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Abstract:Multi criteria decision making models (MCDM) are extensively used in material and process selection in engineering. In this 
study, a novel hybrid decision making model is developed. Best-Worst method (BWM) is hybridized with TOPSIS, Grey Relational 
Analysis (GRA) and Weighted Sum Approach (WSA). Developed hybrid models produce similar results in different weight value of 
decision makers so they are combined. The model is tested in a turning operation and an optimization study is conducted by using 
Taguchi experimental design. The developed model can be used by engineers and operators in manufacturing environment. 
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1. Introduction 
The main factor of manufacturing is to shape metals as machining 
and non-machining forms. In machining methods, machines are 
operated for a long time, production parameters are adjusted 
easily and the quality of surface is obtained in desired levels, so 
these machining methods will outperform the other 
manufacturing methods. It is very important to choose the 
production parameters in machining operations. If the production 
parameters aren’t chosen properly, excessive tool wear is 
observed and the surface quality decreases. After appropriate 
dimensions and tolerances are obtained, obtaining a satisfactory 
quality of surface is important. The surface quality is affected by 
workpieces, tools, machines and machining conditions. Surface 
quality affects mechanical life of components. Therefore, the 
prediction of surface roughness is required. The chatter vibrations 
are effective in the prediction of surface roughness. The chatter 
vibrations are the ones which are formed with a self-excited 
mechanism between workpieces and tools. A wavy surface is 
observed on the workpiece due to both previous cycle and the 
structural vibrations in the turning. While the system is vibrated 
with chatter frequency which is very close to the structural mode, 
the maximum chip thickness may increase exponentially by 
depending on the phase shift between two consecutive waves. 
The growth of variable chip thickness increases the cutting forces 
by increasing the vibrations, and leads to the wavy surface on the 
workpiece. Stable cutting depths are the cutting depths where the 
chatter vibrations are not observed during machining [1]. 
In recent years, there has been an increasing amount of literature 
on MCDM. When the studies in literature are investigated, 
MCDM techniques are grouped under 15 topics: Energy-
environment-sustainability, supply chain management, material, 
quality management, Geographic Information Systems (GIS), 
construction and project management, safety and risk 
management, manufacturing systems, technology management, 
operation research and soft computing, strategic management, 

knowledge management, production management, tourism 
management and the other fields [2]. For MCDM techniques, 
there are a lot of studies in the area of material science [3-8], 
production technologies [9], mass production [10], infrastructures 
[11], manufacturing systems [12], global production [13] and 
production strategies [14]. 
There is a large volume of published studies in MCDM for 
manufacturing and material science. Buyurgan and Saygın [15] 
studied part routing and real time scheduling using MCDM 
methods. For machine selection problem, İç et al. [16] used AHP 
method and Yurdakul and İç [17] developed TOPSIS model. 
Numerous studies have attempted to analyse material selection 
problem using TOPSIS, ELECTRE, PROMETHEE, VIKOR etc. 
[3,5,7,18-22]. Yurdakul [23] and Çalışkan et al. [24] analysed 
cutting tool selection problem via AHP, ANP, TOPSIS, VIKOR 
and EXPROM-2.  
Different methods are developed for criteria weighting such as 
subjective and objective weighting. AHP is popular in subjective 
weighting of criteria but there are some drawbacks. Subjective 
scores generally lead to inconsistency during criteria weighting. 
During criteria weighting calculations, high inconsistency is 
observed in AHP, especially when the number of criteria 
increases. Therefore, researchers lead to new methods. One of the 
new methods developed in recent years is Best-Worst method 
[25]. This method provides to score only best-worst criteria vs. 
the other criteria. Therefore, pairwise calculations are easy. 
Furthermore, it is more consistent than AHP method. 
Up to now, for MCDM techniques, previous studies are generally 
carried out in Operation Research-Soft Computing and energy-
environment-sustainability. In machining operations, researchers 
rarely developed MCDM models. A few studies were observed in 
machining operations and chatter vibrations by using MCDM. 
Furthermore, developed model in this study is a new hybrid 
decision making model and it is used for the first time in the 
literature. Using proposed model, chatter free machining in 
turning operation could be performed. 
In this study, Best-Worst method is combined with TOPSIS, 
GRA and WSA. The proposed model is tested in a turning 
operation. The criteria weights are calculated using Best-Worst 
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Method. Using these criteria weights, the experiments which are 
designed by Taguchi method are ranked by using TOPSIS, GRA 
and WSA. Spearman correlation is used to determine the order of 
rankings.Because the order of rankings are nearly same, the 
average scores of three methods are taken into consideration, 
regression study is performed and an optimization model is 
developed. The study is validated experimentally. 
In the second section, methodology is presented. In the third part, 
numerical study is explained with the results. Then, conclusion 
section is given. 

2. Methodology 
2.1. Experimental Design and Taguchi Method 
Experimental design is used for decreasing the number of 
experiments and designing the experiments properly. It was 
firstly developed by the British statistician R.A. Fisher and others 
in 1920. The methods used in the statistical experimental design 
are classified into three classes as full factorial, fractional 
factorial and Taguchi methods [26].  
Taguchi design is an optimization method which is based on 
parameter, system and tolerance design. The orthogonal arrays 
are used in order to show different experimental conditions. 
Different factors are tested in the minimum number with the 
orthogonal array Frequently, L4, L8 and L16 arrays are used for 2 
levels and the L9 and L27 arrays are used for three levels [26]. 
2.2.Best-Worst Method (BWM) 
Best-worst method is one of the new methods used in the 
determination of criteria weights [25]. When the method is 
compared with AHP, it outperforms as the pairwise comparison 
isn’t performed between all criteria and consistency is high The 
calculation is performed using the following steps. 
Step 1: Determination of decision-making criteria (c1, c2.....cn). 
Step 2: Determination of the best and the worst criteria. 
Step 3: Scoring of the best criterion between 1-9 with the other 
criteria 
aBj=(aB1, aB2,… aBn). 
aBj: comparison scores of the best criterion B with j th criteria.  
Step 4: Scoring of the other criteria between 1-9 with the worst 
criterion 
ajw=(a1w, a2w…anw)T. 
ajw: The comparison scores of the worst criterion with j. criteria. 
Step 5:  Calculation of optimum weights (w1*, w2*, w3* …… 
wn*) and index for consistency ratio (є*) 
Best-Worst Method model is given below (Eq.1-4). 
Min є 
subject to 

�wB

wj
− aBj� ≤ є                      (1)  

� wj

wW
− ajw� ≤ є                       (2) 

∑ wjj =  1           (3) 

wj ≥ 0             (4) 

Consistency index table is given in Table 1 and consistency ratio 
is given in Eq.5. 

Consistencyratio = є∗

consistencyindex
        (5) 

 
 

Table 1. Consistency index table 

aBW 1 2 3 4 5 6 7 8 9 

Consistency 

index 

0 0.44 1 1.63 2.3 3 3.73 4.47 5.23 

 
2.3. Weighted Sum Approach (WSA) 
Weighted sum model is one of the multi-criteria decision-making 
methods which is known at most in the decision-making theory. 
If all criteria are assumed as benefit criteria, higher values show 
better results. aij shows the performance value of Ai th alternative 
according to jth criteria and wj defines the weights of jth criteria.  
Total of importance point of Ai th alternative is calculated by 
using Eq.6 [27]: 

Ai = ∑ wj
n
j=1 aiji = 1,2,3 … m        (6) 

Where, 
m is the number of alternatives. 
n is the number of criteria. 
 

2.4. TOPSIS Algorithm 
TOPSIS (Technique for Order Preference by Similarity to Ideal 
Solution) was developed by Yoon and Hwang in 1980. The steps 
of TOPSIS algorithm are given below [28]: 
2.4.1. Decision matrix 
While the evaluation criteria are in the columns of decision-
making matrix, decision-making points are in the rows. The 
decision-making matrix is given in Eq.7: 

...11 12 1

...21 22 2
. .
. .
. .

...1 2

a a a n
a a a n

Aij

a a amnm m

=

 
 
 
 
 
 
  

        (7) 

In Aij matrix, the number of decision-making points is given as m 
and the number of evaluation factor is given as n. aij  elements 
show the values of ith decision-making points according to the jth 
evaluation criteria. 
2.4.2. Standard decision matrix 
Standard decision-making matrix is calculated by using the 
decision-making matrix in Eq.8. This formula shows vector 
normalisation.rijshows normalised values of vector normalization. 

2
1

aij
rij m

akjk

=

∑
=

          (8) 

Standard decision-making matrix is provided as follows (Eq.9): 

...11 12 1

...21 22 2
. .
. .
. .

...1 2

r r r n
r r r n

Rij

r r rmnm m

=

 
 
 
 
 
 
  

        (9) 

Rij represents normalised matrix.In this stage, different 
normalization techniques can be used.  
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2.4.3. Weighted decision matrix 
In this stage, standard decision-making matrix is multiplied by 
the weights (wj) and weighted decision-making matrix (Vij) is 
calculated (Eq. 10). 

...1 11 2 12 1

...1 21 2 22 2
. .
. .
. .

...1 1 2 2

w r w r w rn n
w r w r w rn n

Vij

w r w r w rn mnm m

=

 
 
 
 
 
 
  

    (10) 

2.4.4. Ideal and negative ideal solutions 
The highest value of weighted evaluating factors in the weighted 
decision-making matrix is chosen (the lowest one is chosen if the 
purpose is minimization). The ideal solution set is calculated by 
using Eq. 11. 

{ }* '
(max ), (min )A v j J v j Jij ijii

= ∈ ∈       (11) 

The ideal solution set to be achieved is shown as: 

{ }**
2

*
1

* ,...,, nvvvA =  
The negative ideal solution set is determined by choosing the 
lowest ones of weighted evaluating factors in the weighted 
decision-making matrix (if the purpose is minimization, the 
highest one is chosen).  The negative ideal solution set is 
calculated by the following equation (Eq. 12):  

{ }'
(min ), (max )A v j J v j Jij ijii

−
= ∈ ∈       (12) 

The negative ideal solution set is shown as: 

{ }−−−− = nvvvA ,...,, 21  
J shows maximized cluster and 'J   shows minimized cluster. 

2.4.5. Distinction measure 
The deviations of the values of evaluating factors for each 
decision-making point from the solution sets are calculated by 
using the Euclidean distance approach. These deviations are 
called as distinction measures. The calculation of ideal distinction 
( *Si ) measure is shown in Eq. 13 and the calculation of negative 
ideal distinction measure ( Si

− ) is shown in Eq. 14. 

* * 2( )
1

n
S v vi ij jj

∑= −
=

       (13) 

2( )
1

n
S v vi ij jj
− −∑= −

=
       (14) 

2.4.6. Proximity values relative to ideal solution 
Ideal and negative ideal distinction measures are used while 
determining the proximity values according to the ideal solution. 
This value (Ci*) is the rate of negative ideal distinction measure 
in the total distinction measure. It is calculated by using 
following equation (Eq. 15): 

*
*

SiCi
S Si i

−

= − +
        (15) 

Ci* values are between 0 and 1 and they show alternative points. 

The higher values show that the alternative is better than the 
others. 
2.5. Grey Relational Analysis (GRA) 
This method consists of five steps [29]. 
1. Preparation of data set 
2. Determination of reference series. 
3. Normalisation of data matrix. 
4. Calculation of grey relational coefficient. 
5. Determination of grey relational degree. 
In Grey Relational Analysis, 𝑎𝑎𝑖𝑖shows alternatives and 
𝑎𝑎𝑖𝑖(𝑘𝑘)shows criteria. They are displayed in Eq. 16-17.  

𝑎𝑎𝑖𝑖 = �𝑎𝑎𝑖𝑖(1), 𝑎𝑎𝑖𝑖(2),𝑎𝑎𝑖𝑖(3), … , 𝑎𝑎𝑖𝑖(𝑘𝑘)�       (16) 

𝑘𝑘 = 1,2,3, … ,𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 = 1,2,3, … ,𝑚𝑚       (17) 

Where, m shows the number of alternatives and n shows the 
number of criteria. 
In Eq. 18 matrix of alternatives is given. 

𝐴𝐴 = �
𝑎𝑎1(1) … 𝑎𝑎1(𝑛𝑛)
⋮ … ⋮

𝑎𝑎𝑚𝑚(1) … 𝑎𝑎𝑚𝑚(𝑛𝑛)
�        (18) 

Observation values are given in decision matrix (A). A new series 
is obtained by using decision matrix.  The new series is created 
by using the best values of each criteria of decision matrix. This 
series is called as reference series. Reference series is given in 
Eq. 19 and it is shown in matrix (Eq.20). 

𝑎𝑎0 = �𝑎𝑎0(1), 𝑎𝑎0(2),𝑎𝑎0(3), … , 𝑎𝑎0(𝑛𝑛)�       (19) 

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = �
𝑎𝑎0(1) ⋯ 𝑎𝑎0(𝑛𝑛)
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚(1) ⋯ 𝑎𝑎𝑚𝑚(𝑛𝑛)
�       (20) 

Criteria matrix is normalized in order to become independent of 
the measurement unit.  Grey relational coefficients are calculated 
after normalisation. After normalisation of criteria values, grey 
relational coefficients are calculated. Grey relational coefficient is 
used to determine how close 𝑎𝑎𝑖𝑖(𝑘𝑘)and 𝑎𝑎0(𝑘𝑘). Calculation of grey 
relational coefficient is given in Eq. 21-22.  

𝛾𝛾�𝑎𝑎0(𝑘𝑘), 𝑎𝑎𝑖𝑖(𝑘𝑘)� = ∆𝑚𝑚𝑚𝑚𝑚𝑚+ 𝛿𝛿∆𝑚𝑚𝑚𝑚𝑚𝑚

∆0𝑚𝑚(𝑘𝑘)+ 𝛿𝛿∆𝑚𝑚𝑚𝑚𝑚𝑚
       (21) 

𝑘𝑘 = 1,2,3, … ,𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 = 1,2,3, … ,𝑚𝑚       (22) 

Where, 

∆0𝑖𝑖(𝑘𝑘) = |𝑎𝑎0(𝑘𝑘) − 𝑎𝑎𝑖𝑖(𝑘𝑘)| 

∆𝑚𝑚𝑖𝑖𝑛𝑛= min∀𝑖𝑖 𝑚𝑚𝑛𝑛𝑛𝑛∀𝑘𝑘 {∆0𝑖𝑖(𝑘𝑘)} 

∆𝑚𝑚𝑚𝑚𝑚𝑚= max∀𝑖𝑖 𝑚𝑚𝑎𝑎𝑚𝑚∀𝑘𝑘  {∆0𝑖𝑖(𝑘𝑘)} 

𝛿𝛿is the distinguishing coefficient and 𝛿𝛿 ∈  [0,1] 

Grey relational degree (𝑟𝑟(𝑚𝑚0, 𝑚𝑚𝑖𝑖)) is determined after the 
calculation of grey relational coefficients. The formula of grey 
relational degree is obtained by using the average value of grey 
relational coefficients of each alternative. It is given in Eq. 23. 

𝑟𝑟(𝑚𝑚0, 𝑚𝑚𝑖𝑖) = 1
𝑛𝑛
∑ 𝛾𝛾�𝑎𝑎0(𝑘𝑘), 𝑎𝑎𝑖𝑖(𝑘𝑘)�𝑛𝑛
𝑘𝑘=1        (23) 

Where, 
𝑟𝑟(𝑚𝑚0, 𝑚𝑚𝑖𝑖)shows the grey relational degree between 𝑎𝑎𝑖𝑖and 𝑎𝑎0. 

2.6. Correlation Analysis 
Correlation analysis measures the degree of correlation between 
two variables. Using scatter diagram, the relation between the 
variables is observed. Therefore, the value and direction of the 
relation between variables are determined [30]. 
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2.6.1. Pearson correlation coefficient 
Pearson correlation coefficient determines the linear relation 
between variables. It is represented with the symbol ‘r’ and is 
indicated by the following formula (Eq.24). In Eq. 24, x and y are 
the observation values of variables, �̅�𝑚and 𝑦𝑦�are the mean values of 
observations. 

𝑟𝑟 = ∑(𝑚𝑚𝑚𝑚−�̅�𝑚 )(𝑦𝑦𝑚𝑚−𝑦𝑦𝚤𝚤��� )
�∑(𝑚𝑚𝑚𝑚−�̅�𝑚 )2 ∑(𝑦𝑦𝑚𝑚−𝑦𝑦𝚤𝚤��� )2

        (24) 

2.6.2. Spearman correlation coefficient  
Spearman correlation coefficient (rs) is used instead of Pearson 
correlation coefficient if there are any of the following 
assumptions which are given below. [30]: 
 -One of the variables is categorical. 
 -Both two variables distributed normally. 
 -The number of sample size is small. 
 -The relation between two variables is nonlinear. 
The equation of Spearman correlation coefficient is given below 
(Eq.25) 

𝑟𝑟𝑠𝑠 = 1 − 6∑𝑑𝑑𝑚𝑚2

𝑛𝑛(𝑛𝑛2−1)
     (25) 

Where, 
𝑛𝑛𝑖𝑖 = 𝑟𝑟𝑛𝑛(𝑚𝑚𝑖𝑖) − 𝑟𝑟𝑛𝑛(𝑦𝑦𝑖𝑖)      

n: the total number of observation values of two variables 
di:the difference between sequence numbers. 

3. Numerical Study 
Best-Worst method (BWM) is combined with TOPSIS, Grey 
Relational Analysis (GRA) and Weighted Sum Approach (WSA).  
An optimization study is conducted using Taguchi experimental 
design. Then, regression study is performed 
Gök’s study [31] is used for experimental study to test developed 
model. The chatter frequency occurred in the experiments is 
determined by recording the sound with a microphone and 
processing using LABVIEW 7.1 software. The cutting depth is 
increased slowly until the chatter vibration occurs. When the 
chatter vibration is occurred, the sound is recorded using a 
microphone. The cutting process is conducted for different tool 
overhang lengths (70-110 mm), the number of revolutions (125-
710 rpm) and materials (AISI-1010, AISI-1050, Al-7075).  
Detailed explanations are given in the study [31]. 

3.1. Determination of Relative Weights of Parameters using 
BWM  
Workpiece hardness, the number of revolution and tool overhang 
length are weighted by three experts who have experience in this 
topic (Table 2). In addition, consistency index and ratios are 
calculated for three different weighting ratios.  According to the 
experts, workpiece hardness is more effective compared to the 
other cutting parameters. Also, the effect of tool overhang length 
is low. Weights are consistent because consistency ratios are 
lower than 0.1. 
 
Table 2. Weights of cutting parameters (%) 

Experts W.hardness 
The 

number of 
revolutions 

Tool 
overhang 

length 

C. 
index 

C. 
ratio 

E-1 64 28 8 0.32 0.07 

E-2 52 42 7 0.24 0.05 

E-3 59 34 7 0.26 0.06 

In Table 3, the levels of parameters for experimental design are 
displayed. The number of revolutions, tool overhang length and 
workpiece hardness have 6, 3 and 3 levels respectively. 
 
Table 3. The levels of parameters 

Levels 
The number 

of revolutions 
(rpm) 

Tool 
overhang 

length (mm) 

Workpiece 
hardness (HV) 

1 125 70 124 (1st material) 

2 180 90 165 (2nd material) 

3 250 110 387.5 (3rd 
 

4 355   

5 500   

6 710   

 
In Table 4, Taguchi experimental design (L18) is given. At this 
stage, the weights in Table 2, the levels of parameters in Table 3-
4 and Taguchi experimental design are used to develop three 
hybrid decision making models. These models are BWM-WSA, 
BWM- TOPSIS, and BWM- GRA models. 
 
Table 4. Experimental design (L18 Taguchi design) 

Experiment 
no 

The number 
of 

revolutions 

Tool 
overhang 

length 

Workpiece 
hardness 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 1 

5 2 2 2 

6 2 3 3 

7 3 1 2 

8 3 2 3 

9 3 3 1 

10 4 1 3 

11 4 2 1 

12 4 3 2 

13 5 1 2 

14 5 2 3 

15 5 3 1 

16 6 1 3 

17 6 2 1 

18 6 3 2 

 
Normalisation matrix is calculated using the levels in Table 3 and 
experimental design in Table 4. The matrix is given in Table 5. 
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Table 5.Normalisation matrix 

Experiment 
no 

The number 
of 

revolutions 

Tool overhang 
length 

Workpiece 
hardness 

1 1.000 1.000 1.000 
2 1.000 0.500 0.844 
3 1.000 0.000 0.000 
4 0.906 1.000 1.000 
5 0.906 0.500 0.844 
6 0.906 0.000 0.000 
7 0.786 1.000 0.844 
8 0.786 0.500 0.000 
9 0.786 0.000 1.000 

10 0.607 1.000 0.000 
11 0.607 0.500 1.000 
12 0.607 0.000 0.844 
13 0.359 1.000 0.844 
14 0.359 0.500 0.000 
15 0.359 0.000 1.000 
16 0.000 1.000 0.000 
17 0.000 0.500 1.000 
18 0.000 0.000 0.844 

 
3.2. BMW-WSA Hybrid Method 
 
In Table 6, the results of BWM- WSA method for three different 
weights from Table 2 are presented. When the scores and 
rankings are examined, it is obtained that the first experiment is 
the best, whereas 18th try is the worst. 
  
Table 6. Sensitivity analysis of BWM- WSA hybrid method for three 
different weights 

Scores 
for 

weight-1 Ranking 

Scores 
for 

weight-2 Ranking 

Scores 
for 

weight-3 Ranking 
1.000 1 1.000 1 1.000 1 
0.940 4 0.961 4 0.945 4 
0.851 7 0.902 7 0.863 7 
0.848 2 0.769 10 0.819 2 
0.787 5 0.729 2 0.764 5 
0.668 10 0.726 13 0.698 10 
0.643 8 0.691 5 0.634 8 
0.640 3 0.582 8 0.611 13 
0.608 11 0.579 11 0.598 11 
0.583 9 0.520 16 0.590 3 
0.580 6 0.410 3 0.535 6 
0.577 13 0.407 14 0.534 9 
0.456 12 0.392 9 0.417 12 
0.370 14 0.371 6 0.382 14 
0.310 15 0.330 17 0.340 16 
0.280 16 0.308 12 0.282 15 
0.220 17 0.217 15 0.240 17 
0.068 18 0.059 18 0.059 18 

 
3.3. BMW-TOPSIS Hybrid Method 
In Table 7, the results of BWM- TOPSIS method for three 
different weights are presented. It is observed that the first try is 
the best, whereas 18th try is the worst.  
 
 

Table 7. Sensitivity analysis of BWM- TOPSIS hybrid method for three 
different weights 

Scores 
for 

weight-1 Ranking 

Scores 
for 

weight-2 Ranking 

Scores 
for 

weight-3 Ranking 

1.000 1 1.000 1 1.000 1 

0.915 4 0.943 4 0.920 4 

0.824 2 0.874 7 0.820 7 

0.809 7 0.766 10 0.784 2 

0.797 5 0.674 13 0.759 5 

0.712 8 0.653 2 0.689 8 

0.687 3 0.635 5 0.671 10 

0.661 6 0.594 8 0.630 3 

0.645 10 0.556 16 0.603 6 

0.621 9 0.545 11 0.583 11 

0.594 11 0.443 14 0.564 9 

0.511 12 0.439 3 0.517 13 

0.473 13 0.414 6 0.468 12 

0.379 14 0.385 9 0.392 14 

0.329 15 0.357 17 0.364 16 

0.303 16 0.320 12 0.305 15 

0.198 17 0.219 15 0.230 17 

0.088 18 0.082 18 0.080 18 
 
3.4. BMW-GRA Hybrid Method 
In Table 8, the results of BWM- GRA method for three different 
weights are presented. The results show that the first experiment 
is the best, whereas 18th experiment is the worst. 
 
Table 8. Sensitivity analysis of BWM- GRA hybrid method for three 
different weights 

Scores 
for 

weight-1 Ranking 

Scores 
for 

weight-2 Ranking 

Scores 
for 

weight-3 Ranking 
1.000 1 1.000 1 1.000 1 
0.899 4 0.935 4 0.907 4 
0.841 2 0.861 7 0.813 2 
0.789 7 0.773 10 0.807 7 
0.760 3 0.753 13 0.727 3 
0.740 5 0.723 2 0.720 5 
0.665 10 0.680 16 0.694 10 
0.659 6 0.658 5 0.652 13 
0.622 9 0.607 3 0.633 6 
0.621 13 0.571 8 0.607 8 
0.615 8 0.560 11 0.597 9 
0.578 11 0.542 6 0.570 11 
0.520 16 0.531 9 0.560 16 
0.513 12 0.467 17 0.497 12 
0.454 15 0.463 14 0.452 14 
0.447 14 0.456 12 0.442 15 
0.433 17 0.423 15 0.437 17 
0.368 18 0.363 18 0.363 18 

 
In Table 9, correlation coefficients are presented according to 
three hybrid models with three different weights. When 
correlation coefficients and significance values are examined, it is 
observed that they are mostly consistent at 5% significance level. 
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Table 9. Spearman test for three hybrid decision making approach (H1-
BMW-WSA,H2-BMW-TOPSIS, H3-BMW,GRA, W1-Weight 1, W2-
Weight 2, W3-Weight 3) 
 S.rho H1 

W-1 
H1 

W-2 
H1 

W-3 
H2 

W-1 
H2 

W-2 
H2 

W-3 
H3 

W-1 
H3 

W-2 
H3 

W-3 
H1 
W-1 

Coef. 1.00 .719 .841 .880 .480 .950 .851 .548 .748 

Sig.  . .001 .000 .000 .044 .000 .000 .019 .000 

H1 
W-2 

Coef. .719 1.00 .581 .692 .430 .668 .719 .218 .598 

Sig.  .001 . .011 .001 .075 .002 .001 .385 .009 
H1 
W-3 

Coef. .841 .581 1.00 .792 .494 .771 .725 .507 .825 

Sig.  .000 .011 . .000 .037 .000 .001 .032 .000 

H2 
W-1 

Coef. .880 .692 .792 1.00 .618 .860 .891 .550 .847 

Sig. .000 .001 .000 . .006 .000 .000 .018 .000 

H2 
W-2 

Coef. .480 .430 .494 .618 1.00 .470 .540 .579 .461 

Sig.  .044 .075 .037 .006 . .049 .021 .012 .054 
H2 
W-3 

Coef. .950 .668 .771 .860 .470 1.00 .884 .680 .794 

Sig. .000 .002 .000 .000 .049 . .000 .002 .000 

H3
W-1 

Coef. .851 .719 .725 .891 .540 .884 1.00 .631 .911 

Sig.  .000 .001 .001 .000 .021 .000 . .005 .000 

H3
W-2 

Coef. .548 .218 .507 .550 .579 .680 .631 1.00 .620 

Sig.  .019 .385 .032 .018 .012 .002 .005 . .006 

H3 
W-3 

Coef. .748 .598 .825 .847 .461 .794 .911 .620 1.000 

Sig.  .000 .009 .000 .000 .054 .000 .000 .006 . 

 
In Table 10, average scores are taken and they are shown. 
Considering the average scores, it is seen that the first try is the 
best, whereas 18th try is the worst. 
 
Table 10. Average scores for three hybrid models 

Experiment no Average scores 

1 1.000 

2 0.782 

3 0.610 

4 0.929 

5 0.728 

6 0.555 

7 0.842 

8 0.627 

9 0.536 

10 0.705 

11 0.579 

12 0.438 

13 0.623 

14 0.415 

15 0.331 

16 0.458 

17 0.323 

18 0.170 

 
3.5. Variance Analysis and Taguchi Optimization 
Using average scores from Table 10, regression and variance 
analysis are performed in Table 11. The model is consistent at 5% 

significance level (p<0.05). The summary of the model is given 
in Table 12. Determination coefficient (R2) is calculated as 
99.15%. Developed model produces successful results because R2 
is nearly 1. In Table 13, coefficient table is presented. All 
coefficients are consistent at 5% significance level. 
 
Table 11. ANOVA for average scores of three hybrid models 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 0.801 
 

0.267 
 

546.19 
 

0.000 

The number of 
revolutions 

1 0.486 
 

0.486 
 

994.83 
 

0.000 

Tool overhang 
length 

1 0.306 
 

0.306 
 

625.67 
 

0.000 

Workpiece 
hardness 

1 0.009 
 

0.009 
 

18.07 
 

0.001 
 

Error 14 0.007 
 

0.000 
 

  

Total 17 0.808 
 

   

 
Table 12. Model summary 

 
Table 13. Coefficients table 

Term Coefficient SE 
coefficient 

T value P value 

Constant 1.6430 0.0322 50.96 0.000 
The 
number of 
revolutions 

-0.001 2.6e-5 -31.54 0.000 

Tool 
overhang 
length 

-0.008 3.19e-4 -25.01 0.000 

Workpiece 
hardness 

-1.91e-4 4.5e-5 -4.25 0.000 

 
In Figure 1, the main effects plot for means is provided.  When 
main effects plots are examined, the lowest value of the number 
of revolutions, tool overhang lengths and workpiece hardness 
increase stable cutting depths and chatter vibrations are 
prevented. The results are consistent with literature [32].  
 

 
 

Figure 1. Main effects plot for means 
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3.6. Validation Study 
 
In order to validate the model, ten validation experiments which 
were carried out before [31] in different cutting conditions are 
used. In Table 14, experimental results of stable cutting depths, 
hybrid MCDM scores and the rankings are given. The ranking of 
the model is same with experimental ranking. Experiment #8 is 
the best, whereas experiment #7 is the worst. 
 
Table 14. Comparison of model and experimental results 

No Rpm 
Overhang 

length 
(mm) 

Hardness 
(HV) 

S. cutting 
depth 
(mm) 

MCDM 
score 

Model 
ranking 

1 500 70 165 6 0.634 3 

2 500 80 165 5.8 0.554 5 

3 500 90 165 5.5 0.474 6 

4 710 90 165 4 0.302 8 

5 710 70 387.5 4 0.420 7 

6 710 90 387.5 3.4 0.260 9 

7 710 110 387.5 3.2 0.100 10 

8 180 90 124 8.2 0.744 1 

9 250 90 124 7.5 0.687 2 

10 355 90 124 6.8 0.601 4 

 
4. Conclusions 
 
In this article, a new hybrid decision making model is developed. 
Best-Worst method (BWM) is hybridized with TOPSIS, Grey 
Relational Analysis (GRA) and Weighted Sum Approach (WSA). 
Three different hybrid decision making models are combined. 
The model is tested in a turning operation to prevent chatter 
vibrations. The results are given below: 
1. According to three experts, workpiece hardness is more 
effective on stable cutting depths and tool overhang length is less 
effective than the other factors  
2. It is observed that the first try is the best, whereas 18th try is 
the worst for three multi criteria decision making method. 
3. The rankings obtained by three models are tested with 
Spearman Correlation Test. At 5% significance level, the 
rankings are nearly same.  
4. Taguchi optimization is carried out using average scores of 
three models because three models produce nearly same results. 
The lowest value of the number of revolutions, tool overhang 
lengths and workpiece hardness increase stable cutting depths 
according to main effect plots. 
5. Validation study is performed to test the model. Model and 
experimental rankings are same. Experiment #8 is the best, 
whereas experiment #7 is the worst. 
The developed model can be used by engineers and operators in 
different machining processes as milling, drilling etc. Also, an 
advanced decision support system might be developed in future 
studies. 
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