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Abstract: This research is dedicated to developing an advanced deep learning diagnostic model capable of accurately diagnosing fetal 

cardiac anomalies in real-time ultrasound scan images. To achieve this, the dataset utilized in the previous research has undergone a 

transformation using Multispectral Local Binary Pattern (MLBP) and Adaptive Multispectral Local Binary Pattern (AMLBP) techniques. 

Local Binary Pattern (LBP) is an essential texture image feature, and MLBP and AMLBP are enhanced versions designed to capture 

intricate local structures and patterns within each image. Unlike the traditional LBP transformation, MLBP and AMLBP take color 

channels into account, allowing for more comprehensive feature extraction from the input images. The previously formed FetalEcho_V05 

dataset has been transformed into two distinct datasets: FetalEcho_V0502 using MLBP and FetalEcho_V0503 using AMLBP. Both of 

these datasets are then employed in training customized versions of AlexNet, custom CNN(CCNN), VGG16, and ResNet50 deep learning 

(DL) models to create powerful classifiers. Among all the models, CCNN model demonstrated the best performance on the 

FetalEcho_V0503 dataset, showcasing its superiority in accurately diagnosing fetal cardiac anomalies from real-time ultrasound scan 

images. 
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1. Introduction 

Congenital heart defect (CHD) in fetuses refers to 

structural abnormalities or malformations in the heart that 

are present at birth. These are conditions that occur while 

the baby's heart is developing during pregnancy. Such 

abnormalities can involve issues with the heart's 

chambers, valves, blood vessels, or other structural 

components. These anomalies may vary in severity and 

can have a significant impact on the baby's health and 

well-being. Accurate diagnosis and understanding of fetal 

cardiac structural abnormalities are crucial for 

appropriate medical management and intervention both 

during pregnancy and after birth. Diagnosing and 

studying these anomalies often involve the use of 

ultrasound and other diagnostic techniques to assess the 

fetal heart's structure and function. Researchers and 

medical professionals often study these conditions to 

improve their detection, treatment, and management, 

ultimately aiming to ensure the best possible outcomes for 

affected infants. These defects can affect the walls, 

valves, or blood vessels of the heart, disrupting its normal 

functioning. CHD can vary in severity, ranging from 

minor issues that may not require treatment to complex 

conditions that necessitate immediate medical 

intervention. Prenatal detection and diagnosis of CHD  

are crucial as they allow for early interventions and 

appropriate management plans to be put in place, 

improving outcomes for affected infants. Various 

diagnostic techniques, including ultrasound imaging and 

fetal echocardiography, are used to identify CHD in the 

fetus, enabling timely medical interventions and 

specialized care during and after birth. Early detection 

and intervention can significantly impact the prognosis 

and quality of life for infants with CHD. 

The current process of diagnosing fetal heart anomalies 

involves a combination of prenatal screening tests, fetal 

ultrasound imaging, and specialized examinations. 

Prenatal screening tests, such as maternal blood tests and 

non-invasive prenatal testing, help identify potential risk 

factors and indicate the need for further diagnostic 

evaluations. Fetal ultrasound imaging plays a crucial role 

in visualizing the fetal heart and detecting any structural 

abnormalities or functional impairments. These 

ultrasound scans are typically performed by skilled 

sonographers or obstetricians and involve a detailed 

assessment of the fetal heart's chambers, valves, blood 

flow patterns, and overall cardiac function. The findings 

from these diagnostic tests are then interpreted by 

specialized fetal cardiologists or pediatric cardiologists, 

who provide an accurate diagnosis and guide subsequent 

management and treatment plans. The current process of 
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diagnosing fetal heart anomalies combines medical 

expertise, advanced imaging technologies, and 

specialized evaluations to ensure early detection and 

appropriate care for affected infants. 

The manual system for early diagnosis of fetal congenital 

heart defects (CHD) is associated with several drawbacks. 

One limitation is the subjectivity involved, as 

interpretations of fetal heart images can vary among 

healthcare professionals, leading to inconsistent and 

potentially incorrect diagnoses. Additionally, manual 

analysis can be time-consuming, requiring significant 

effort from practitioners and potentially causing delays in 

diagnosis and subsequent treatment planning. 

Interobserver variability further contributes to 

inconsistencies in diagnostic outcomes, particularly in 

regions with limited access to specialized expertise. 

Furthermore, manual diagnosis lacks automation and 

does not leverage advanced technologies such as artificial 

intelligence and machine learning. Overcoming these 

limitations is crucial for improving early detection of fetal 

CHD.  

There are statistics that indicate a relatively poor 

diagnosis rate of fetal heart anomalies. These statistics 

highlight the challenges and limitations in accurately 

identifying and diagnosing these conditions during 

prenatal care. According to some studies, the detection 

rate of major fetal heart anomalies during routine prenatal 

ultrasound screenings ranges from approximately 30% to 

50%. This means that a significant number of cases may 

go undetected or be misdiagnosed, leading to delayed or 

inadequate management of these conditions. The reasons 

for the lower detection rate can vary and may include 

factors such as the complexity of cardiac abnormalities, 

limitations of imaging techniques, variations in operator 

expertise, and the timing of ultrasound examinations. 

Furthermore, certain cardiac defects may be more 

challenging to visualize and diagnose, requiring 

specialized expertise and advanced imaging modalities. 

These statistics emphasize the need for ongoing research, 

advancements in imaging technology, and improved 

training and collaboration among healthcare 

professionals involved in prenatal care to enhance the 

early detection and accurate diagnosis of fetal heart 

anomalies. 

The development and implementation of automated and 

computer-aided diagnostic systems have the potential to 

enhance accuracy, efficiency, and consistency in fetal 

CHD diagnosis, ultimately improving patient outcomes. 

Hence it is vital and need of the hour to develop an 

automated ststem for capturing real-time images and 

diagnose the fetal cardiac anomaly.  

 

2. Literature Review 

A literature review is conducted for understanding the 

scope of LocalBinaryPatterns for analysing medical 

images, class wise evaluation of performance of AI 

models and to establish the scope of the research. The 

following research had implemented the same concept in 

a similar domain and proved to be successful. 

[1] Patil et al. concentrate on emotion recognition, which 

is pivotal in human cognition, innovation, and creativity. 

Real-time emotion detection encounters challenges like 

noise and hardware limitations. To tackle this, the 

researchers propose a hardware setup comprising an ECG 

sensor, a temperature sensor, and a signal processing 

circuit. ECG data is utilized to compute RR intervals, and 

machine learning techniques are employed to predict 

emotions using these features. Emotions are displayed on 

the Arduino serial port, leveraging the WESAD 

benchmark dataset and various libraries. The paper 

introduces several innovative aspects, including ECG 

utilization for emotion detection, real-time temperature 

and ECG data capture, real-time emotion visualization on 

the Arduino serial port, and performance evaluation using 

F1 score, macro average, and weighted average. It also 

compares the performance of different algorithms, 

emphasizing the superiority of probability-based Naive 

Bayes over traditional methods like KNN, SVM, and 

Random Forest. The article presents performance metrics 

through interactive computations, tabular representation, 

and graphical display. 

Khasendar et al. [2] aim to develop and validate a 

computerized model for classifying malignant or banign 

ovarian masses using ultrasound images. The images 

undergo pre-processing and enhancement, and LBP 

Histograms are extracted. A SVM is trained and achieved 

with accuracy of 0.62 for the original images, which 

significantly improves to 0.77 when the images when pre-

processed and treated with a LBP operator. This study 

demonstrates the effectiveness of SVM in accurately 

categorizing ovarian masses and underscores the 

importance of incorporating texture-related features for 

enhanced classification. 

Nanni et al. [3] explore the application of image-based 

machine learning techniques, specifically focusing on 

various Local Binary Patterns (LBP) as texture 

descriptors in medical image analysis. The paper provides 

an extensive literature review of existing LBP variants, 

discussing their strengths and weaknesses. Additionally, 

the authors conduct new experiments using different 

LBP-based descriptors and propose novel texture 

descriptors specifically designed for biomedical images. 

These descriptors capture texture information by 

considering different neighborhood calculation shapes 

and grayscale difference encodings. The extracted 
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features are then utilized to train SVM classifier. The 

study aims to enhance the understanding of LBP variants 

and their effectiveness in biomedical image analysis, 

contributing to the advancement of medical imaging 

techniques. 

Zeebaree et al. [4] introduce a feature-based fusion 

scheme for breast cancer image pattern recognition. By 

enhancing Local Binary Pattern (LBP) features and 

utilizing filtered noise reduction, the proposed method 

achieves high accuracy, sensitivity, and specificity. The 

multi-level fusion scheme generates diverse features from 

pre-processed ultrasound images, leading to improved 

classification results. The approach shows great potential 

for enhancing breast cancer image recognition and 

improving the accuracy of diagnosis. 

In a meta-analysis by Holland et al. [12], the impact of 

prenatal versus postnatal diagnosis of cardiac anomalies 

on mortality rate is examined. The results underscore the 

importance of prenatal diagnosis in reducing postnatal 

mortality associated with congenital heart defects 

(CHDs). 

Suard et al. [13] conduct an observational study to 

evaluate the accurateness of prenatal diagnosis of CHDs 

in the South France. This study, encompassed 249,070 

deliveries, finds that the diagnosis-rate for Group-1 CHDs 

(non-repairable anomalies) was 97.8%, while Group-2 

(anatomically repairable with neonatal cardiologic 

attention) had a diagnosis rate of 6.3%, and Group-3(no 

alternative anatomical process required) had a diagnosis 

rate of 65.9%. The findings suggest the need for improved 

prenatal and postnatal diagnosis for better management of 

Group 2 and Group 3 CHDs. 

Changlani et al. [14] examine the shortterm outcomes in 

infants with prenatal-diagnosis of CHDs in a tertiary 

cardiovascular attention centre. The study, including 552 

fetuses diagnosed with CHDs, demonstrates that prenatal 

identification of CHDs facilitated planned delivery in a 

specialized cardiac care centre, resulting in favorable 

outcomes, especially among individuals receiving 

devoted postnatal cardiac attention. 

Vijayaraghavan et al. [15] conduct an experimental study 

to compare the consequences of prenatal and postnatal-

diagnosis of CHDs, particularly focusing on the concept 

of prearranged peripartum care in low to middle income 

countries. This study highlights the need for better 

implementation of prearranged care for neonates with 

critical congenital heart defects in resource-constrained 

settings. 

The previous research strongly established the need of the 

implementation even then there are no published 

implementations available for the same. The research 

explores the possibilities, the development and 

integration of real-time automated diagnostic systems 

into fetal congenital heart disease (CHD) diagnosis with 

the help of texture feature based image transformations. 

By harnessing the power of technology, these systems can 

amplify accuracy, streamline processes, and foster 

consistency in the diagnosis of fetal CHD.  

3. Data Collection and Preprocessing 

The FetalEcho_V05 dataset was developed in the 

previous research which is an integral part of a 

comprehensive research work on identifying structural 

heart defects in developing fetuses. The dataset consists 

of 1600 images obtained from esteemed sources such as 

specialized fetal clinics, renowned clinical experts, and 

reputable research repositories like Radiopedia and Fetal 

Medicine foundations. Every image underwent rigorous 

manual classification and validation by clinical 

specialists. It includes 16 distinct classes representing 

critical structural anomalies such as Atrial Septal Defect, 

Ventricular Septal Defect, and Tetralogy of Fallot, as well 

as normal images. To maintain accuracy and reliability, 

the dataset was carefully balanced and standardized, with 

all images adjusted to a consistent resolution of 256 * 256 

* 3. To ensure exceptional quality, data collection 

involved sourcing from esteemed establishments, 

including specialized fetal clinics, renowned clinical 

experts, and active forums in fetal medicine. These 

stringent measures guarantee the dataset's credibility and 

make it a valuable resource for in-depth studies and 

advanced analyses of structural heart defects in 

developing fetuses.  

Extensive research focused on optimizing pre-processing 

techniques were done for the FetalEcho_V05 dataset, 

aiming to unlock its true potential. Rescaling, 

normalization, and filtering emerged as key techniques 

for enhancing the dataset. Rescaling ensured uniformity 

by resizing images to a fixed size. Normalization tackled 

brightness and contrast variations, improving robustness. 

Filtering eliminated noise, blurriness, and enhanced 

image details. Evaluating different preprocessing 

techniques using AlexNet, noise removal achieved 87% 

accuracy, blur removal contributed in improving it to 

88%, and the sharpening yielded 69%. The combination 

of blur and noise removal reached an impressive 89% 

accuracy. The combination of Noice removal and 

Sharpening demonstrated 57% accuracy and Blur 

removal and sharpening showcased 77% accuracy. For 

this series of experiments the dataset versions were 

created from the base dataset named FetalEcho. The 

versions were numbered from FetalEcho_V01 to 

FetalEcho_V08. The FetalEcho_V05 dataset was the one 

which underwent the Blur removal and Noice removal 

Preprocessing. Based on these findings, the successful 
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pre-processing methodology was identified and the 

FetalEcho_V05 dataset selected for further experiments.  

Fig.1 shows some sample images from FetalEcho_V05 

dataset. 

 

Fig.1 Sample images from FetalEcho_V05 

4. Methodology 

The Local Binary Pattern (LBP) serves as a highly 

utilized texture descriptor within computer vision and 

image analysis, holding significant importance across 

numerous classification endeavors. LBP is highly robust 

to changes in illumination, making it effective in 

scenarios where lighting conditions can vary. It encodes 

local texture patterns, making it insensitive to overall 

brightness changes. LBP effectively captures texture 

information by considering the relationships between a 

pixel and its neighbouring pixels. This is particularly 

valuable in tasks where texture plays a significant role, 

such as texture classification or material recognition. It is 

computationally efficient and simple to implement. It 

involves binary comparisons of pixel values, making it 

suitable for real-time or resource-constrained 

applications. It can be modified to achieve rotation 

invariance, which is important in scenarios where the 

orientation of the texture patterns may vary. This makes 

it suitable for a widespread variety of applications. It is 

robust to noise to some extent, as it focuses on the 

relationships between pixels in a local neighbourhood. 

This can be particularly useful in scenarios where the 

input data may be noisy. It can be used to create 

histograms that describe the distribution of local patterns 

within an image or a region. These histograms are 

regularly used as feature-vectors for classification tasks. 

It is not limited to a specific type of data. It can be applied 

to various modalities, including images, videos, and 3D 

data, making it a versatile choice for texture and pattern 

analysis. By focusing on local neighbourhoods, LBP 

helps preserve local information, which can be important 

in tasks where global context is less relevant. 

The FetalEcho_V05 dataset framed in the previous 

research undergoes transformation with two handcrafted 

image transformation process named as Multispectral 

Local Binary Pattern (MLBP) and Adaptive Multispectral 

Local Binary Pattern (AMLBP). These transformations 

are focusing at better capturing of the minute details in 

the image leveraging better learning by the models 

producing classifiers with better and faster diagnostic 

power. The classifier is further used for classifying the 

real-time images captured by the device. The overall 

research framework is depicted in the Fig.2 architecture. 

 

 

Fig.2 Overall Framework of Fetal Cardiac Anomaly Detection Model 

LBP has established itself as a popular method for texture 

representation in various image processing tasks. It 

calculates LBP value of one pixel by comparing its gray-

level pixel concentration with that of the neighbouring 

pixels. However, a limitation of LBP is that it is typically 

computed over grayscale images, thereby overlooking the 

valuable multi-channel information present in the data. 

To overcome this drawback of the LBP image 

transformation can be done by capturing the different 

colour channel information through the utilization of 

accumulator patterns and corresponding decoder patterns. 

This innovative approach enables the incorporation of the 

multiple channel information into the LBP framework, 

enhancing its effectiveness and widening its scope in deep 

learning and classifying applications. Fig.3 shows the 

process of extracting the multi spectral information from 

an image. 
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Fig.3 LBP Information retrieval from multiple channels 

This research is exploring two different transformation 

approaches named as Multispectral Local Binary Pattern 

(MLBP) and Adaptive Multispectral Local Binary Pattern 

(AMLBP) transformation.  The dataset FetalEcho_V05 

will be transformed to create FetalEcho_V0502 and 

FetalEcho_V053 by using MLBP and AMLBP 

transformations respectively. These datasets are 

evaluated with the CCNN, Alex Net, VGG16 and Res Net 

models for classification efficiency of fetal cardiac 

anomaly classifiers.  

4.1 Multispectral Local Binary Pattern (MLBP) 

Extraction 

The MLBP is intended for unfolding the texture of an 

image. The feature extraction process is described below. 

Let ‘IM’ be a multispectral image of size ro ⁕ co⁕ ch, 

where co, ro and ch signify the columns, rows, and 

channels in numbers correspondingly. Let IMc be the cth 

channel of the image IM, where, c ∈ [1, ch]. There are J 

neighbours move apart at equivalent radius from a pixel 

𝐼𝑀𝑐(𝑥, 𝑦), denoted as 𝐼𝑀𝑐
𝑗
(𝑥, 𝑦) , where i ∈ [1, J], x ∈ [1, 

ro] and y ∈ [1, co]. The LBP of the present pixel in the 

present channel c of all channels, 𝐿𝐵𝑃𝑐(𝑥, 𝑦), is computed 

as:  

𝐿𝐵𝑃𝑐(𝑥, 𝑦) = ∑ 𝐿𝐵𝑃𝑐
𝑛(𝑥, 𝑦)

𝐽

𝑗=1

× 𝑓𝑖,   ∀𝑐 ∈ [1, 𝑐ℎ]  (1) 

Where, 

𝐿𝐵𝑃𝑐
𝑗
(𝑥, 𝑦) = {1,       𝐼𝑀𝑐

𝑗
(𝑥, 𝑦) ≥  𝐼𝑀𝑐(𝑥, 𝑦)

0,                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (2) 

Here, 𝑓𝑗, the weight function used to calculate the 

decimal equivalent of the resulting LBP is expressed as: 

𝑓𝑗 = (2)(𝑗−1), ∀𝑗 ∈ [1, 𝑗]  (3) 

Now, the multispectraladdermap, MLBP(x,y), grounded 

on these structures is defined as:  

𝑎𝑑𝑑𝑒𝑟𝑗(𝑥, 𝑦) = ∑ 𝐿𝐵𝑃𝑐
𝑗
(𝑥, 𝑦)

𝑗
𝑐=1  (4) 

The expression "c ∈ [1, ch+1]" indicates that the value of 

"c" belongs to the interval from 1 to "ch+1". This implies 

that if the binary pattern of a specific pixel has a value of 

'1' at a particular position for all channels, then the 

resulting sum for that pixel, denoted by the variable 

𝑎𝑑𝑑𝑒𝑟𝑗 , will be the sum of the individual channel values. 

Once the multispectral adder map is computed, the adder-

based LBP, 𝑀𝐿𝐵𝑃𝑐
𝑛(𝑥, 𝑦) for the pixel(x,y) of channel ‘c’ 

is computed as: 

𝑀𝐿𝐵𝑃𝑐
𝑗(𝑥, 𝑦) = {

1,       𝑎𝑑𝑑𝑒𝑟𝑗(𝑥, 𝑦) = 𝑐 − 1
0,                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (5) 

For ∀𝑗 ∈ [1, 𝐽]𝑎𝑛𝑑 ∀𝑐 ∈ [1, 𝑐ℎ + 1]. e 

The decimal equivalent of the above pattern can be 

calculated as: 

𝑀𝐿𝐵𝑃𝑐(𝑥, 𝑦) = ∑ 𝑀𝐿𝐵𝑃𝑐
𝑗(𝑥, 𝑦)𝐽

𝑗=1 × 𝑓𝑗 , ∀𝑐 ∈

[1, 𝑐ℎ + 1]    (6) 

where 𝑓𝑗  is the weight function mentioned in equation 

(3).  

From equations (5) and (6), we can infer that a single 

pixel of the image will generate ch + 1 patterns. 

Consequently, this leads to the creation of four output 

MLBP images. Further a fusion technique is used to 

combine ch+1 MLBP patterns to create a single and more 

informative representation. By taking the average value 

at each pixel location, the fused pattern gives more weight 

to the most common information from any of the MLBP 

sources. Fig.2 shows an overall demonstration of one 

pixel of each LBP of the three colour channels getting 

converted to MLBP pixel and a sample ultrasound image 

transformed to MLBP image. 
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𝑀𝐿𝐵𝑃_𝐹𝑢𝑠𝑒𝑑(𝑥, 𝑦) = 𝐴𝑉𝐺(𝑀𝐿𝐵𝑃_1(𝑥, 𝑦), 𝑀𝐿𝐵𝑃_2(𝑥, 𝑦), 𝑀𝐿𝐵𝑃_3(𝑥, 𝑦), 𝑀𝐿𝐵𝑃_4(𝑥, 𝑦)    (7) 

 

 

Fig.4.Example of image transformation process using MLBP 

Fig.4 shows an sample calculation of MLBP image pixel values. Fig.5 shows a sample fetal echo ultrasound image 

transformed into an MLBP image using MLBP image transformation technique.  

 

Fig.5 Sample fetal echo ultrasound image after transforming using MLBP technique 

 

4.2 Adaptive Multispectral LocalBinaryPattern 

(AMLBP) Extraction 

The AMLBP stands as an enhanced version of MLBP, 

utilized for efficiently and simply describing the texture 

of an image. The feature extraction process is outlined as 

follows: Let 'IM' denote a multispectral image with 

dimensions ro × co × ch, where ro, co, and ch represent 

the number of rows, columns, and channels of the image, 

respectively. Let IMc denote the c-th channel of the image 

IM, where c ∈ [1, ch]. It is assumed that there are J 

neighbors equally spaced at a given radius from any pixel 

IMc(x,y), denoted as IMc^j(x,y), where j ∈ [1, J], x ∈ [1, 

ro], and y ∈ [1, co].The LBP of the present pixel in the 

present channel c of all channels, 𝐿𝐵𝑃𝑐(𝑥, 𝑦), is computed 

with equation (1). 

The adder map (AM) is obtained using equation (4). The 

AMLBP pattern is obtained from the adder map using the 

below mentioned accumulator truth table Table.1. 

Resulting eight-bit AMLBP pattern which will be 

converted into decimal using the weight function 𝑓𝑗. 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 78–91 |  84 

Table.1 Accumulator 

LBP_RED(x,y

) 

LBP_BLUE(x,y

) 

LBP_GREEN(x

,y) AM 

AML

BP 

0 0 0 0 0 

1 0 0 1 0 

0 1 0 1 0 

0 0 1 1 0 

1 1 0 2 1 

1 0 1 2 1 

0 1 1 2 1 

1 1 1 3 1 

 

This method when compared to the MLBP transformation 

take s a smaller number of steps resulting into less 

execution time and more efficiency by capturing the 

patterns more efficiently from the images. Fig.3 shows an 

overall demonstration of one pixel of each LBP of the 

three colour channels getting converted to MLBP pixel 

and a sample ultrasound image transformed to MLBP 

image.’ 

 

Fig.6 Example of image transformation using AMLBP 

 

Fig.7 Sample fetal echo ultrasound image after transforming using MLBP technique 

 

Fig.6 shows an sample calculation of AMLBP image 

pixel values. Fig.7 shows a sample fetal echo ultrasound 

image transformed into an AMLBP image using MLBP 

image transformation technique.  

The FetalEcho_V0502 obtained after transforming the 

images using MLBP and FetalEcho_V0503 obtained 

after transforming the images using AMLBP had 

undergone experiments with the customized DL models 
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identified in the previous research. The customized 

models that were identified in the previous research were 

CCNN, AlexNet, ResNet50 and VGGNet16. 

The FetalEcho_V0502 and FetalEcho_V0503 dataset, 

comprises of a collection of 1600 images categorized into 

16 distinct sets, representing 16 structural heart defects of 

fetus. Fig.6 (a) and (b) shows some sample images from 

the dataset FetalEcho_V0502 and FetalEcho_V0503 

respectively.  

4.3 Model building and Evaluation 

In this study, four deep learning (DL) models—AlexNet, 

CCNN, VGG16, and ResNet50—are employed to 

analyze the fetal echo dataset. These models are selected 

based on their consistent performance in prior research 

[12]. Each model is characterized by specific 

hyperparameters and customized layers. 

The CCNN model is structured as a Sequential model, 

where layers are stacked sequentially. It starts with a 

Conv2D layer with 64 filters and a 3x3 kernel size, 

applying convolutional operations to extract features 

from input images with ReLU activation for non-

linearity. Following this, another Conv2D layer with 32 

filters and a 3x3 kernel size refines the extracted features. 

A Flatten layer converts the 2D feature maps into a 1D 

vector for fully connected layers. The model includes a 

Dense layer with 16 units and softmax activation for 

predicting class probabilities. Stochastic Gradient 

Descent (SGD) optimizer with a learning rate of 0.001 

and categorical cross-entropy loss are utilized for multi-

class classification. 

AlexNet, renowned for its performance on the ImageNet 

challenge, begins with a Conv2D layer comprising 96 

filters and an 11x11 kernel size, followed by ReLU 

activation. Max pooling with a 3x3 pool size and a stride 

of 2x2 reduces feature map dimensions. Successive 

Conv2D layers follow with 256, 384, and 512 filters, each 

using ReLU activation and max pooling. The output is 

flattened and fed into fully connected layers with 4096 

units and ReLU activation. Dropout layers with a rate of 

0.5 are included to prevent overfitting. The model 

concludes with a Dense layer featuring softmax activation 

for multi-class classification. Adam optimizer with a 

learning rate of 0.001 and categorical cross-entropy loss 

are employed. 

ResNet-50, pre-trained on ImageNet, is fine-tuned for the 

task with pre-trained layers frozen to retain learned 

features. A Global Average Pooling 2D layer reduces 

spatial dimensions, followed by two Dense layers with 

1024 units each and ReLU activation to capture high-

level patterns. The final Dense layer features softmax 

activation for multi-class classification. The model uses 

the Adam optimizer with a learning rate of 0.001 and 

categorical cross-entropy loss. 

Derived from the VGG architecture, the VGG16 model 

comprises convolutional blocks with escalating filters, 

followed by max pooling. Fully connected layers handle 

classification tasks. The first block includes 64 filters 

with a 3x3 kernel and ReLU activation. Subsequent 

blocks have 128, 256, 512, and 512 filters. The output is 

flattened and directed into fully connected layers with 

4096 units and ReLU activation. Dropout layers with a 

rate of 0.5 mitigate overfitting. The final Dense layer with 

softmax activation facilitates multi-class classification. 

The model is compiled with categorical cross-entropy 

loss, Adam optimizer, and accuracy metric. 

Each model is trained using 80% of the MLBP images 

and AMLBP images, and subsequently evaluated using 

metrics such as precision, recall, accuracy, and F1 score, 

commonly used for classifier performance assessment. 

5. Results and Discussions 

Rigorous evaluation of the selected models was carried 

out using essential metrics such as Accuracy, Precision, 

Recall, and F1-score on the FetalEcho_V0502 and 

FetalEcho_V0503 dataset. 

For the CCNN model, an 80%/20% train-test split ratio 

was employed, while for Alex Net, VGG16, and 

ResNet50, a split ratio of 70%/30% was utilized. The 

learning rates were set at 0.001 for CCNN and 0.0001 for 

Alex Net, VGG16, and ResNet50. Regarding 

optimization algorithms, Stochastic Gradient Descent 

(SGD) was used for CCNN, Local Response 

Normalization for Alex Net, Momentum SGD for 

VGG16, and Adaptive Moment Estimation for ResNet50. 

The ReLU activation function was chosen for all models 

during training, and the loss functions applied were 

Softmax Cross-Entropy for CCNN and Categorical 

Cross-Entropy for AlexNet, VGG16, and ResNet50. 

Each model featured varying numbers of hidden layers, 

with CCNN having 10, Alex Net with 40, VGG16 with 

50, and ResNet50 with 10. To combat overfitting, dropout 

with rates of 0.5 was applied for CCNN, 0.4 for Alex Net 

and VGG16, and 0.3 for ResNet50. In each training 

epoch, the models underwent 20 iterations, and kernel 

filter sizes were set to 3x3 for CCNN, 11x11 for AlexNet, 

and 3x3 for VGG16 and ResNet50. Max-pooling was 

chosen as the pooling technique, and a batch size of 64 

was used, along with 100 epochs to ensure adequate 

model training. Table.2 shows the hyperparameter setting 

for all the four models. 
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Table 2. Hyper parameters settings 

Models 

Trai

n-

test 

split 

rati

o 

Le

ar-

nin

g 

rat

e 

Optimiz

ation 

algorith

m 

Acti

va- 

tion 

funct

ion 

Loss 

functi

on 

Num

ber 

of 

hidd

en 

layer

s 

The 

dro

p-

out 

rate 

Num

ber of 

iterati

ons 

per 

epoch 

Kerne

l or 

filter 

size in 

convol

utiona

l 

layers 

Po

oli-

ng 

siz

e 

Bat

ch 

siz

e 

E

p- 

oc

h 

CCNN 
0.8-

0.2 

0.0

01 

Stochast

ic 

Gradient 

Descent 

(SGD) 

ReL

U 

Softma

x 

Cross-

Entrop

y 

10 0.5 20 3*3 

Ma

x-

poo

lin

g 

64 
10

0 

AlexNe

t 

0.7-

0.3 

0.0

00

1 

Local 

Respons

e 

Normali

zation 

ReL

U 

Catego

rical 

cross 

entrop

y 

40 0.4 20 11*11 

Ma

x-

poo

lin

g 

64 
10

0 

VGG16 
0.7-

0.3 

0.0

00

1 

Moment

um SGD 

ReL

U 

Catego

rical 

cross 

entrop

y 

50 0.4 20 3*3 

Ma

x-

poo

lin

g 

64 
10

0 

ResNet

50 

0.7-

0.3 

0.0

00

1 

Adaptiv

e 

Moment 

Estimati

on 

ReL

U 

Catego

rical 

cross 

entrop

y 

10 0.3 20 3*3 

Ma

x-

poo

lin

g 

64 
10

0 

After extensive iterations and thorough hyperparameter 

tuning, the CCNN model appeared as the top-performing 

classifier for the MLBP image dataset, 

FetalEcho_V0502. It delivered impressive results with 

precision, accuracy, recall, and F1 scores of 0.94, 0.92, 

0.94, and 0.93, respectively. In contrast, the AlexNet 

model achieved precision, accuracy, recall, and F1 scores 

of 0.92, 0.89, 0.89, and 0.89, respectively. Similarly, the 

VGG16 model demonstrated notable performance, 

yielding precision, accuracy, recall, and F1 scores of 0.91, 

0.87, 0.89, and 0.88, respectively. Additionally, the 

ResNet50 model attained precision, accuracy, recall, and 

F1 score of 0.93, 0.92, 0.93, and 0.93, respectively. Upon 

comprehensive evaluation, the CCNN model exhibited 

superior predictive capabilities compared to the other 

models on the FetalEcho_V0501 dataset. Tables 3 and 4 

present the performance evaluation of the MLBP 

classifier and AMLBP classifier, respectively, illustrating 

the precision, accuracy, recall, and F1 scores for each 

model. 

Table.3 Performance Results of Image Classification Models based on 

MLBP image dataset - FetalEcho_V0502 

Models Precision Recall Accuracy F1 Score 

CCNN 0.94 0.92 0.94 0.93 

VGG16 0.91 0.88 0.89 0.88 

AlexNet 0.92 0.89 0.89 0.89 

ResNet50  0.93  0.92 0.93  0.93 
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After multiple iterations, the CCNN model was identified 

as the optimal model for the AMLBP image dataset, 

FetalEcho_V0503. recall, For the AlexNet model, the 

metrics were precision of 0.92, recall of 0.90, accuracy of 

0.91, and F1 score of 0.90. Similarly, the VGG16 model 

achieved a precision - 0.92, recall - 0.90, accuracy - 0.91, 

and F1 score - 0.89. Lastly, the ResNet50 model yielded 

precision, recall, accuracy, and F1 score of 0.94, 0.93, 

0.94, and 0.93, respectively. Considering the overall 

performance, the CCNN model emerged as the top 

performer on the FetalEcho_V0502 dataset. The detailed 

results are presented in Table 3, outlining the precision, 

recall, accuracy, and F1 scores for each model. 

 

Table.4. Performance Results of Image Classification Models based on 

AMLBP image dataset - FetalEcho_V0503 

Models 
Precision Recall 

Accurac

y 
F1 Score 

CCNN 0.95 0.93 0.94 0.93 

VGG16 0.92 0.90 0.91 0.89 

AlexNet 0.92 0.90 0.91 0.90 

ResNet50  0.94  0.93 0.94  0.93 

 

After conducting multiple iterations, it was found that the 

CCNN model outperformed other models on the 

FetalEcho_V0501 dataset. It achieved notable precision, 

accuracy, recall, and F1 score of 0.95, 0.94, 0.93, and 

0.93, respectively. AlexNet exhibited precision, 

accuracy, recall, and F1 score of 0.92, 0.91, 0.90, and 

0.90, while the VGG16 model achieved a precision of 

0.92, recall of 0.90, accuracy of 0.91, and F1 score of 

0.89. The ResNet50 model yielded precision, recall, 

accuracy, and F1 score of 0.94, 0.93, 0.934, and 0.93, 

respectively. Overall, CCNN demonstrated superior 

performance on the FetalEcho_V0501 dataset. These 

results are summarized in Table 4, providing details on 

precision, recall, accuracy, and F1 scores for each model. 

In prior research, LBP transformations were utilized to 

construct the FetalEcho_V0501 dataset, focusing on fetal 

cardiac anomaly detection. The CCNN model achieved 

precision, accuracy, recall, and F1 score of 0.94, 0.93, 

0.91, and 0.93, respectively. AlexNet showed precision, 

accuracy, recall, and F1 score of 0.92, 0.89, 0.88, and 

0.89, while the VGG16 model attained precision, 

accuracy, recall, and F1 score of 0.91, 0.87, 0.87, and 

0.89, respectively. Lastly, the ResNet50 model yielded 

precision, accuracy, recall, and F1 score of 0.93, 0.93, 

0.91, and 0.93, respectively. CCNN emerged as the best 

performer on the FetalEcho_V0501 dataset. These 

previously obtained results are reconfirmed in Table 5, 

illustrating precision, recall, accuracy, and F1 scores for 

each model. 

Table 5. Performance Results of Image Classification Models based on LBP 

image dataset - FetalEcho_V0501 

Models  Precision Recall Accuracy F1 Score 

CCNN 0.94 0.91 0.93 0.93 

VGG16 0.91 0.87 0.87 0.89 

AlexNet 0.92 0.88 0.89 0.89 

ResNet50  0.93  0.91 0.93  0.93 
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Comparative Analysis  

The performance results for the DL classifiers for the 

three transformation techniques LBP, MLBP and 

AMLBP are recorded using the precision, accuracy recall, 

and F1-score metrics. The values are depicted in the table. 

Foe easy comparison the Fig.8 shows the chart illustrating 

the performance of the three transformation techniques. 

 

Table 6. The result illustration of all three transformation techniques 

Transformation 

Technique 
Models Precision Recall Accuracy 

F1 

Score 

LBP 

CCNN 0.94 0.91 0.93 0.93 

AlexNet 0.92 0.88 0.89 0.89 

VGG16 0.91 0.87 0.87 0.89 

ResNet50 0.93 0.91 0.93 0.93 

MLBP 

CCNN 0.94 0.92 0.94 0.93 

AlexNet 0.92 0.89 0.89 0.89 

VGG16 0.91 0.88 0.89 0.88 

ResNet50  0.93  0.92 0.93  0.93 

AMLBP 

CCNN 0.95 0.93 0.94 0.93 

VGG16 0.92 0.9 0.91 0.89 

AlexNet 0.92 0.9 0.91 0.9 

ResNet50  0.94  0.93 0.94  0.93 

 

The charts below Fig.8, Fig.9, Fig.10, and Fig.11 visualise a clear comparison between the four performance evaluation 

metrics for different transformation techniques and the model combination. 

 

Fig.8. Precision values obtained for all the transformation technique and model combination 
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Fig.9. Accuracy values obtained for all the transformation technique and model combination 

 

Fig.10. Recall values obtained for all the transformation technique and model combination 

 

Fig.11. Precision values obtained for all the transformation technique and model combination 
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When the performance of the DL models on 

FetalEcho_V0502 and FetalEcho_V0503 datasets is 

analysed, FetalEcho_V0501 and FetalEcho_V0502 

datasets, the CCNN model proved to be the best-

performing classifier in both cases. On the 

FetalEcho_V0501 dataset, the CCNN model achieved 

impressive precision, accuracy, recall, and F1 scores of 

0.94, 0.93, 0.91, and 0.93, respectively. Similarly, on the 

FetalEcho_V0502 dataset, the CCNN model exhibited 

outstanding results with precision, accuracy, recall, and 

F1 scores of 0.94, 0.934, 0.92, and 0.93, respectively. 

On the other hand, the AlexNet model delivered 

competitive results in both datasets, with precision, 

accuracy, recall, and F1 scores of 0.92, 0.89, 0.88, and 

0.89 on the FetalEcho_V0501 dataset, and 0.92, 0.89, 

0.89, and 0.89 on the FetalEcho_V0502 dataset. 

The VGG16 model also demonstrated notable 

performance in both datasets, achieving precision, 

accuracy, recall, and F1 scores of 0.91, 0.87, 0.87, and 

0.89 on the FetalEcho_V0501 dataset, and 0.91, 0.88, 

0.89, and 0.88 on the FetalEcho_V0502 dataset. 

Lastly, the ResNet50 model showcased consistent and 

robust results in both datasets, with precision, accuracy, 

recall, and F1 scores of 0.93, 0.93, 0.91, and 0.93 on the 

FetalEcho_V0501 dataset, and 0.93, 0.92, 0.93, and 0.93 

on the FetalEcho_V0502 dataset. 

Overall, the CCNN model stood out as the most effective 

classifier for fetal echo USIT image classification, 

demonstrating superior predictive capabilities in both 

datasets. These findings highlight the CCNN model's 

versatility and reliability in diagnosing fetal cardiac 

anomalies across different datasets, making it a 

compelling choice for real-world applications. The 

summarized results are presented in Table.3 for MLBP 

transformation (FetalEcho_V0502) and Table.4 for 

AMLBP transformation (FetalEcho_V0503), reaffirming 

the CCNN model's superiority in fetal echo USIT image 

classification for enhanced fetal cardiac anomaly 

diagnosis. 

Findings 

The transformation techniques MLBP and AMLBP 

showed improvement for all the four classifiers and 

amongst the two, AMLBP transformation produced best 

and consistent results for all the performance metrics and 

the classifiers are taken into consideration. The overall 

performance of the MLBP transformation technique, the 

CCNN model stood out as the most effective and robust 

classifier, excelling in accurately detecting fetal cardiac 

anomalies. While applying AMLBP transformation, 

CCNN classifier found as the best performing.   As per 

the results, the ResNet50 model is the second-best 

performing classifier for the MLBP transformation 

technique and for AMLBP transformation also ResNet is 

at par with the CCNN classifier where only a 1% 

difference in Precision had put it to the second position. 

The VGG16 and AlexNet classifiers achieved 

commendable improvement in precision, recall, 

accuracy, and F1 scores for both the transformation 

techniques. The previous research had checked the LBP 

transformed version of the dataset. The performance of 

MLBP and AMLBP is overruling the LBP transformation 

process. Through rigorous evaluation, the best 

hyperparameter configurations also identified that yield 

the highest classifier performance. The CCNN classifier 

emerged as the top-performing model, closely followed 

by the ResNet50 classifier, exhibiting a marginal variance 

in performance. 

6. Conclusion 

The study delved into the utilization of Multispectral 

Local Binary Patterns (MLBP) and Adaptive 

Multispectral Local Binary Patterns (AMLBP) 

transformations on images to create new datasets, namely 

FetalEcho_V0502 and FetalEcho_V0503. Prior to 

experimentation, the pre-processed datasets underwent 

essential standardization and normalization procedures. 

Employing tailored DL architectures, including AlexNet, 

CCNN, VGG16, and ResNet50, the research proceeded 

to train these models using the transformed datasets, 

employing thoughtfully chosen hyperparameters to 

construct effective classifiers. 

Through meticulous evaluation employing precision, 

accuracy, recall, and F1-score metrics, the performance 

of these classifiers was rigorously assessed, and the 

results were comprehensively documented. The empirical 

findings unequivocally highlight notable enhancements 

in classifier performance when trained on the MLBP 

(FetalEcho_V0502) and AMLBP (FetalEcho_V0503) 

image datasets. By capitalizing on advanced image 

transformation methodologies, coupled with 

sophisticated deep learning approaches and a robust 

assessment framework, this study contributes to the 

progress of fetal cardiac anomaly detection. 
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