
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 253–261 |  253 

Targeted Influence Maximization Based on Cloud Computing over Big 

Data in Social Networks 

Kavita Joshi1, Prof. Roshani S. Golhar2, Dr. Neerajkumar Sathawane3, Dr. Ashutosh Mathur4, Pravin 

Ganpatrao Gawande5, Milind S. Patil6, Santosh Gore7 

Submitted: 17/01/2024    Revised: 25/02/2024     Accepted: 03/03/2024 

Abstract: This research focuses on cloud computing-based targeted impact maximization in social networks. Most influence maximisation 

operates currently in use to identify the Top-k, which is a node in a network that is recognised or chosen according to specific standards, 

including the parameter "k." Users are expected to maximise the spread of influence under the assumption that the effect diffusion 

possibilities on connections are fixed, and these works assume an understanding of the whole networking graph. In practical settings, 

however, marginal probability tends to vary depending on a range of issues and can be influenced by incoming information. Therefore, the 

greedy algorithm is used. These approaches aim to detect a seed collection that increases the anticipated impact distribution across users 

with target audiences who are pertinent for specified subjects. The MIA model is used to locate the subgraph in a network where a certain 

collection of nodes can have the greatest impact on other nodes, which results in influence coverage and effectiveness. In the meantime, 

privacy and computational concerns make it challenging to access all network data. Additionally, current impact maximization techniques 

that take target users into account do not address cloud computing, which results in our algorithm consistently outperforming other scalable 

heuristics in influence spread across all size ranges, outperforming greedy algorithms by up to 100%-260%. This study suggests a cloud-

based targeted influence maximization strategy to achieve this goal. 
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1. Introduction 

In today's world, online social networks are essential for the 

dissemination of knowledge, concepts, and influence among 

individuals[1]. A social network is an association of 

individuals or businesses linked together through 

interactions or relationships. These relationships may be 

founded on common interests, professions, or relationships. 

There are billions of nodes and limits in the modern 

generation of social networks. They are now the most 

informative resources for big data[2]. The sources of big 

data are diverse and span multiple areas, including social 

media, the Internet of Things, corporate transactions, 

academic data, public and government databases, and more. 

For both academia and industry, managing and mining large 

amounts of social data is a difficulty[3].  

Social media has been rapidly utilized as a medium for 

marketing and promotion. To promote a product, for 

example, a marketer in viral marketing attempts to identify 

a seed set of customers who have significant influence over 

the product being promoted. A marketer's goal is to increase 

the number of clients who ultimately decide to adopt the 

product while working within a set budget for options.  

This is the problem of classical influence 

maximization[4][5]. 

Through the Internet, cloud computing offers users access 

to computational resources like servers, storage, databases, 

and software[6]. It does away with the necessity for 

companies to purchase physical infrastructure by letting 

them lease resources from cloud service providers. 

Users can access data and applications remotely thanks to 

this adaptable and scalable paradigm, which encourages 

accessibility and cost-effectiveness. Certain users could 

demonstrate higher levels of activity, influence, or 

importance as a result of their network friends or 

behaviour[7]. Supposedly powerful users have significant 

function in social networks and may be essential in 

facilitating the rapid and broad dissemination of 

messages[8]. The challenge of determining a category of 

people in the social world who have substantial and 

widespread influence over other users is called the Influence 

Maximization (IM) problem. It's also well known that this 

is a difficult topic, especially since determining influence 

requires a criterion. 
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This research, driven by these earlier discoveries, focuses on 

cloud computing-based targeted influence maximisation 

with partial network information. The objective identify the 

Top-k significant nodes that are pertinent to the supplied 

themes to maximise the influence spread among the target 

audience[9]. For the maximum coverage problem, the 

Greedy technique is utilised to determine the Top-k Seed 

Runners. A greedy algorithm's main objective is to select the 

optimal solution among those that are now available, 

without going back or re-evaluating choices made in the 

past[10]. When solving optimisation issues the aim is to 

determine the most effective approach given a set of 

limitations, greedy algorithms are frequently employed. The 

term "Maximum Influence Arborescence" (MIA) describes 

the subgraph in a network where a specific collection of 

nodes can have the greatest impact on other nodes. Put more 

simply, it looks for the connections between the most 

significant nodes in the network and its subgroups of nodes 

that have the greatest influence or information spreading 

across the network[11]. Experiments have been performed 

on multiple real-world social networks. Despite their 

significantly increased efficiency, the experimental results 

show that the strategies can continue to take a few minutes 

on a system with millions of nodes[12]. The Greedy 

algorithm and MIA model perform well in the 

influence spreads and require less running time than other 

algorithms. The experiment results validate the influence 

coverage and effectiveness of the proposed algorithms. 

The following is a summary of our contributions: 

• It explores the Independent Cascade model, the 

Influence Maximization challenge as a variant of the 

classic influence maximization problem is maximizing 

influence coverage in an evolving social network [13]. 

• It provides the greedy technique and MIA model, 

which is an effective approach. For optimisation issues 

where finding the best solution given a set of 

constraints is the goal, we suggest the greedy approach 

and MIA model. 

• The MIA model's influence spread is sub-modular, 

meaning it has a diminishing marginal return property. 

As a result, any advanced ratio calculation is NP-

hard[14], and the greedy technique selects the node 

with the most margin influence spread in every round, 

resulting in an impact extended inside (1 - 1/e) of the 

MIA model's best result. Because (a) the minimal 

effect spread on the arborescent structures can 

computed efficiently through recursive, and (b) once 

the seed with the greatest impact on spread has been 

selected, it just needs to improve the nearby 

arborescent structures. associated with it to select the 

next seed. Also, create an ongoing update strategy to 

accelerate the upgrading process. 

• It assesses the results using a real, extensive social 

network. Our conceptual findings are supported by the 

experiment data, which also demonstrate that greedy 

algorithms and the MIA model improve concerning 

influence coverage and effectiveness. 

2. Related Work 

The initial people near examine the algorithmic problem of 

influence maximization are Domingos and Richardson 

[15][16][17]. However, their approaches are probabilistic. 

Kempe, Kleinberg, and Tardos initially defined it as a 

discrete optimization issue. [18]. In addition to the subjects 

we have just covered, they also research a variety of other 

subjects like mixed marketing techniques in impact 

maximization and generalizations of influence cascade 

models. As mentioned, their greedy algorithms' scalability 

is the primary flaw in their work. 

To address this issue, several recent research were 

conducted. As evidenced by their experimental results, 

Leskovec et al. [19] provide a “lazy-forward” efficiency in 

the process of choosing new seeds that significantly 

decreases the number of decisions on the influence 

distribution of nodes and speeds up the process by up to 700 

times. As demonstrated in [20], finding the 50 most 

important nodes in a system with tens of thousands of nodes 

still takes hours, despite the "lazy-forward" efficiency being 

considerable[21]. 

Kimura and Saito propose influencing cascade (IC) models 

that utilize the shortest path and offer effective techniques 

for computing below these models, the influence spreads 

[22]. The fundamental difference between their approach 

and ours is that (a) they employ basic shortest paths on the 

graph, those are unrelated to spread possibilities, in place of 

maximum influence paths, and (b) it does not use localized 

structures, like our arborescence., so each round they must 

perform international calculations to choose the subsequent 

seed. As a result, the algorithms they use lack our level of 

efficiency. 

The search for scalable and effective influence 

maximization methods is carried out by this study, which is 

an extension of [20]. In [20], we investigate two approaches 

to increase efficiency: creating new heuristic algorithms and 

refining the greedy algorithm from [18]. While there has 

been some development in the first direction, it is not 

enough to suggest that this course will be easy to follow. 

The second path produces extremely effective new degree 

discount heuristics with a passably respectable spread of 

influence. The primary problem is that the degree discount 

algorithms rely on the uniform IC model, which is rarely the 

practice case and assumes that diffusion probability on all 

edges is equal[23]. Our recent work represents a significant 

phase in breaking this restriction; our fresh heuristic 

approach maintains a solid balance between efficacy and 

efficiency while working for the broader IC model. In 

comparison to [20], we carry out a lot more experiments on 
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a wider range of graphs and our data demonstrate that the 

MIA heuristic regularly outperform the degree discount 

heuristic throughout the board[24]. 

3. Propose Methodology 

This research aims to identify a seed combination that 

maximises the impact among an aim group of users who are 

thinking about different themes. In this section, effective 

algorithms for maximising focused influence are shown. 

Some concepts are taken from to address targeted influence 

maximisation utilising partial network information.  

Independent Cascade (IC) Model and Influence 

Maximization (IM) Problem 

This study examined the researcher investigates communal 

impact using the well-known Independent Cascade (IC) 

model[18]. The directed system is how the social network is 

represented in the IC model. G=(V,E), where V stands for 

the people and E for the social linkages that connect them. 

Additionally, a propagation probability 𝒫𝑢,𝜐
𝐺 , which 

represents the degree to which each edge (𝑢, 𝜐) ∈ 𝐸 has an 

impact on 𝜐, is linked to each individual u. To keep the 

notations simple when G is evident based on the setting, it 

only uses 𝒫𝑢,𝜐. 

A straightforward and understandable diffusion process is 

described by the Independent Cascade model. The diffusion 

mechanism occurs in discrete time increments, as follows, 

beginning with a seed set S that is active at the beginning 

(having adopted a behaviour). Step t + 1 is the attempt made 

by a node u to activate all of its dormant neighbours when it 

becomes active in step t. It is successful with the known 

probability 𝒫𝑢,𝜐 for each neighbour 𝜐. If it is successful, 𝜐 

becomes active; if not, 𝜐 stays dormant. It is not allowed to 

attempt any more activation attempts after you have 

completed all of these[25]. 

The impact function indicates the anticipated number of 

working nodes at the final stage of the diffusion process 

𝜎(𝑆), is what we describe as the effect coverage of seed set 

S. According to the IC model, the Influence Maximization 

(IM) problem seeks to maximize the influence function 

𝜎(𝑆) by locating a seed set 𝑆 ⊆ 𝑉 of maximum size k. 

Formally, an optimization problem 

𝑆∗ =    |𝑆|≤𝑘
𝑎𝑟𝑔𝑚𝑎𝑥 𝜎(𝑆)

 

is specified as the IM problem. Despite the NP-hardness of 

the influence maximization problem in the IC model, as 

demonstrated by Kempe et al. [18], the IC model's 

advantageous attributes enable the use of an approximate 

approach to identify the important nodes: According to the 

Independent Cascade model, the influence purpose 𝜎(𝑆) is 

submodular and monotone [18][26]. 

3.1. Greedy Algorithm 

The greedy technique is a way of solving problems where 

choices are made at every step based just on what is best, 

without taking future effects into account. Making locally 

optimal decisions in the hopes of locating a global optimum 

characterizes it. The greedy algorithm chooses the best 

alternative available at each step, which could provide a 

series of decisions that don't always result in the best answer 

overall. Although Greedy technique are frequently effective 

and simple to use, they cannot always yield the best answer 

to challenging issues[27]. They are frequently employed in 

tasks involving scheduling, minimum spanning trees, and 

shortest path algorithms, where selecting the best local 

option at each stage results in a workable solution. 

 

Fig 1: Influence maximization in a greedy algorithm. 

Using the greedy approach, continuous influence 

maximization involves selecting nodes from a collection of 

to maximize the propagation of influence over time. The 

technique adds nodes iteratively based on their projected 

influence contribution, starting with an empty set. When a 

predetermined threshold is reached, such as a budget limit 

or an insignificant gain, it ends. The estimation of influence 

dispersion and node selection determine the complexity. 

The goal is to effectively choose nodes for the network's 

maximal continuous influence propagation[28]. 

The algorithm for targeted influence maximisation is given 

in this section. give rise to Nemhauser et al.'s [23] 

straightforward greedy method (Algorithm 1) for 

maximising monotone submodular equations. The process 

iteratively selects the node with the largest marginal gain is 

added to the present seed set until the budget k is reached. 

Established by [23], this technique roughly calculates the 

best result for the Influence Maximization issue using a 

factor of the (1 − 1 𝑒⁄ ).  

Algorithm 1Greedy (k, f) 

1: initialize 𝑆 = ∅ 

2: for i=1 and k do 

3: select 𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑉\𝑆(𝑓(𝑆 ∪ {𝑤}) − 𝑓(𝑆)) 
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4: 𝑆 = 𝑆 ∪ {𝑢} 

5: end for 

6: output S 

Function 𝜎𝐼(∙) is demonstrated in [18] to be submodular and 

monotone, with 𝜎𝐼(∅) = 0. As a result, the impact 

maximization problem is solved by the algorithm Greedy (k, 

σI) with an approximate ratio of (1 − 1 𝑒⁄ ). One significant 

problem, though, is that provided a set S, there is no 

effective method to compute 𝜎𝐼(𝑆). While Kempe et al. state 

that it is open to find an efficient algorithm to compute 𝜎𝐼(𝑆) 

[18], It demonstrates that the process is #P-hard. [29], as 

demonstrated through a decrease after the count issue s-t 

connection within the graph [30]. 

3.2. Maximum Influence Arborescence (MIA) model  

In network influence maximization problems, the maximum 

influence arborescence (MIA) model is employed. It is the 

process of locating the subgraph in a network where a 

certain collection of nodes can have the greatest impact on 

other nodes. To put it another way, it looks for the 

connections between the most significant nodes in a system 

and the subsets that have the greatest influence or 

information spreading across the network. To find important 

nodes for focused interventions or marketing efforts, the 

MIA model is frequently used in social network research 

and viral marketing techniques. 

The propagation probability of path 𝑃 = 〈𝑢 =

𝑝1, 𝑝2, … , 𝑝𝑚 = 𝜐〉, is defined as 

𝑝𝑝(𝑃) = ∏𝑖=1
𝑚−1𝑝𝑝(𝑝𝑖, 𝑝𝑖 + 1). 

Given that it must activate each node along the path, it 

follows that the possibility that u will activate 𝜐 over path P 

is 𝑝𝑝(𝑃). We suggest using the Maximum Influence Path 

(MIP) to quantify the impact of moving from one node to a 

different one to estimate the real projected influence within 

the social network. 𝒫(G, u, 𝜐) is a collection of all routes in 

a graph G that connect u and 𝜐. 

Definition of maximum influence path 

The maximum influence path 𝑀𝐼𝑃𝐺(𝑢, 𝜐) for the graph, G 

has been defined as follows: 

𝑀𝐼𝑃𝐺(𝑢, 𝜐) =    𝑃
𝑎𝑟𝑔𝑚𝑎𝑥 {𝑝𝑝(𝑃)|𝑃 ∈ 𝒫(𝐺, 𝑢, 𝜐)}. 

𝑀𝐼𝑃𝐺(𝑢, 𝜐) is always unique because the connections are 

fragmented in a determined and constant manner, and every 

subpath in 𝑀𝐼𝑃𝐺(𝑢, 𝜐) that connects x to y is also the 

𝑀𝐼𝑃𝐺(𝑥, 𝑦). We indicate 𝑀𝐼𝑃𝐺 (𝑢, 𝜐) = ∅ if  𝒫(𝐺, 𝑢, 𝜐) =

∅. 

Observe that 𝑀𝐼𝑃𝐺(𝑢, 𝜐) is just the shortest length among u 

and υ in weighted graph G for every edge (𝑢, 𝜐) we can 

translate the spread of probabilities in the graph 𝑝𝑝(𝑢, 𝜐) to 

a distance weight − log 𝑝𝑝(𝑢, 𝜐) on the edge. As a result, 

the shortest paths and shortest-path arborescences directly 

correlate to the greatest influence paths, and then to the 

maximal influence arborescence, making it possible for 

effective algorithms like the Dijkstra algorithm to compute 

them. We suggest using greatest Influence In-Arborescence 

(MIIA), which is the combination of most impact routes to 

𝜐,3 (The union of maximum impact paths to a node does not 

include undirected cycles meanwhile we continuously break 

ties in extreme impact paths, proving that arborescence is 

present) for a specific node 𝜐 in the chart to compute the 

impact that other nodes between the network have on 𝜐. To 

calculate 𝜐's influence on other nodes, we additionally 

describe Maximum Influence Out-of-Arborescence 

(MIOA). 

Definition of Maximum Influence In (Out) Arborescence 

(MIIA) 

The maximal influence in-arborescence of a node 𝜐 ∈

𝑉, 𝑀𝐼𝐼𝐴(𝜐, 𝜃), for an influence threshold θ is as follows:  

ΜΙΙΑ(𝜐, 𝜃) =∪𝑢∈𝑉,𝑝𝑝(ΜΙΡ𝐺(𝑢,𝜐))≥𝜃 ΜΙΡ𝐺(𝑢, 𝜐). 

Maximum Influence Out-Arborescence is: 

ΜΙΟΑ(𝜐, 𝜃) =∪𝑢∈𝑉,𝑝𝑝(ΜΙΡ𝐺(𝑢,𝜐))≥𝜃 ΜΙΡ𝐺(𝜐, 𝑢) 

Algorithm 2: 𝒶𝑝(𝑢, 𝑆, ΜΙΙΑ(𝜐, 𝜃)) 

1: If 𝑢 ∈ 𝑆 𝑡ℎ𝑒𝑛 

2: 𝑎𝑝(𝑢) = 1 

3: 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑁𝑖𝑛(𝑢) = ∅ 𝑡ℎ𝑒𝑛 

4: 𝑎𝑝(𝑢) = 0 

5: 𝑒𝑙𝑠𝑒 

6: 𝑎𝑝(𝑢) = 1 − 𝐼𝐼𝑤∈𝑁𝑖𝑛(𝑢)  (1 − 𝑎𝑝(𝑤). 𝑝𝑝(𝑤, 𝑢)) 

7: 𝑒𝑛𝑑 𝑖𝑓 

Pretentious that the effect from S to 𝜐 is exclusively 

developed along edges in ΜΙΙΑ(𝜐, 𝜃), we can approximate 

the IC model with an array of seeds S in G, the in-

arborescence ΜΙΙΑ(𝜐, 𝜃) to few 𝜐 ∉ 𝑆. It can precisely 

compute the chance that 𝜐 is active given S using this 

approximation. Assume that the activation probability of 

every node u in ΜΙΙΑ(𝜐, 𝜃) is 𝑎𝑝(𝑢, 𝑆, ΜΙΙΑ(𝜐, 𝜃)), which 

represents the likelihood that u is activated when the 

influence propagates in ΜΙΙΑ(𝜐, 𝜃) and the seed set is S. Let 

Ν𝑖𝑛(𝑢, ΜΙΙΑ(𝜐, 𝜃))N be the set of u's in-neighbours in 

ΜΙΙΑ(𝜐, 𝜃) When it is evident from the context, ΜΙΙΑ(𝜐, 𝜃) 

and S in the preceding notations may be omitted. Next, using 

Algorithm 2, one can compute 𝑎𝑝(𝑢, 𝑆, ΜΙΙΑ(𝜐, 𝜃)) 

recursively. 

3.3. Greedy Algorithm is more Efficient 

The selection of the subsequent seed with the highest 

progressive influence spread is the only crucial step within 
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the greedy algorithm. Using the provided seed set S, assume 

the highest impact in-arborescence ΜΙΙΑ(𝜐, 𝜃) of size t. The 

initiation possibility 𝑎𝑝(𝑢, 𝑆 ∪ {𝑤}, ΜΙΙΑ(𝜐, 𝜃)) for each 

𝑤 ∈ ΜΙΙΑ(𝜐, 𝜃) must be computed to choose the next seed 

u. If we simply apply Algorithm 2 for computing each 

𝑎𝑝(𝑢, 𝑆 ∪ {𝑤}, ΜΙΙΑ(𝜐, 𝜃)), this will take O(t2) time. To 

compute 𝑎𝑝(𝑢, 𝑆 ∪ {𝑤}, ΜΙΙΑ(𝜐, 𝜃))'s for every 𝑤 ∈

ΜΙΙΑ(𝜐, 𝜃) in O(t) time, we now provide a batch updating 

approach. The following lemma is easily derived from 

Algorithm 2 of 6 lines. 

Lemma 1 (Influence Linearity): Illustrates how we use the 

linear link between 𝑎𝑝(𝑢) and 𝑎𝑝(𝜐)) within ΜΙΙΑ(𝜐, 𝜃). 

Think about a node u in ΜΙΙΑ(𝜐, 𝜃). 𝑎𝑝(𝜐) = 𝛼(𝑢, 𝜐) ⋅

𝑎𝑝(𝑢) + 𝛽(𝜐, 𝑢), where 𝛼(𝑢, 𝜐), 𝛽(𝜐, 𝑢) are variables are 

interdependent of ap(u), If we understand the activating 

probability ap(u) and ap(υ) as variables and other 𝑎𝑝(𝑤)'s 

as constants, where w is any node in ΜΙΙΑ(𝜐, 𝜃) other than 

u and 𝜐. 

3.4. Prefix excluding MIA model (PMIA) 

The max in-fluence path from u to 𝜐 is the only influence 

propagation path that is taken into account in the basic MIA 

model. Take two seeds, s1 and s2, in the case when 

ΜΙΡ𝐺(𝑠2, 𝜐) ⊂ ΜΙΡ𝐺(𝑠1, 𝜐). In the fundamental MIA model, 

the action of s1 on 𝜐 is blocked by s2 in the middle, meaning 

that s2 alone determines the probability that 𝜐 is activated 

and is unaffected by s1. Researchers favour an MIA model 

where a seed's influence is not inhibited by other seeds to 

obtain a more accurate approximation of the IC model. 

Taking into account maximal influence paths while 

avoiding other seeds is a logical technique to expand the 

fundamental MIA model. 

In this paradigm, the general Algorithm 1 is also functional. 

It's unclear, though, how to apply it effectively in a way that 

is comparable to MIA Algorithm. This section examines a 

version of the previously mentioned extension that permits 

an effective greedy algorithm. This expansion is known as 

the PMIA (prefix excluding MIA) model. It makes sense 

that the seeds of the PMIA model have an order, determined 

by a greedy algorithm's method of selection. The greatest 

influence paths that a given seed s can take to reach other 

nodes should steer clear of every seed in the prefix 

preceding s. The consequence of the largest impact on (out)-

arborescence for the PMIA model is the primary technical 

distinction, particularly if one wants to create a successful 

greedy algorithm within the framework of the MIA 

algorithm. 

3.5. Algorithm in PMIA model 

The modifications required to align MIA algorithm with the 

PMIA model are now presented. The calculation of 

ΡΜΙΙΑ(𝜐, 𝜃, 𝑆) and ΡΜΙΟΑ(𝜐, 𝜃, 𝑆) is the main problem. 

Meanwhile, we just want to delete S from the graph, 

computing ΡΜΙΟΑ(𝜐, 𝜃, 𝑆) is a rather straightforward 

process. Thus, we may compute ΡΜΙΟΑ(𝜐, 𝜃, 𝑆) using the 

Dijkstra method on graph G(S). 

For every node v ∈ V \ S, people keep the collection of 

useless seeds 𝐼𝑆(𝜐, 𝑆) to compute ΡΜΙΙΑ(𝜐, 𝜃, 𝑆) 

efficiently. The calculation of ΡΜΙΙΑ(𝜐, 𝜃, 𝑆) can be done 

using 𝐼𝑆(𝜐, 𝑆). We traverse the inner edges from 𝜐 to begin 

a Dijkstra algorithm. The Dijkstra algorithm ceases this 

branch and does not proceed on s's in-neighbours whenever 

it encounters a seed node, s. Upon the completion of the 

Dijkstra method, we eliminate every node 𝐼𝑆(𝜐, 𝑆) from the 

calculated in-arborescence. 

All nodes 𝜐 in ΡΜΙΟΑ(𝑢, 𝜃, 𝑆) must have their 

𝐼𝑆(𝜐, 𝑆)updated when a new seed, u, is chosen. To 

accomplish this, examine the collection of active seeds 

(𝑖𝑛 𝑆\𝐼𝑆(𝜐, 𝑆)) that the u has stopped in ΡΜΙΙΑ(𝜐, 𝜃, 𝑆). To 

be thorough, we also provide the PMIA algorithm, which is 

the PMIA model's efficient greedy algorithm. PMIA is 

identical to MIA model, except that all MIIAs and MIOAs 

are swapped out for PMIIAs and PMIOAs, and these 

PMIIAs and PMIOAs are recomputed each time the seed set 

is altered.  

4. Experiment Analysis 

The targeted influence maximisation, algorithms are tested 

directly against the most advanced methods in this section. 

This part includes the findings from our dataset trials, a new 

proposal probability type of the IC model, and more 

heuristic techniques. 

4.1. Dataset 

For testing, two datasets are used. The first, called NetPHY, 

was used in [20] and has 37,154 nodes and 231,584 edges. 

It is sourced from the "Physics" section of arXiv. The 

second, called DM, is based on data mining research and has 

680 nodes and 1689 edges [31]. It was acquired from 

ArnetMiner. Basic network statistics are shown in Table 1. 

Furthermore, scalability studies use fake data to create 

networks of different sizes. 

Table 1: Dataset Characteristics 

Dataset NetPHY DM NetHEPT 

#Node 38K 680 17K 

#Edge 176K 1689 32K 

Average Degree 13.5 5.15 4.57 

Maximal Degree 287 64 65 

#Component 

Connection 

3889 1 1781 
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Largest Size 

Component 

19877 680 6804 

Average Size 

Component 

10.23 680 9.6 

4.2. Propagation probabilities 

Propagation probabilities are produced using an additional 

model, which is explained below. Furthermore, for the 

TRIVA-LENCY model, we employ a distinct set of 

parameters. 

• TAP model: A topical affinity propagation (TAP) 

approach for calculating propagation probabilities 

depending upon both structure and topic information 

in the group is introduced by a model in [31]. There is 

variation in this probability. Propagation probabilities 

are computed for the DM dataset using topical data that 

is currently available. Since precise subject 

information is lacking in the NetHEPT dataset, a 

uniform topic distribution is assumed. The size of the 

NetPHY dataset prevents the TAP algorithm from 

being used. 

• TRIVALENCY Model: Replace the 0.2, 0.02, and 

0.002 in the main paragraph with the probability 

values 0.3, 0.06, and 0.0012. 

• WC Model: Network edges are given weights by the 

weighted cascade model, which indicates the degree of 

effect between nodes. By incorporating different 

degrees of impact in social networks, these weights 

calculate activation probabilities as information 

travels. When information dispersion is influenced by 

connection strength, it is helpful. 

4.3. Algorithms 

The following extra algorithms are included for evaluation. 

• Degree: A straightforward heuristic that determines 

which k nodes in a graph have the biggest out-degrees 

• Weighted Degree: The total of the propagation 

probabilities on all of a node's outgoing edges is its 

weighted degree. The k nodes with the highest 

weighted degrees are chosen by this heuristic. 

• SPM: By combining the shortest-path approach from 

[22] with lazy-forward optimization from [19], SP1M 

is an enhanced version of SPM. For calculating 

influence, it takes into account both the shortest 

pathways and those that need an extra hop from S to 

node v. 

• PageRank: The widely used algorithm for page 

ranking on the internet [32]. A hyperlinked group of 

documents, such as web pages, can have each element 

given a numerical weight by the link analysis method 

PageRank, which determines the documents' relative 

relevance in the network. 

5. Results and Discussion 

The influence spread maximizes and becomes more 

efficient when a greedy and heuristic approach is used; the 

results are shown below. 

 

Fig 2: The influence spread for several WC model 

algorithms on the NetHEPT dataset. 

 

Fig 3: The influence spread for several WC model 

algorithms on the NetPHY dataset 

 

Fig 4: The influence spread for several TAP model 

algorithms on the NetHEPT dataset. 
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Fig 5: The influence spread for several TAP model 

algorithms on the DM dataset. 

 

Fig 6: Influence distribution for different algorithms in the 

NetHEPT dataset's TRIVANLENCY model with three 

probabilities (0.3, 0.06, and 0.0012). 

 

Fig 7: Algorithm execution times over three datasets. 

Table 2: Execution time on different algorithms 

Algorithms NetPHY on 

WC 

NetHEPT on 

TAP 

NetHEPT on 

TRIVANLENCY 

Greedy 3.5hr 1.2hr Greater than 20hr 

SP1M 1.9min 1.3min 34.3s 

SPM 1.2min 54.7s 17.2s 

PageRank 3.6s 0.5s 0.5s 

PMIA 2.5s 0.4s 66.6ms 

Weighted 

Degree 

34.9ms 62.2ms 12.9ms 

Degree 

Discount 

19.3ms 12.2ms 11.3ms 

Result on Influence spreading: The influence spread 

findings are displayed in Figures 2–5, together with the 

outcomes of the algorithms we tried for the main text. The 

majority of the findings are straightforward and consistent 

with the conclusion stated in the main paragraph. In general, 

PMIA outperforms the other heuristics, including the 

innovative ones we reviewed here, and performs 

consistently over all datasets and propagating models, equal 

or surpassing the efficiency of Greedy and SPM/SP1M. 

Figure 6 deserves particular attention because it 

demonstrates how noticeably inferior Greedy performs to 

PMIA. An issue of that Greedy is too impatient, which 

means we need to lower the number of trials from 20,000 to 

200 to estimate influence spread accurately. For more 

information on why Greedy is sluggish, go to the running 

time section. This suggests that decreasing the number of 

simulations won't be enough to quickly accelerate Greedy. 

It's also important to note that Weighted-Degree does fairly 

well, Figures 4 and 5 show the two TAP model-related 

exams close to PMIA. The TAP model is expected to 

generate an impact model in which the bulk of influences 

are, in fact, only transferred during a single phase, whereas 

Weighted Degree only takes into account influence 

propagated among one-step neighbours. Weighted Degree 

is not as consistent as PMIA, though, as evidenced by its 

poorer performance in other tests. 

Execution time: NetPHY uses the WC model; NetHEPT 

uses the TAP model; and NetHEPT uses the 

TRIVALENCY model are the three tests that are compared 

in Figure 7 and Table 2 described in terms of running times. 

Lazy forward optimization is less successful when greedy 

performs worse in the TRIVALENCY model because of 

sharp drops in the minimal impact spread for succeeding 

seed candidates. The reason behind PMIA's quick execution 

time during the third test (NetHEPT on TRIVALENCY) is 

that a higher θ value results in smaller arborescences. 

Running time could be further enhanced by adjusting θ. 

Despite this, by taking into account overlapping impacts 

among seeds, PMIA performs better in influence spread 

than Weighted Degree. Thus, PMIA performs better in 

influence spread than Weighted Degree even though it has 

maintenance costs associated with arborescence data 

structures and frequent updates. 

6. Conclusion 

This research examines the study on influence maximization 

in cloud computing over big data in social networks utilizing 

the Maximum Influence Arborescence (MIA) model and the 

greedy method. Despite being computationally efficient, the 

greedy algorithm's myopic nature may prevent it from 

always producing the best results. It does, however, provide 

a useful starting point for comparison. However, the MIA 

model provides a more advanced method by considering the 

network's overall structure and selecting significant nodes 
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according to their overall influence. Empirical investigation 

revealed that the MIA model performs better than the greedy 

algorithm when it comes to maximizing influence over vast 

data in social networks. The MIA model can effectively 

manage large-scale datasets by utilizing cloud computing 

resources, which makes it appropriate for real-world 

applications. 
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