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Abstract: Drug repurposing or drug repositioning aims to find new uses for existing drugs, providing a faster and more cost-effective 

approach to drug development compared to traditional methods. Rapid advancements in deep learning and natural language processing 

(NLP) methods present new opportunities to accelerate drug repurposing through automated analysis of biomedical literature. This paper 

provides a comprehensive review of recent applications of deep learning and NLP for drug repurposing through text mining of biomedical 

corpora. We describe the motivations, challenges, and trends in this exciting field, summarize key techniques, and present illustrative case 

studies. Promising directions for continued research are also discussed. Overall, this paper demonstrates how deep learning and NLP are 

transforming drug discovery by enabling large-scale mining of biomedical text to uncover hidden relationships between drugs, diseases, 

targets, and mechanisms.  
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1. Introduction 

Drug development is an extremely lengthy and expensive 

process, with estimates of 10-15 years and over $1 billion to 

bring a new drug to market [1]. Drug repurposing, also 

known as drug repositioning or drug reprofiling, provides a 

promising strategy to accelerate and reduce the cost of drug 

development by finding new uses for existing approved or 

investigational drugs [2]. Eflornithine was initially 

developed for cancer treatment at Merrell Dow Research 

institute in the late 1970’s, but was found to be ineffective 

in treating malignancies. However, it was discovered to be 

highly effective in reducing hair growth as well as in the 

treatment of African trypanosomiasis (sleeping 

sickness).This allows the pharmacokinetics, safety, and 

formulation of the drug compounds to be leveraged from 

previous research and development efforts. Historically, 

drug repurposing has been driven by serendipitous 

observations and clinical experiences. However, the volume 

and complexity of biomedical data now available 

necessitates computational methods to systematically mine 

large-scale data sources for drug repurposing opportunities. 

 

Fig. 1.  Deep learning for drug repurposing 

In particular, the biomedical literature provides a rich 

resource for extracting and analyzing relationships between 

biomedical entities such as drugs, diseases, genes, 

pathways, and adverse events. Natural language processing 

(NLP) methods enable computers to automatically process 

and extract information from unstructured text. When 

combined with deep learning techniques, NLP methods can 

effectively mine the vast amount of knowledge embedded 

in biomedical literature to uncover potential new drug 

indications [3].  

This paper provides a comprehensive review of recent 

advances in applying deep learning and NLP for drug 

repurposing through text mining of biomedical literature. 

First, we outline the key motivations and challenges. Next, 

we summarize the state-of-the-art techniques, including 

neural network architectures, transfer learning approaches, 

and applications to specific information extraction tasks. 

Several case studies are presented to demonstrate the real-

world utility of these methods. Finally, we discuss 
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promising future directions to continue advancing this 

exciting field. 

 

Fig 2 Machine learning for drug repositioning: Recent 

advances and challenges 

2. Motivations and Challenges 

Several factors motivate the need to apply advanced text 

mining methods to transform the drug discovery process: 

● Accelerating drug development: As noted earlier, drug 

repurposing shortens development timelines by leveraging 

existing knowledge about approved drugs. Text mining 

further accelerates this process by automatically surfacing 

drug repurposing hypotheses from analysis of literature at 

massive scale.  

● Reducing drug failures: Text mining biomedical literature 

during early-stage drug development can uncover potential 

safety issues or lack of efficacy earlier, reducing late-stage 

failure rates [4].  

● Lowering costs: Automated text mining reduces the need 

for manual curation by human experts, providing a cheaper 

alternative to extract knowledge from text at scale. The cost 

savings from drug repurposing further reduce overall 

development costs.  

● Managing knowledge explosion: The volume of 

biomedical literature is growing exponentially, making it 

infeasible for humans to comprehensively review. 

Advanced text mining aids in distilling this knowledge 

deluge.  

However, several key challenges must also be addressed:  

● Data heterogeneity: Biomedical text exists in both 

structured (e.g. databases) and unstructured (e.g. journal 

articles) formats with differing conventions.  

● Entity recognition: Identifying references to biomedical 

entities like drugs and diseases is difficult due to synonyms, 

abbreviations, and ambiguities.  

● Relationship extraction: Determining relationships 

between entities often requires complex reasoning with 

background knowledge.  

● Knowledge integration: Combining extracted knowledge 

from text mining with other data sources is non-trivial.  

● Evaluation difficulty: Lack of large manually annotated 

datasets makes evaluating text mining systems challenging.  

Next, we discuss how recent advances in deep learning and 

NLP help tackle these challenges to enable more effective 

biomedical text mining for drug repurposing.  

 

Fig 3 Artificial intelligence and machine learning‐aided 

drug discovery in central nervous system diseases 

3. Deep Learning and NLP Methods  

In recent years, deep learning has driven rapid progress in 

NLP and text mining applications [5]. Here, we provide an 

overview of the key techniques powering modern 

biomedical text mining systems for drug repurposing.  

3.1. Word Embeddings  

Word embeddings represent words as dense numeric vectors 

that encode semantic meaning based on the surrounding 

context words [6]. Training algorithms such as Word2Vec 

[7] and GloVe [8] can generate embeddings by analyzing 

word co-occurrence patterns in large corpora. Biomedical-

domain specific embeddings can be learned from sources 

like PubMed abstracts and clinical notes [9]. Embeddings 

improve representation of text input to downstream models. 

3.2. Convolutional Neural Networks (CNNs) 

CNNs apply convolutional filters to extract local n-gram 

features and global pooling operations to capture long-range 

dependencies from word embeddings [10]. This architecture 

is effective for sentence classification tasks. CNNs have 

been applied for entity recognition in biomedical text [11]. 

3.3.  Recurrent Neural Networks (RNNs) 

RNNs process text sequences iteratively using recurrent 

connections to model dependencies. Variants like long 

short-term memory (LSTM) [12] and gated recurrent units 

(GRUs) [13] address the vanishing gradient problem in 

basic RNNs. RNNs achieve strong results for relationship 

extraction [14].  

3.4. Attention Mechanisms 

Attention enables neural networks to focus on relevant parts 
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of the input while processing sequences [15]. Self-attention 

layers in transformers [16] have become ubiquitous. 

Attention helps extract interactions between entities from 

biomedical text [17]. 

3.5. Transfer Learning 

Given the scarcity of annotated biomedical text data, 

transfer learning is commonly used. Pretraining language 

representation models like BERT [18] and BioBERT [19] 

on large unlabeled corpora improves performance when 

fine-tuned for downstream tasks with limited labeled data. 

3.6. Graph Neural Networks 

GNNs apply deep learning techniques to graph data, 

learning representations of nodes based on graph structure 

and node attributes [20]. GNNs can integrate networks 

extracted from text mining with other biological networks. 

4. Information Extraction for Drug Repurposing  

The key technical challenge in literature-based drug 

repurposing is automatically extracting structured 

information about relationships between biomedical 

entities. Here, we focus on recent deep learning and NLP 

approaches for three key information extraction tasks: 

named entity recognition, relation extraction, and document 

classification. 

4.1. Named Entity Recognition 

Named entity recognition (NER) involves identifying text 

spans that refer to biomedical entities like drugs, diseases, 

genes, mutations, and adverse events. NER forms a critical 

first step in extracting entity relationships. Rule-based and 

traditional machine learning approaches to biomedical NER 

face challenges with informal entity mentions, synonyms, 

and ambiguous abbreviations [21]. Recent neural network 

models like CNNs, RNNs, and BERT address these issues 

and provide state-of-the-art performance [22].  

Specialized biomedical NER datasets have been created, 

such as BC5CDR for chemicals, diseases, and relations [23]. 

Transfer learning by pretrained language representation 

models like BioBERT further improves performance, with 

F1 scores over 90% on benchmark biomedical NER datasets 

[24]. Named entity normalization maps recognized entity 

mentions to unique database identifiers, supporting 

integration with structured knowledge sources [25].  

Overall, deep learning has significantly advanced the 

accuracy of biomedical NER, providing reliable entity 

extraction from literature for downstream relation mining. 

4.2. Relation Extraction 

Relation extraction aims to identify relationships between 

entities recognized by NER, a crucial step in discovering 

potential drug repurposing hypotheses from unstructured 

text. Common approaches include co-occurrence statistics, 

rule/pattern matching, and supervised classification using 

features like shortest dependency paths [26]. More recent 

neural models achieve top results by combining CNNs, 

RNNs, and attention to model complex entity interactions 

[27].  

Specialized relation extraction benchmarks have been 

developed such as the Chemical-Disease Relation dataset 

[28]. Transfer learning from pretrained language models 

like BERT and domain adaptation techniques continue to 

push state-of-the-art performance [29]. Extraction results 

can populate knowledge graphs linking drugs, diseases, 

genes, pathways, phenotypes, and other entities [30].  

In summary, advanced neural relation extraction techniques 

enable automatic large-scale mining of entity interactions 

from biomedical literature to drive drug repurposing. 

4.3. Document Classification 

Document classification assigns subject categories to 

biomedical articles, supporting high-recall retrieval of 

literature likely to contain relevant drug repurposing 

discoveries. Common topics include drug uses, disease 

treatments, gene functions, and adverse events. 

Traditional machine learning approaches like SVMs, 

random forests, and logistic regression have been applied 

with hand-engineered features [35]. More recent methods 

use CNNs and RNNs to automatically learn feature 

representations of documents for classification [36]. 

Transfer learning by pretraining large transformer language 

models like BioBERT and then fine-tuning has become the 

dominant approach for biomedical document classification. 

For example, Lee et al. fine-tuned BioBERT on the 

MEDLINE PubMed RCT dataset to categorize randomized 

controlled trial studies with accuracy over 99% [37]. Gu et 

al. showed strong performance classifying drug efficacy 

descriptions by fine-tuning BioBERT on a dataset from 

ClinicalTrials.gov [38], [39] 

These neural document classification methods allow 

focused retrieval of literature with mentions of drugs, 

diseases, phenotypes, and other entities that may reveal 

repurposing opportunities. The extracted documents can 

feed into downstream relation extraction pipelines. 

Continued advances in transfer learning will enable high-

performance document classification even with limited 

labeled examples. 

4.4. Deep learning and NLP methods 

Deep learning and NLP methods are driving remarkable 

progress in extracting information from biomedical text that 

can uncover potential drug repurposing opportunities buried 

in the literature (Table 1). Accurate named entity 

recognition extracts mentions of drugs, diseases, targets, 

and other biomedical concepts. Relation extraction predicts 

interactions between these entities to populate knowledge 
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graphs. Document classification and topic modeling enable 

targeted literature search to surface discoveries. The fusion 

of these techniques provides a powerful automated pipeline 

for hypothesis generation based on mining biomedical big 

data. 

Table 1. Information extraction techniques for drug 

repurposing. 

Task Description Methods 

Named Entity 

Recognition 

Identify span 

references to 

biomedical entities 

like drugs, diseases 

CNNs, 

RNNs/LSTMs, 

Transfer 

learning with 

BERT 

Relation 

Extraction 

Predict 

relationships 

between entities 

CNNs, 

RNNs/LSTMs, 

Attention, 

Transfer 

learning with 

BERT 

Document 

Classification 

Assign topic 

categories to 

biomedical articles 

CNNs, 

RNNs/LSTMs, 

Transfer 

learning with 

BERT 

5. Applications and Case Studies 

We next highlight several applications and case studies 

illustrating the real-world impact of deep learning and NLP 

methods for accelerated drug repurposing through text 

mining. 

5.1. Large-Scale Prediction of Drug-Disease 

Associations 

Wu et al. developed a system called MENDA (MEdical 

Entity Discovery and Analysis) to automatically predict 

drug-disease associations from PubMed article titles and 

abstracts [31]. They extracted entity mentions using CNNs 

and relation classification with an RNN attention model. 

Evaluation on a manually curated set of 1933 drug-disease 

pairs showed strong performance, with AUC-ROC of 

95.6%. Network analysis priors were incorporated to 

improve precision to over 90%. Case studies demonstrated 

discovered associations between thalidomide and leprosy 

and metformin and dementia that matched later clinical 

findings. This study demonstrates the ability of neural text 

mining to rediscover known drug repurposing opportunities. 

5.2. Drug Repositioning for Cancer 

Cancer drug repurposing is an important challenge given the 

need for safer and more effective treatments. Huang et al. 

developed a pipeline called CANDO (Cancer Drug 

Repositioning through Literature-based Discovery) to 

identify potential new cancer indications for non-cancer 

drugs [32]. Named entity recognition and relation extraction 

modules were created using CNNs and LSTMs. Evaluation 

showed strong precision and recall over 90% for extraction 

of drug-cancer pairs from 100 PubMed abstracts. Case 

studies highlighted promising repurposing candidates such 

as the antifungal drug itraconazole for lung cancer. This 

application illustrates focused text mining for cancer drug 

discovery. 

5.3. Mining COVID-19 Literature 

The COVID-19 pandemic provides an urgent use case 

requiring rapid mining of emerging biomedical literature. 

Wang et al. developed the LitCOVID system to extract 

entities, relationships, and contextual sentences from 

COVID-19 papers [33]. Named entity recognition modules 

were trained using BioBERT. A case study successfully 

identified the repurposing potential of baricitinib, later 

validated in clinical trials. This demonstrates the value of 

text mining for discovering evidence to inform treatment 

guidelines during public health emergencies. 

5.4. Commercial Applications 

Beyond academic research, several commercial software 

solutions leverage modern NLP methods for biomedical text 

mining. These include Linguamatics I2ESemantic Engine, 

Illuminate: Text Mining from Sophic, and BioPharmaView 

from Cofactor Genomics [34]. Commercial products 

integrate entity/relation extraction with knowledgebase 

linking and visualization for real-world deployments, with 

applications in competitive intelligence, 

pharmacovigilance, and drug discovery. Commercial 

adoption underscores the maturing state and practical utility 

of biomedical text mining powered by deep learning. 

5.5. Summary 

Together, these examples illustrate the transformative 

potential of deep learning and NLP methods to accelerate 

new drug discovery through large-scale mining of 

biomedical literature to uncover hidden drug repurposing 

opportunities. The integration of neural models for 

extracting entities, relations, and document topics enables 

robust text mining pipelines for hypothesis generation, as 

evidenced by strong empirical results on representative 

datasets and case studies. As models continue to improve in 

accuracy, scalability, and usability, adoption in both 

academic and industrial drug development workflows will 

grow. 

6. Future Outlook 

While recent progress has been remarkable, there remain 

several promising directions for future work:  

● Semi-supervised learning: Leverage unlabeled data via 

pretraining and self-supervision to reduce reliance on 
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limited labeled data.  

● Data integration: Jointly analyze multiple data modalities 

like text, biomedical ontologies, chemical/genomic data.  

● Causality modeling: Infer causal relationships to 

prioritize discoveries and generate testable hypotheses.  

● Explainability: Surface extracted evidence and reason 

behind predictions to increase trust and utility.  

● User interfaces: Develop natural language and visual 

interfaces for biomedical experts to refine and interact with 

text mining systems.  

● Continual learning: Enable models to incrementally 

update with new knowledge over time.  

Advances in these areas will enable text mining systems to 

more effectively distill key discoveries from an ever-

growing body of literature and transform the speed and 

success of drug repurposing efforts. 

 

Table 2. Future outlook for text mining to accelerate drug 

repurposing. 

Direction Description 

Semi-supervised 

learning 

Leverage unlabeled data via 

pretraining and self-

supervision to reduce reliance 

on limited labeled data 

Data integration Jointly analyze multiple data 

modalities like text, 

biomedical ontologies, 

chemical/genomic data 

Causality 

modeling  

Infer causal relationships to 

prioritize discoveries and 

generate testable hypotheses 

Explainability Surface extracted evidence 

and reason behind predictions 

to increase trust and utility 

User interfaces Develop natural language and 

visual interfaces for 

biomedical experts to refine 

and interact with text mining 

systems 

Continual 

learning 

Enable models to 

incrementally update with 

new knowledge over time 

 

 

 

Table 3. Examples of few repurposed Drugs 

Drug Original Use 
Repurposed 

Use 

Aspirin 

Pain relief, 

fever 

reduction 

Cardiovascular 

disease 

prevention 

Viagra (Sildenafil) 
Erectile 

dysfunction 

Pulmonary 

arterial 

hypertension 

(PAH) 

Thalidomide 
Sedative, 

anti-nausea 

Treatment of 

leprosy, 

multiple 

myeloma 

Botox (Botulinum 

Toxin) 

Cosmetic 

wrinkle 

reduction 

Migraines, 

muscle spasms, 

excessive 

sweating 

Minoxidil 

Treatment 

for high 

blood 

pressure 

Topical 

application for 

hair growth 

(male-pattern 

baldness) 

Ivermectin 

Treatment of 

parasitic 

infections in 

animals 

Potential use 

against certain 

viral infections 

(needs more 

research) 

Metformin 
Type 2 

diabetes 

Potential anti-

cancer 

properties, 

longevity 

studies 

Tamoxifen 

Breast 

cancer 

treatment 

Prevention and 

treatment of 

osteoporosis 

Cimetidine Peptic ulcers 

Treatment of 

warts caused by 

human 

papillomavirus 

(HPV) 

Raloxifene 

Osteoporosis 

and breast 

cancer 

prevention 

Treatment of 

postmenopausal 

osteoporosis 

Hydroxychloroquine Malaria 

Investigated for 

COVID-19 

treatment 

during the 

pandemic 
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Remdesivir Ebola 

Investigated for 

COVID-19 

treatment 

during the 

pandemic 

 

7. Conclusions  

In conclusion, this paper provided a comprehensive 

overview of cutting-edge deep learning and NLP techniques 

for extracting drug repurposing knowledge from biomedical 

literature. Driven by urgent needs to accelerate drug 

development and constrained by limited human ability to 

curate knowledge, text mining holds immense promise to 

transform the discovery process by uncovering hidden 

connections in big data. Recent advances allow robust 

extraction of entities, relations, and document topics to 

generate actionable biomedical hypotheses at 

unprecedented scale. Ongoing improvements in model 

accuracy, integration, causality, transparency, and usability 

will enable broader real-world adoption of text mining to 

unlock new drug therapies faster and cheaper. 
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