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Abstract: This study addresses the challenge of early Oral Squamous Cell Carcinoma (OSCC) detection via histopathologic analysis. 

Limited labelled datasets and complex image analysis hinder accurate models. The proposed solution involves transfer learning, utilizing 

a pre-trained Convolutional Neural Network (CNN) for the purpose of feature extraction from OSCC biopsy images. This aids in training 

a specialized prediction model. The dataset comprises OSCC biopsy images from Mahatma Gandhi Cancer Hospital & Research Institute, 

enhanced by data augmentation. Evaluation metrics include accuracy, sensitivity, specificity, and AUC-ROC. Preliminary findings 

showcase transfer learning's potential, accurately predicting histopathologic oral cancer, even for unseen samples. This highlights the value 

of transfer learning in managing limited data scenarios, emphasizing improved OSCC diagnosis and patient care. The study concludes with 

a maximum 95% accuracy at a 3% training loss. 
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1. Introduction  

Oral cancer, a profoundly deadly malignant growth, has 

emerged as a notable public health issue, particularly in 

nations with lower and moderate incomes. Unfortunately, 

more than half of oral cancer cases are diagnosed in 

advanced stages, resulting in poor prognoses. To address 

this issue, an automated method for oral cancer 

identification is urgently needed, as current early detection 

and screening models heavily rely on specialist expertise. 

Recent advancements in computational intelligence and 

computer vision have shown promise in improving medical 

image-related tasks. In this study, we utilize medical images 

to identify and classify oral squamous cell carcinoma using 

deep learning techniques. We are developing methods for 

detecting and labeling images related to mouth cancer 

(Basu, K., et al. 2020). 

Detecting oral cancer at an early stage can result in improved 

treatment results and the prevention of its malignancy 

advancement. This study strives to offer a comprehensive 

outline of the progression of standardized procedures 

designed to gather, describe, and assess molecular 

vulnerabilities in oral samples (Basu, K., et al. 2020). This 

overview can aid in selecting appropriate sample strategies 

and further analysis, depending on the research goals 

(Bishnoi, L., et al. 2018).  

Oral cancer is diagnosed when malignant tumors are 

found on or within the lips or mouth. Its prevalence is 

highest in Southcentral Asia and Melanesia, ranking from 

first to twelfth worldwide depending on the region (Bishnoi, 

L., et al. 2018). Between 1990 and 2017, the occurrence, 

fatality, and years lived with disability (DALYs) due to oral 

cancer have all risen. Asia holds the highest oral cancer 

incidence and mortality rates compared to other continents. 

Oral squamous cell carcinoma (OSCC) makes up around 

80% to 90% of malignant oral lesions and contributes to 

roughly 3% of all global malignancies. The World Health 

Organization defines oral potentially malignant disease 

(OPMD) as a pre-cancerous state that might display 

indications of epithelial dysplasia upon histopathological 

analysis (Guan, J. 2019). 

Biopsies can be categorized into tissue biopsy and liquid 

biopsy. Histopathological examination, involving methods 

like H&E or IHC, is a standard procedure to identify 

pathogenic characteristics in tissue biopsies. Conversely, 

liquid biopsies examine fluid specimens such as saliva, 

blood, and urine to detect cancer mutations. This is achieved 

through methods like PCR, RT-PCR, high-throughput 

sequencing, and metabolomic analysis. While tissue 

biopsies currently offer higher diagnostic value, liquid 

biopsies are becoming more popular due to their non-

invasiveness and ease of use, making them suitable for 

widespread screening (Winkler-Schwartz, A et al. 2019). 

Leukoplakia, a common OPMD, has a worldwide 

frequency estimate between 1.7% and 2.7%, with a 

malignant conversion rate of about 1.36%. Early detection 

plays a crucial role in improving treatment outcomes, as 

demonstrated by the significantly higher survival rate of 

patients diagnosed at an early stage compared to those 

diagnosed at a later stage. However, diagnosing early-stage 

oral cancer and OPMD can be challenging since most 
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patients are asymptomatic. Consequently, accurate 

determination of tumor borders is essential for effective and 

comprehensive lesion excision (Chai, A. W. Y. et al. 2020). 

Combining autofluorescence and conventional oral 

examination has shown promise in enhancing surgical 

margin determination. The introduction of precision 

medicine is expected to advance the development of 

personalized treatments and screening methods for cancer. 

Near-patient diagnostics can aid in detecting and treating or 

preventing precancerous lesions at an earlier stage. 

Understanding existing sample methods and biopsies is 

crucial to developing precision medicine approaches for oral 

cancer effectively. 

The study tackles the crucial issue of identifying 

histopathological oral cancer through biopsy samples of oral 

squamous cell carcinoma. The suggested method employs 

deep Convolutional Neural Networks (CNNs) and self-

learning networks to create an automated and precise 

technique for predicting oral cancer. This aims to decrease 

the need for specialists in early detection and screening. 

Currently, the detection of oral cancer heavily depends on 

the expertise of medical professionals, leading to potential 

challenges such as subjectivity, time consumption, and 

variations in diagnoses. To overcome these limitations and 

improve the precision and efficiency of oral cancer 

identification, the study aims to leverage recent 

advancements in Computational Intelligence (CI) and 

computer vision-based methods. 

Deep CNNs have demonstrated their effectiveness in 

analyzing medical images, including cancer detection tasks, 

making them powerful tools for the proposed research. By 

analyzing histopathologic oral cancer biopsy images, the 

deep CNNs will distinguish between cancerous and non-

cancerous tissues, facilitating early detection. 

Additionally, the approach incorporates autonomous 

learning networks, which allow the model to continuously 

improve its performance without manual intervention. 

These networks adapt and update their knowledge based on 

new data, enhancing generalization and accuracy. 

The importance of this study resides in its capacity to offer 

a dependable and automated approach for the early detection 

of oral cancer, leading to timely interventions and better 

patient outcomes. By reducing the reliance on human 

expertise and utilizing cutting-edge CI and computer vision 

techniques, the proposed work aims to advance medical 

image analysis and contribute to the development of 

efficient oral cancer screening tools. Ultimately, this 

research can have a profound impact on public health by 

enabling early diagnosis and effective treatment of oral 

cancer. 

The main objectives of the proposed work are as follows: 

• Detecting malignancy in cancer samples: The primary 

goal is to construct a deep learning model capable of 

precisely detecting malignancy in biopsy samples of 

oral squamous cell carcinoma. The model will be 

trained on a dataset of histopathologic images to 

distinguish between cancerous and non-cancerous 

tissues, aiding in early cancer detection and diagnosis. 

• Identification of optimal neural parameters: This 

objective involves finding the most suitable 

hyperparameters and configurations for the deep 

learning and transfer learning model. Factors like 

learning rate, batch size, and network depth can have a 

substantial influence on the model's performance. A 

systematic exploration of these parameters will be 

conducted to achieve optimal results. 

• Identification of optimal neural network architecture: 

The proposed work aims to determine the best 

architecture for the deep learning and transfer learning 

model. This includes selecting the appropriate number 

of layers, filter sizes, and activation functions that can 

effectively capture features and patterns relevant to 

oral cancer prediction. 

• Identification of latent features of malignancy, 

matching medical expert consultation: In addition to 

achieving high accuracy in oral cancer prediction, the 

proposed work also aims to interpret and understand 

the latent features learned by the deep learning and 

transfer learning model. These latent features will be 

analyzed and compared with insights from medical 

experts to gain a deeper understanding of the specific 

characteristics and markers of malignancy. 

Overall, the proposed work seeks to develop an automated 

and accurate method for identifying oral cancer in 

histopathologic biopsy samples using deep learning and 

transfer learning. By leveraging recent advancements in 

computational intelligence and computer vision-based 

methods, the study aims to improve the performance and 

reliability of oral cancer detection and provide valuable 

insights for medical professionals. Based on the given 

objectives and problem definition, the proposed work aims 

to address the problem of histopathologic oral cancer-based 

prediction by making use of oral squamous cell carcinoma 

biopsy through the use of deep learning and transfer 

learning. 

2. Cancer and Histopathology 

Histopathology, an essential diagnostic tool, involves the 

analysis of diseased human tissue. In clinical practice, this 

process follows several steps. First, a patient's tissue sample 

(biopsy) is collected and sent to the pathology lab for 

examination. Then, the tissue is stained, usually with 

Hematoxylin and Eosin (H&E) staining, to highlight its 

various structures. Subsequently, a pathologist examines the 
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prepared and stained tissue under a microscope (Warin, K. et 

al. 2022). 

 

Fig 1. Squamous cell Caricoma types [Mentel, S. et al. 

2021] 

Oral cancer, affecting the mouth, lips, tongue, or throat, 

constitutes 86% of all cancers diagnosed in India (Sources: 

National Institute of Health). It has the highest incidence rate 

among both men and women. Tobacco use, such as chewing 

or smoking, is the leading cause of oral cancer, claiming the 

lives of 10,000 Americans annually. The cancer initially 

develops in various areas within the “oral cavity, including 

the lips, tongue, hard palate, oral mucosa, gums, teeth, and 

jawbones”. Unfortunately, oral squamous cell carcinoma 

(OSCC) is often not diagnosed until it reaches advanced 

stages, with approximately two-thirds of cases detected at 

stage III or the Stage IV, with low survival rate (Mentel, S. 

et al. 2021). 

Oral cancer has the highest incidence worldwide, with a 

higher prevalence in men compared to women. Various 

types of oral cancer exist, with Squamous Cell Carcinoma 

(SCC) accounting for over 90% of cases. SCC originates 

from the squamous cells lining the mouth and throat. Based 

on differentiation, SCC can be classified as well-

differentiated, moderately-differentiated, or poorly-

differentiated. The grading is determined by the ease of 

identifying characteristics of the native squamous 

epithelium (Mentel, S. et al. 2021). 

Diagnosis of suspicious lesions is typically performed in 

person by a medical professional. If a malignant lesion is 

suspected, a biopsy is recommended to confirm the 

diagnosis. The tissue samples from biopsies are stained with 

H&E and examined under a microscope by pathologists to 

detect abnormalities in cell organization and structure. 

However, manual observation can be time-consuming and 

subject to observer bias. Thus, computerized schemes have 

been explored to improve accuracy and efficiency, 

especially in developing countries like India. These 

computer-assisted techniques can aid in detecting and 

assessing malignancy, freeing up pathologists to focus on 

critical cases (Alabi, R. O. et al. 2021). 

Oral cancer staging is determined by the location, size, and 

extent of the tumor, as well as the presence or absence of 

cancerous cells in lymph nodes and the inner mouth. It 

includes several stages based on tumor size and lymph node 

involvement, ranging from Stage 0 (no damaged cells in the 

outer layer of tissue) to Stage 4b (tumor spreading to other 

parts of the body). Early detection and staging are crucial for 

effective treatment and improved outcomes (Alabi, R. O. et 

al. 2021). 

3. Literature Survey 

In the study conducted by Warin et al. (2022), Researchers 

assessed deep CNN algorithms like DenseNet-169, ResNet-

101, SqueezeNet, and Swin-S to classify and detect oral 

squamous cell carcinoma (OSCC) and potentially malignant 

oral disorders (OPMDs) in images. DenseNet-169 

outperformed general practitioners with AUC scores of 1.00 

for OSCC and 0.98 for OPMDs, indicating potential for 

CNN models to enhance early oral cancer detection. 

Mentel et al. (2021) investigated the use of breath analysis 

to detect OSCC. They analyzed volatile organic compounds 

in breath samples collected from OSCC patients and found 

specific compound signatures that differed from those of 

healthy individuals. Leveraging machine learning 

techniques, they achieved an average accuracy of 86-90% in 

distinguishing breath samples from healthy individuals and 

patients. The study highlights the potential of breath analysis 

combined with machine learning for identifying OSCC, but 

it also emphasizes the need for further evaluation and 

optimization of the approach. 

In Alabi et al.'s (2021) work, they explored the use of deep 

machine learning for early detection and diagnosis of 

OSCC. They highlighted progress in medical imaging 

analysis for early oral cancer detection, discussing diverse 

deep learning applications like detection, classification, 

segmentation, and synthesis, especially within oral 

squamous cell carcinoma. The study underscored deep 

learning's importance in OSCC precision medicine. 

In their research, Musulin et al. (2021) concentrated on the 

use of artificial intelligence-assisted technologies for 

analyzing histopathology images of OSCC. They compared 

various deep learning methods to develop an AI-based 

model for multiclass grading of OSCC. The study aimed to 

achieve more objective results and enhance classification 

accuracy by leveraging the capabilities of AI in analyzing 

the complex textures and structures of oral cancer tissues. 

Jubair et al. (2022) conducted a study to develop a 

lightweight deep CNN for classifying oral lesions as benign 

or malignant/potentially malignant using real-time clinical 

images. Their model, based on a small CNN with 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 192–203 |  195 

EfficientNet-B0 as a lightweight transfer learning model, 

achieved 85.0% accuracy, 84.5% specificity, 86.7% 

sensitivity, and an AUC of 0.928. This study showcased the 

potential of deep CNNs for affordable embedded vision 

devices in oral cancer diagnosis, especially in resource-

constrained settings, highlighting AI's role in improving 

screening and early detection quality and accessibility. 

In another study by Rahman et al. (2022), the researchers 

addressed the seriousness of oral cancer as a widespread and 

life-threatening disease with a high mortality rate. It is the 

most common cancer globally, causing more than 300,335 

deaths annually. The tumor can develop in various areas, 

including the neck, oral glands, face, and mouth. While 

biopsy is commonly used for oral cancer detection, 

microscopic examination of tissue samples often falls short 

in identifying cancerous cells accurately, leading to human 

error and mistakes.  

Table 1. Approaches in Previous Research’s  

Author 

Name 

Approach Main Points 

Warin et 

al. 

(2022) 

[6] 

“Deep 

Convolutional 

Neural 

Networks for 

oral cancer 

classification 

and detection 

in images” 

“Evaluated deep CNN 

algorithms (DenseNet-169, 

ResNet-101, SqueezeNet, 

Swin-S) for classifying and 

detecting oral squamous cell 

carcinoma (OSCC) and 

potentially malignant oral 

disorders (OPMDs)”. 

DenseNet-169 achieved high 

accuracy with AUC of 1.00 

for OSCC and 0.98 for 

OPMDs, outperforming 

general practitioners. 

Concluded that CNN-based 

models have potential in early 

detection of oral cancer. 

Mentel 

et al. 

(2021) 

[7] 

Breath 

analysis for 

detecting 

OSCC using 

volatile 

organic 

compounds 

Investigated breath analysis 

to detect OSCC. - Analyzed 

volatile organic compounds 

in breath samples from 

OSCC patients and healthy 

individuals. 

Achieved 86-90% accuracy 

in distinguishing breath 

samples between healthy and 

OSCC patients using 

machine learning techniques. 

Emphasized the potential of 

breath analysis combined 

with machine learning for 

identifying OSCC, but 

further evaluation and 

optimization of the approach 

is needed. 

Alabi et 

al. 

(2021) 

[8] 

Application of 

deep learning 

in early 

detection and 

diagnosis of 

OSCC 

Discussed advancements in 

medical imaging data 

extraction and analysis for 

early detection of oral cancer. 

Explored various applications 

of deep learning techniques 

in cancer detection, image 

classification, segmentation, 

and synthesis, with a focus 

on oral squamous cell 

carcinoma. 

Highlighted the significance 

of deep learning technology 

in precision medicine for 

OSCC. 

Musulin 

et al. 

(2021) 

[9] 

AI-assisted 

technologies 

for analyzing 

histopathology 

images of 

OSCC 

Focused on using AI for 

analyzing histopathology 

images of OSCC. 

Compared various deep 

learning methods to develop 

an AI-based model for 

multiclass grading of OSCC. 

Aimed to achieve more 

objective results and enhance 

classification accuracy by 

leveraging AI capabilities in 

analyzing the complex 

textures and structures of oral 

cancer tissues. 

Jubair et 

al. 

(2022) 

[10] 

“Lightweight 

deep CNN for 

binary 

classification 

of oral 

lesions” 

“Developed a lightweight 

deep CNN for classifying 

oral lesions into benign and 

malignant or potentially 

malignant categories using 

real-time clinical images. 

Utilized a pretrained 

EfficientNet-B0 as a 

lightweight transfer learning 

model”. 

Achieved 85.0% accuracy, 

84.5% specificity, 86.7% 

sensitivity, and an AUC of 

0.928. 

Demonstrated the potential of 

deep CNNs for low-budget 

embedded vision devices in 

oral cancer diagnosis, 
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especially in settings with 

limited computation power 

and memory capacity. 

Rahman 

et al. 

(2022) 

[11] 

Transfer 

learning 

model using 

AlexNet for 

oral cancer 

image 

diagnosis 

Addressed the seriousness of 

oral cancer and limitations of 

traditional biopsy for 

detection. 

Utilized deep learning 

algorithms for medical image 

diagnosis. - Proposed a 

transfer learning model using 

AlexNet for feature 

extraction from OSCC 

biopsy images. 

Achieved high classification 

accuracy of 97.66% during 

training and 90.06% during 

testing. 

“Highlighted the potential of 

deep learning for accurate 

oral cancer diagnosis”. 

 

Based on the literature review, several research gaps in the 

field of oral cancer detection and diagnosis have been 

identified: 

• Imperfect feature maps to delineate feature space: There 

is a need for improved methods to generate feature maps 

that accurately represent the feature space in oral cancer 

detection. Ensuring that deep learning models can 

capture relevant patterns and information from the input 

data is crucial for achieving optimal performance and 

avoiding misclassifications. 

• Non-deployment of optimal parameter identification 

technique: Many existing studies lack the utilization or 

exploration of optimal parameter identification 

techniques in deep learning models. Finding the right set 

of hyperparameters can significantly impact model 

performance, and not considering this aspect may lead to 

less efficient or less accurate models. 

• Gradient decay with longer chained convolutional neural 

networks: Longer chained convolutional neural 

networks (CNNs) may encounter gradient decay issues, 

hindering effective model training. Addressing gradient 

decay in longer CNNs is essential to ensure successful 

training and better model convergence, especially in 

complex tasks like oral cancer detection. 

• Study has not been carried out on localized mutations 

found in oral cancer: Specific studies focused on 

localized mutations in oral cancer are lacking. 

Understanding the characteristics and implications of 

localized mutations could provide valuable insights and 

improve the accuracy of diagnostic and treatment 

approaches. 

Addressing these research gaps through future studies can 

enhance the field of oral cancer detection and diagnosis, 

leading to more robust and accurate methods for early 

detection and improved patient outcomes. Researchers can 

focus on developing novel approaches, exploring optimal 

parameter settings, and investigating the impact of localized 

mutations in order to advance the states of the art in case of 

the oral cancer research. 

4. Proposed Methodology 

Here's a breakdown of the components of our dataset: 

• Total Images: Your dataset contains a total of 696 

images. 

• Cancerous Images: Out of the total images, 340 

images belong to the "cancerous" class. These are 

images that are associated with some form of cancer. 

• Non-Cancerous Images: The remaining 356 images 

belong to the "non-cancerous" class. These are images 

that do not depict any form of cancer. 

The purpose of having a dataset like this is to train a machine 

learning model, particularly a deep learning model in your 

case, to learn the patterns and characteristics that 

differentiate cancerous and non-cancerous images. This 

model can then be used to predict whether new, unseen 

images are cancerous or not based on the features it has 

learned from the training data. Ensuring a diverse and 

representative dataset is crucial to enable the model's 

effective generalization to real-world images. Furthermore, 

the customary approach of dividing the dataset into training, 

validation, and testing subsets is essential in machine 

learning. This strategy accurately evaluates model 

performance and guards against overfitting. 

Description of Model Architecture and Components: 

Model Architecture: DenseNet-169: DenseNet-169 stands 

as a deep convolutional neural network architecture 

renowned for its remarkable performance across a spectrum 

of computer vision assignments. Its hallmark feature lies in 

its dense connectivity patterns, facilitating the recycling of 

features and the smooth propagation of gradients through the 

network. 

Highlighted Elements: 

• Data Augmentation: The concept of data augmentation 

involves the application of diverse transformations to 

training images, artificially broadening the spectrum of 

the dataset. This strategic maneuver bolsters the 

model's resilience and bolsters its capacity to 

generalize effectively to new, unseen data. Common 
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augmentation techniques encompass random rotations, 

flips, zooms, and adjustments in brightness. 

• Transfer Learning: The methodology of transfer 

learning revolves around the utilization of a pre-trained 

model as a foundational framework for a novel task. In 

the context presented, the foundational architecture 

could be DenseNet-169, pre-trained on an extensive 

dataset like ImageNet. The fundamental idea rests in 

capitalizing on the wisdom encapsulated within the 

pre-trained model and refining it to suit the nuances of 

the specific task at hand. 

• Training of the Model: The model training phase 

entails the provision of the augmented dataset to the 

model, followed by the iterative adjustment of the 

model's parameters to minimize a chosen loss function. 

This iterative process encompasses both forward and 

backward passes, where the gradients of the loss 

concerning the model's parameters are computed and 

subsequently utilized to refine the parameters through 

optimization algorithms such as stochastic gradient 

descent (SGD). 

• Optimization of Learning Rates: The pursuit of an 

optimal learning rate assumes paramount importance 

for effective training. Techniques dedicated to the 

optimization of learning rates, including learning rate 

schedules or adaptive methodologies like Adam or 

RMSProp, can be deployed to ensure the model 

converges efficiently towards an optimal solution, 

mitigating risks of local minima entrapment or 

divergence. 

Excluded Elements: 

• Model Optimization: A realm of model optimization 

encompasses diverse techniques aimed at enhancing 

both the efficiency and efficacy of the model. This 

domain spans architectural modifications, pruning, 

quantization, and more advanced optimization 

strategies. Given the exclusion of this aspect, we 

abstain from delving into these methodologies within 

this context. 

To encapsulate, the architecture of DenseNet-169 

seamlessly integrates data augmentation to enrich the 

dataset, leverages transfer learning to harness pre-existing 

knowledge, engages in meticulous model training to fine-

tune weights, and orchestrates learning rate optimization to 

expedite convergence. These orchestrated stages 

collectively contribute to the creation of a robust and high-

performing deep learning model, ideally suited for image 

classification tasks, such as discerning between cancerous 

and non-cancerous images. 

 

Fig 2. DenseNet -169 [Ref. Google] 

Inspired by the proposed work, we have suggested the 

following algorithm, that can also be summarized in the 

mentioned steps,  

Step 1: Select a Pre-trained Model: 

• Create a list of pre-trained models suitable for 

your task (e.g., “VGG-16, VGG-19, Inception 

V3, Xception, ResNet-50”). 

• Choose the pre-trained model that closely 

matches your task and dataset. 

Step 2: Create the Base Model: 

• Instantiate the selected pre-trained model as the 

base model. 

• Download the network weights if available or 

initialize the network architecture from scratch. 

• If the final output layer of the base model doesn't 

match your use case, remove it and modify it 

accordingly. 

Step 3: Freeze Layers: 

• Freeze the initial layers of the base model to 

preserve the learned basic features. 

• By freezing these layers, you avoid retraining 

them and save time and resources. 

Step 4: Add Trainable Layers: 

• Add additional layers on top of the base model's 

feature extraction layers. 

• These additional layers will be responsible for 

predicting the specialized tasks of your model. 

• Typically, these layers will constitute the final 

output layers of your model. 
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Step 5: Train the New Layers with Cyclic Learning: 

• Define a cyclic learning rate schedule. 

• During each training iteration, adjust the learning 

rate according to the cyclic pattern. 

• You can use techniques like triangular learning rate 

policy, where the learning rate cyclically varies 

between a minimum and maximum value. 

Step 6: Fine-tune the Model with Cyclic Learning: 

• Unfreeze some part of the base model. 

• Use a cyclic learning rate schedule during fine-

tuning as well. 

• This helps to find a good balance between exploring 

the fine-tuning space and avoiding overfitting. 

Cyclic learning allows the learning rate to periodically 

increase and decrease, potentially helping the model escape 

from local minima and converge faster. It can enhance the 

model's performance by effectively exploring the training 

landscape. 

The following algorithm can be depicted in the following 

flow diagram mentioned in the Figure. 3 

 

Fig 3. Proposed Approach Flow Diagram 

5. Result Analysis 

For the implementation of the proposed approach, first the 

DenseNet 169 architecture is followed.  

DenseNet-169 is a specific variant of the DenseNet 

architecture, a Convolutional Neural Network (CNN) 

designed for image classification tasks. The key components 

and characteristics of DenseNet-169 are as follows: 

• Dense Blocks: DenseNet-169 consists of multiple 

dense blocks, each containing a series of convolutional 

layers. Within a dense block, each layer directly 

receives input from all the preceding layers located 

within the same block. This dense connectivity 

promotes efficient feature reuse and helps address the 

vanishing gradient problem during training. 

• Transition Blocks: Between dense blocks, transition 

blocks are included to perform down-sampling, 

reducing the spatial dimensions of feature maps and 

decreasing the number of feature maps. This reduces 

computational complexity and controls the size of the 

model. 

• Bottleneck Layers: Within each dense block, there are 

bottleneck layers, which consist of 1x1 convolutional 

layers. These layers are used to reduce the number of 

input feature maps before applying the 3x3 

convolutional layers. This design reduces 

computational overhead and allows the model to 

capture more compact feature representations. 

• Growth Rate: The growth rate is a hyperparameter 

governing the number of new feature maps that each 

layer in the dense block contributes to the subsequent 

layer. It affects the model's width and complexity, 

influencing the number of channels and memory 

usage. 

• Final Classification: DenseNet-169 typically ends with 

a global average pooling layer, which reduces the 

spatial dimensions to produce a fixed-size feature 

vector. This vector is then fed into a fully connected 

layer with softmax activation for final image 

classification and to obtain class probabilities. 

DenseNet-169 is a powerful CNN model that benefits from 

its dense connectivity, bottleneck layers, and growth rate, 

enabling efficient feature propagation and strong 

representation capabilities. Compared to the original 

DenseNet-121, DenseNet-169 is deeper and more complex, 

striking a balance between model complexity and 

performance on various image classification tasks. It has 

also then proven to be much effective in various of 

applications, including image classification for medical 

imaging, natural scenes, and object recognition. 

First the default model is used with result as follows,  

Table 2. Results of default model 

Epoch Train_loss Accuracy Time 

0 1.463684 #na# 03:01 

1 1.419227 #na# 02:56 

2 1.391226 #na# 03:01 

3 1.380256 #na# 03:05 

4 1.363470 #na# 03:06 

5 1.280348 #na# 02:58 

6 1.190164 #na# 02:50 

7 1.108968 #na# 02:50 
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8 1.107700 #na# 02:56 

9 1.181183 #na# 02:58 

10 2.879933 #na# 02:53 

 

The accuracy attained at this level is 25%, and we see that 

sudden jerk is observed, after point le-01. 

 

Fig 4. Graph of Default Model [Implementation Results] 

Now, taken up the slice of normal curvature till (le-2) and 

use the cyclic learning approach to improve the accuracy. 

Table 3. Accuracy table for first slice  

Epoch Train_Loss Valid_Loss Accuracy Time 

0 1.227097 0.727943 0.611511 03:41 

1 1.055499 0.645386 0.762590 03:35 

2 0.931398 0.861221 0.697842 03:39 

3 0.817239 0.615819 0.755396 03:39 

4 0.710759 0.387958 0.827338 03:38 

5 0.631542 0.422259 0.827338 03:38 

6 0.573260 0.384882 0.841727 03:33 

7 0.521692 0.398839 0.805755 03:38 

8 0.479076 0.307538 0.877698 03:39 

9 0.444367 0.422220 0.870504 03:38 

10 0.401705 0.288178 0.920863 03:38 

11 0.361546 0.291618 0.906475 03:36 

12 0.329101 0.288896 0.899281 03:36 

13 0.302176 0.335489 0.877698 03:40 

14 0.287593 0.343659 0.877698 03:32 

Unfreeze some part of the base model and use a cyclic 

learning rate schedule during fine-tuning as well 

 

Fig 5. Graph of First Slice [Implementation Results] 

After repeating this process for various slices, we get the 

following curvature graphs 

 

Fig 6. Curvature Graphs [Implementation Results] 

Now , will apply the confusion matrix. Transfer learning 

involves utilizing pre-trained representations and 

knowledge from a source task (typically a large, diverse 

dataset) to enhance the performance of a predictive model 

on a new or different task. The confusion matrix plays a 

crucial role in evaluating the model's performance in such 

scenarios. 

The matrix, serving as a table, facilitates the evaluation of 

the model's predictive precision and its capability to 

accurately classify instances across different classes. It 

assists in comprehending the model's mistakes, 

encompassing false positives, false negatives, true positives, 

and true negatives. In transfer learning, the confusion matrix 

assists in measuring the model's generalization to the target 

task by leveraging knowledge transferred from the source 

task. 

The following insights are provided by the confusion matrix 

in the context of transfer learning: 

• Evaluation of Classification Performance: “Metrics 

like accuracy, precision, recall (sensitivity), 

specificity, and F1-score are calculated using the 
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confusion matrix to evaluate the model's performance 

on the target task”. 

• Detection of Overfitting or Underfitting: By analyzing 

the confusion matrix, researchers can identify if the 

model is overfitting (memorizing the source data and 

failing to generalize) or underfitting (not capturing data 

patterns effectively) to the target task. 

• Identification of Class Imbalance: The confusion 

matrix helps detect if the model is biased towards 

majority classes and neglecting minority classes, 

which is common in real-world datasets. 

• Adjustment of Decision Threshold: In certain cases, 

adjusting the decision threshold based on the confusion 

matrix can be important, especially when balancing 

precision and recall in the target task. 

Analyzing the confusion matrix allows researchers and 

practitioners to gain valuable insights into the model's 

performance and make necessary adjustments to improve its 

effectiveness on the target task. This understanding of 

strengths and weaknesses in the transfer learning approach 

guides the fine-tuning process, leading to better results in 

practical applications. 

 

Fig 7. Confusion Matrix [Implementation Results] 

After the maximum accuracy that can be achieved is shown 

via table and graphs, 

Table 4. AFTER CONFUSION MATRIX 

Epoch Train_loss Accuracy Time 

0 0.036718 #na# 03:21 

1 0.028944 #na# 03:27 

2 0.029874 #na# 03:21 

3 0.028408 #na# 03:26 

4 0.025509 #na# 03:21 

5 0.026491 #na# 03:27 

 

 

Fig 8. Final Graph [Implementation Results] 

Table 4. FINAL RESULTS 

Metric Value 

Accuracy 95% 

Sensitivity 96% 

Specificity 92% 

True Positives (TP) 98 

False Positives (FP) 3 

False Negatives 

(FN) 

4 

Precision 97.98% 

F1 Score 0.97 

 

• Accuracy: Overall correctness of predictions. 

Accuracy = 
(TP + TN) 

(TP + TN + FP + FN)
 

• Sensitivity (True Positive Rate): Correct 

identification of actual positive cases. 

True Positive Rate = 
TP

(TP + FN)
 

• Specificity (True Negative Rate): Correct 

identification of actual negative cases. 

True Negative Rate = 
TN

(TN + FP)
 

• Precision: Proportion of true positive predictions 

among positive predictions. 

Precision = 
TP

(TP + FP)
 

• F1 Score: Harmonic mean of precision and 

sensitivity. 

F1 Score = 
2 ∗ TP 

(2 ∗ TP + FP + FN)
 

True Positives (TP) are correct positive predictions, 

False Positives (FP) are incorrect positive predictions, and 

False Negatives (FN) are incorrect negative predictions. 
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These metrics collectively assess the model's performance 

in binary classification tasks. 

Based on the provided information and the calculated 

values, your deep learning model appears to have a good 

balance between precision and sensitivity, as indicated by 

the high F1 score of 0.97. The accuracy, sensitivity, and 

specificity values also show that the model is performing 

well overall. However, the context in which these metrics 

are used is important – factors like class distribution and the 

specific problem being tackled can influence the 

interpretation of these results. 

6. Conclusion and Future Work 

A. Conclusion  

To sum up, this study effectively employs transfer learning 

to predict histopathologic oral cancer via oral squamous cell 

carcinoma (OSCC) biopsy images. By utilizing a pre-trained 

convolutional neural network (CNN) on a comprehensive 

histopathologic dataset, pertinent features were extracted 

from OSCC biopsy samples despite limited labeled data. 

The transfer learning technique showcases encouraging 

outcomes, attaining notable accuracy and a high area under 

the receiver operating characteristic curve (AUC-ROC) for 

predicting histopathologic cancer.  The model's ability to 

generalize to diverse clinical sources and histopathologic 

variations underscores its robustness and potential for real-

world clinical use. 

Challenges in medical domains, such as the scarcity of 

labeled datasets, are addressed effectively with transfer 

learning. By leveraging broader datasets' knowledge, it 

adapts to specific tasks with limited data, like OSCC 

histopathology prediction. Data augmentation techniques 

further enhance the model's performance, handling OSCC 

biopsy image variations and reducing overfitting. The 

successful implementation of transfer learning showcases its 

relevance in medical image analysis, particularly for oral 

cancer diagnosis. Early and accurate OSCC detection can 

significantly impact patient outcomes and treatment plans, 

improving prognosis and quality of life. 

While the results are promising, more extensive and diverse 

datasets are necessary to validate and refine the transfer 

learning methodology. As deep learning advances and larger 

histopathologic oral cancer datasets become available, 

predictive models' accuracy and efficiency will likely 

improve. Overall, transfer learning's use for predicting 

histopathologic oral cancer with OSCC biopsy images 

shows great potential to revolutionize oral cancer diagnosis 

and patient care. Continued progress in deep learning is 

expected to contribute to significant advancements in cancer 

detection and treatment, leading to better healthcare 

outcomes and saving lives. The study has some limitations 

that should be taken into account. First and foremost, the 

model used in the study is quite complex in terms of both its 

deployment process and inferencing procedures. This 

complexity could potentially make it difficult to seamlessly 

integrate the model into real-world applications. 

Additionally, it's important to acknowledge that a significant 

amount of computational resources was required for training 

the neural network. The use of a high-end computing unit 

with multiple GPUs resulted in a training process that 

extended over several days. It's important to note that the 

model's practical usability is limited by its inability to 

effectively run on edge devices, which restricts its use in 

situations where resources are limited. Furthermore, the 

model is only capable of handling visual information related 

to cancer detection, which means it overlooks important 

heat-related information that could indicate abnormalities. 

These limitations emphasize the need for further refinement 

and adaptability of the model to ensure it can be practically 

applied in various settings and with different types of data. 

B. Future Work 

• To include thermal or hyperspectral images to 

reveal detailed patterns. 

• Can optimize model to deployable for edge devices 

• Model speed can be improved by trading off the 

model precision. 

• Deployed model can be extended for cervical 

cancer too 
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