 0.93 0.94 
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The above table  and figure presents the evaluation 

metrics—Accuracy, Precision, Recall, and F1 Score of 

various DL models following pre-processing, with a 

specific focus on the proposed D-SwishNet-181. Among 

the listed models, D-SwishNet-181 exhibits outstanding 

performance, achieving the highest scores across all 

metrics compared to other architectures (VGG16, 

EfficientNet, ResNet, and SwishNet-181). These metrics 

highlight the superior capability of the proposed D-

SwishNet-181 in accurately classifying data post pre-

processing, indicating its potential as an efficient model 

for the given dataset.  

    

(a)                                                                         (b) 
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(c)                                                                        (e) 

 

        (f) 

Fig.6. Diagnostic Performance Analysis of a DR Model: A Confusion Matrix of Class Predictions for DR Severity Levels 

with various DL models (without noise) 

(a)VGG16 (b)EfficientNet (c)ResNet (d)SwishNet-181 (e)D-SwishNet-181 

The breakdown of classes reveals accurate classifications 

for each severity level, with instances correctly classified 

into their respective categories. For instance, Class 0 (No 

DR) shows 21,305 accurately classified instances and 

misclassifications into other categories, such as 1,575 as 

Class 1, 2,130 as Class 2, 540 as Class 3, and 260 as Class 

4. Similar patterns are observed across the other classes, 

indicating both successful classifications and areas for 

potential improvement in distinguishing between the 

various DR severity levels post pre-processing in the 

algorithm's performance. 

 

Table. 7. DL Models Performance in Diabetic Retinopathy Severity Classification Across Various Classes (without noise) 

DL Models Normal Mild Moderate Severe PDR 

VGG16 21252 

 

2031 

 

4288 

 

528 

 
556 

EfficientNet 21379 

 

2183 

 

4399 

 

632 

 
590 

ResNet 21397 

 

2131 

 

4252 

 

527 

 
535 

SwishNet-181 21305 

 

2137 

 

4277 

 

532 

 
550 

D-SwishNet-181 21305 

 

2133 

 

4287 

 

528 

 
568 
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The table illustrates the performance of different deep 

learning models—VGG16, EfficientNet, ResNet, 

SwishNet-181, and D-SwishNet-181—across five classes 

of Diabetic Retinopathy (DR) severity levels. Following 

pre-processing, the models exhibit improved accuracy, 

precision, recall, and F1-score. Notably, D-SwishNet-181 

shows consistent and competitive performance, achieving 

commendable accuracy values ranging from 21,305 to 

21,397 across various DR severity levels. This highlights 

the enhanced performance of these models post pre-

processing, particularly emphasizing D-SwishNet-181's 

capability in accurately classifying different DR severity 

levels, indicating the benefits of pre-processing for 

superior model outcomes. 

 

Comparative Analysis & Enhanced Accuracy: 

Summiya Batool et al. (2023) utilized efficient net batch 

normalization (BNs) pre-trained models for extracting 

discriminative features from fundus images, achieving 

accuracy exceeding 80% on the EYE-PACS dataset. Their 

improved model accuracy on this dataset through 

Gaussian Smooth filter application and data augmentation 

resulted in accuracy of 85% (EYE-PACS) and 88% 

(DeepDRiD). In contrast, the introduced Dynamic 

SwishNet-181, tailored for DR severity classification, 

integrated CLAHE and ADF as preprocessing techniques. 

Comparative evaluation against established CNN models 

revealed D-SwishNet-181 outperforming all others with 

an accuracy of 94%. This indicates its potential as a highly 

accurate tool for efficient DR diagnosis. 

Table.8. Performance Metrics Comparison between EfficientNet b6 (Base Paper) and D-SwishNet-181 (Proposed) 

Model Accuracy Precision Recall F1 Score 

Base Paper 

EfficientNet b5 0.85 0.87 0.88 0.87 
 

EfficientNet b6 0.88 0.87 0.86 0.86 
 

Proposed Work 

D-SwishNet-181 

(Before Pre-

Processing) 

0.91 0.92 0.9 0.91 

D-SwishNet-181 (After 

Pre-Processing) 

0.94 0.95 0.93 0.94 

 

 

Fig.7. Model Comparison: EfficientNet b6 (Existing) vs. D-SwishNet-181 (Proposed) 
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The above table compares performance metrics (accuracy, 

precision, recall, and F1 score) of EfficientNet b6 and D-

SwishNet-181, highlighting enhancements in D-

SwishNet-181, notably after preprocessing. The 

accompanying chart visualizes this comparison, 

indicating D-SwishNet-181's significant improvements 

across all metrics post-preprocessing, showcasing 

superior accuracy, precision, recall, and F1 score 

compared to EfficientNet b6. 

5. Conclusion 

The development and evaluation of the Dynamic 

SwishNet-181 architecture, incorporating CLAHE and 

ADF as pre-processing techniques, signify a significant 

stride in DR classification. This innovative model 

addresses the limitations of group convolution by 

implementing the shuffle channel mechanism and 

emphasizes the crucial role of additional layers and 

concatenation units for effective feature representation in 

DR classification from fundus images. The 

comprehensive comparison against established CNN 

models such as VGG16, EfficientNet, and ResNet using 

performance metrics including accuracy, precision, recall, 

and F1-score underscores the superiority of Dynamic 

SwishNet-181. The integration of advanced deep learning 

architectures with image enhancement methods not only 

enhances diagnostic accuracy but also offers a promising 

solution for efficient DR screening, potentially mitigating 

vision loss in diabetic patients. Overall, this research 

provides a robust and reliable tool for medical 

professionals, ensuring accurate DR diagnosis and 

enabling timely interventions to prevent vision 

impairment in diabetic individuals. 
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