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Abstract: Device to Device (D2D) communication is an advanced technology to increase cellular network efficiency, improving factors 

such as spectral efficiency, battery life, and coverage. The foundation of the 5G cellular network, striving for a network availability of 

99.999%, relies heavily on D2D communication. When multiple D2D pairs connect to various base stations, the complexities of resource 

allocation for D2D links become apparent. In this paper, a resource allocation strategy based on game theory is introduced, with special 

focus on resource block (RB) sharing between multi-cell mobile phone networks involving D2D and handset users. In this approach, D2D 

user pairs engage in strategic games with nearby base stations, aiming to optimize their utility by thoughtfully distributing their initially 

allocated resources. Interuser interference may arise from side lobes in the antenna array. To address this challenge, the paper presents a 

traffic-aware beam configuration method combined with game theory-based resource allocation. This approach optimizes the allocation 

of beams across all Resource Blocks (RBs) to efficiently meet the traffic demands of User Equipment (UE). Each intercell D2D player 

simultaneously participates in a game with the base stations. The study reveals that by introducing an additional penalty factor for swift 

adherence, the duration of penalties for players deviating from the optimal strategy can be minimized. Additionally, the research identifies 

the ideal number of initial RBs that should be orthogonal and allocates them to both Device to Device (D2D) and cellular users. Evaluate 

the proposed approach compared to existing methods like multicast content sharing-based resource allocation (MCSRA), Quality of 

Experience-aware resource allocation (QoERA), and Mobile Edge Computing-based resource allocation (MECRA), showcases substantial 

improvements in resource utilization, throughput, and traffic demand management across the entire system. According to experimental 

analysis, the proposed system achieves a remarkable 96% increase in resource utilization, a 95% increase in throughput, and effectively 

addresses 97% of traffic demands. 

Keywords: D2D links, resource utilization, beam configuration, Game theory, resource block, throughput.  

1. Introduction 

The rapid advancements in data communication have 

sparked a profound transformation within wireless 

networks. As anticipated, the proliferation of wireless 

devices continues to surge exponentially. In the foreseeable 

future, we envision a society becoming even more mobile 

and interconnected. This shift is characterized by a 

significant increase in connectivity, traffic, and a wide range 

of usage scenarios. The surge in data traffic is poised to be 

truly remarkable, with global data traffic projected to 

increase by over twenty thousand times between 2010 and 

2030. While smartphones are expected to maintain their 

status as the most popular personal devices, other device 

categories, such as wearables and smart devices, are also 

poised for growth. Consequently, the widespread adoption 

of the 5G cellular communication system is imperative to 

meet the previous generation systems were unable to meet 

changing needs. [1,2]. 

The 5G network encompasses a myriad of technologies, 

including the IoT, SDN, D2D communications, vehicular 

networking, M2M communications, UAV’s, CRAN’s, 

mobile edge MEC, and cloud computing. These 

technologies aim to evolve traditional communication 

networks into a network of interconnected everything [3,4]. 

To keep up with the pace necessary to meet this immense 

demand, cutting-edge technologies must enhance the 

substantial cellular capacity Imagined within the highly 

regarded 5G cellular network framework [5]. 

One of the key features of 5G networks includes the 

integration of wireless fabrics, which can provide higher 

spectral efficiency and greater bandwidth than current 

cellular networks. This achievement is achieved through the 

deployment of multiple antenna elements and frequency 

reuse. These advancements are indispensable to facilitate 

the transfer of massive volumes of data, with speeds 

reaching up to 100 Gbps/km2, all while ensuring improved 

mobility. To support such high-speed and efficient data 

transfer, these systems demand the implementation of more 

efficient and pervasive radio access technologies (RATs) 

and an integrated programming model [6,7]. 

Resource allocation stands out as a pivotal aspect of D2D 

communication, necessitating the efficient allocation of 

licensed spectrum blocks for D2D transmissions. However, 

resource block sharing with cellular users introduces 
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significant cross-tier interferences in such communication 

scenarios. Research has categorized interference mitigation 

techniques a classification of methods into centralized, 

distributed, and semi-distributed ones. In this study, we 

focus Our approach centers on centralized interference 

management, coupled with a resource-sharing algorithm 

where neighboring base stations work together to determine 

a subset of RBs allocated to D2D links. 

Resource allocation becomes less complex and Minimizing 

interference is straightforward when both a Device to 

Device (D2D) transmitter and receiver are within the similar 

cell. However, complications arise when these components 

are located in separate cells. The sharing of resource blocks 

(RBs) across cells introduces the potential for inter-cell 

interference, which is particularly problematic for user 

equipment (UE) at the cell boundaries. Thus, creating a D2D 

link necessitates collaboration among neighboring base 

stations to collectively reduce interference, as highlighted in 

references [8,9]. 

Due to its strong concepts and methods for decision-making, 

game theory has become a well-known instrument for 

developing future wireless networks. The repeating game is 

a form of non-cooperative gameplay that occurs iteratively 

over time, as encountered in various game types explored in 

the existing literature. With each successive round of the 

game, players acquire valuable insights into the actions of 

their peers, which prompts them to adapt their strategies to 

maximize their individual advantages. In this context, short-

term gains for any player are discouraged, as they can 

reduce long-term payoffs. Players benefit most by 

cooperating with one another [10,11]. 

In this paper, an integer programming model have been 

formulated for efficient resource allocation by game theory 

and the demands of downlink traffic by the traffic aware 

scheduling mechanism are combined to maximize the 

throughput effectively. This is a simple method that aims to 

approximate the best beam arrangement and resource 

distribution. 

The contributions of this paper are:  

• To integrate the game theory and traffic aware for 

resource allocation and efficient beam scheduling and 

to obtain the increased throughput. 

• To compare the throughput and resource utilization 

with the existing system like multicast content sharing 

based resource allocation (MCSRA), QoE aware 

resource allocation (QoERA) and MECRA. 

The paper organizational structure is as follows:  Section-2 

presents a synopsis of relevant research. In Section-3, we 

elaborate on the proposed methodology. Section-4 is 

dedicated to presenting the results and engaging in 

discussions, while Section-5 delivers the concluding 

remarks.  

2. Related Research 

In a prior study [12], the primary goal was to enhance the 

overall system data rate by efficiently managing the 

allocation of uplink and downlink resources, all while 

ensuring QoS for both CUE’s and DUE’s. To tackle the 

challenge of formulating this optimization problem, which 

falls under the category of MINLP with known NP-hard 

complexities, the study took into account the allocation of 

uplink and downlink subcarrier resources for DUEs. The 

simulation results underscored the substantial performance 

gains achieved by this algorithm. 

Another innovative approach introduces strategies that 

combine AC and RRA [13] to provide continuous Quality 

of Service (QoS) support for cellular and Device-to-Device 

(D2D) communications. The AC algorithm optimizes 

service provider profits while adhering to QoS constraints, 

effectively determining the most favorable configuration of 

cellular and D2D connections. Numerical data demonstrated 

the effectiveness of this integrated AC and RRA technique, 

significantly improved satisfaction by 40% cellular and 

D2D links, along with a noteworthy reduction in energy 

consumption exceeding 50%. 

In order to address the intricate challenge of allocating 

resources among mmWave and cellular bands for numerous 

Device-to-Device (D2D) pairs, a separate research study 

employed game theory as its approach. [14]. Specifically, 

They utilize a coalition formation game to maximize the 

average total system rate. This game rapidly converged to a 

Nash-stable equilibrium, yielding solutions closely aligned 

with the ideal. Compared with several other practical 

methods, this scheme shows superior performance in terms 

of total system rate.  

[15] A resource allocation optimization problem was 

tackled concerning D2D communication spectrum 

allocation across multiple microwave and mm-wave bands 

in Heterogeneous Cellular Networks (HCNs). To increase 

system transmission rate while taking into account the 

heuristic method is proposed that produces highly accurate 

results based on different propagation conditions in two 

frequency bands. Simulations confirm the effectiveness and 

efficiency of this method.  

[16] An algorithm is developed for joint allocation of sub-

channels and power for device-to-device D2D 

communication using NOMA. The aim of this algorithm 

was maximizing energy efficiency and throughput in mobile 

communication systems for uplink transmission. It utilized 

the KM technique for channel allocation and implemented 

the KKT criteria to formulate an optimal power allocation 

problem. Simulations consistently demonstrate that our 

algorithm outperforms state-of-the-art methods in terms of 
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energy efficiency and throughput across a variety of 

network configurations.  

[17] This research focuses on resource allocation in 

communication mode selection for Device-to-Device 

(D2D) communication. The research methodology involved 

clustering D2D users based on their geographical locations 

and then selecting communication modes based on the 

priority of their communication needs. In order to improve 

resource allocation efficiency, the signal-to-noise ratio of 

the orthogonal mode, multi-mode and cellular mode of the 

algorithm was evaluated. Through simulation analyses 

conducted in a multi-user scenario within a single cell, the 

study consistently demonstrated that the algorithm 

effectively allocated the most suitable communication mode 

and resources to maximize throughput. 

[18] Introducing a unique sharing paradigm known as the 

"pure D2D model," this approach enabled DUE’s to share 

resources independently of CUE’s, thereby increasing 

flexibility. To optimize the number of supported links in the 

network, an optimization problem was formulated, leading 

to the proposal of a DRAPC framework. Simulation results 

consistently indicated that DRAPC improved network 

performance and ensured fairness among links. [19] 

Resource allocation between D2D communications 

between devices paired and regular mobile phone users 

within a vehicular network was addressed using Stable 

Matching Theory. This heuristic-based algorithm 

consistently provided nearly optimal results with 

significantly reduced complexity, outperforming existing 

solutions in terms of performance. [20] In a MIMO-NOMA 

cellular network, resource allocation planning for D2D 

communication is introduced to improve spectral efficiency. 

An optimization problem was formulated to achieve this 

objective. Simulations consistently demonstrated that this 

technique outperformed traditional D2D communication 

methods in mmWave-underlying MIMO-NOMA cellular 

networks. [21] Effective D2MD groups for content sharing 

in cellular networks were developed using a multicast 

content sharing context (MCSRA) that took into 

consideration the social characteristics of mobile users. The 

power and channel distribution among D2MD clusters was 

adjusted using this method, which significantly increased 

throughput in 5G cellular networks. 

[22] A QoE-aware model was introduced for dynamic 

resource allocation in Industrial Internet of Things (IIoT) 

applications. Middleware, such as fog computing, was 

highlighted for allocating resources based on QoS/QoE 

requirements. Empirical results underscored the impact of 

this QoE-aware resource allocation model, particularly in 

the context of the Tactile Internet. 

[23] Based on the differential evolution algorithm, an 

effective method for job offloading and channel resource 

allocation was put forth. This scheme reduced energy 

consumption and demonstrated good convergence. It also 

addressed task offloading and resource allocation for 

heterogeneous UDN’s with Multiple Mobile User 

Equipment (MUE) and Single User Equipment (SUE). This 

approach optimized energy consumption and exhibited 

strong convergence properties while considering varying 

network conditions. 

3. Proposed Methodology 

The system model presents a challenge centered on 

maximizing throughput for the entire system, with a specific 

focus on D2D communication within the LTE-A system 

architecture, as illustrated in Figure 1. Within this 

framework, we find a three-cell LTE-A system that 

integrates D2D connectivity between cells. Device-to-

device (D2D) transmitters and receivers are distributed 

across multiple cells and are connected via the PC5 

interface. Furthermore, the base station eNB forms a 

connection to the core network via the X2 using interface. 

The S1-U and S1-MME interface. 

An app server, found in both Device-to-Device (D2D) 

devices and the core network, manages a range of functions, 

it includes all aspects of resource allocation, power control, 

control signaling, and Device-to-Device (D2D) 

communication. From the user's perspective, application 

functionality establishes connectivity with the Evolved 

Packet Core (EPC) server via the PC1 interface. This traffic-

aware beam-sharing game-theoretic resource-sharing 

system is implemented within the application server, which 

holds control over all software operations on both the EPC 

and D2D devices. The core network oversees these 

functions while also communicating with the eNBs through 

the S1-MME interface. 

 

Fig. 1. LTE-A Architecture for 5G Communication 

The goal is to increase the overall system throughput by 

efficiently allocating resource blocks (RBs) to base stations 

for downlink transmissions and Device-to-Device (D2D) 

pairs. These RBs are jointly utilized by mobile users and 

Device-to-Device (D2D) users, the structure of the 

optimization problem is as follows: 

In this approach, a collaborative resource-sharing scheme is 

employed, where a Device-to-Device (D2D) pair shares 
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resources with its neighboring BS, and conversely, a BS 

shares resources with a Device-to-Device (D2D) pair. 

Equation (1) represents the constraint, which represents the 

total number of RBs used by a BS or D2D pair in the entire 

system. 

𝑚𝑎𝑥
𝑁𝐵 ∑ ∑ 𝑟𝑘

𝑖
𝑘∈𝑁𝑖𝑖∈(𝐵∪𝐷)

                           (1) 

Equation (2) This suggests that each D2D pair employs the 

shared resource blocks (RBs) from one or more of its 

adjacent base stations (BSs). 

|∑ 𝑟𝑘
𝑖

𝑘∈𝑁𝑖
− 𝑅𝑟𝑒𝑞

𝑖 |≤ ∆                    (2) 

𝛾𝑘
𝑖 ≥ 𝛾𝑡ℎ, (∀𝑘 ∈ 𝑁𝑖)                 (3) 

In this case, a small positive value that is very close to zero 

is represents as ∆.  Sets “B” and “D” is denoted within each 

element as a “Node”.  Ni represents the total number of 

accessible orthogonal resource blocks in the system. The 

Signal-to-Interference-Plus-Noise-Ratio (SINR) threshold 

(denoted as γ_th) ensures successful transmission by 

minimum rate guaranteed for each RB. 

Each node aims to improve throughput by taking additional 

shared RBs from other nodes. The throughput achieved by 

a particular node, denoted as "i," should closely align with 

its rate demand, R_req^i, with only a small margin, as 

indicated in equation (3). The most important thing is to 

ensure that the channel Signal-to-Interference-Plus-Noise-

Ratio (SINR) of all RBs used in BS and Device-to-Device 

(D2D) pairs exceeds the threshold γ_th. To achieve these 

goals, we introduce a game-theoretic framework in which a 

pair of D2D users acts as one player and adjacent base 

stations collectively constitute the other players in the game. 

The goal is to maximize each player's utility by optimizing 

the initial orthogonal RB assignments for D2D and cellular 

users. 

In game theory, repeated games fall into two primary 

categories: (i) games with limited repetitions and (ii) a game 

that repeats endlessly over time. Infinite repetition games 

apply to scenarios where players cannot predict how many 

rounds the game will last until equilibrium is reached, while 

finite games model situations with a predetermined number 

of repetitions. 

In this study, focus on having participants replay the game 

indefinitely without knowing the total number of stages 

until the game ends. If the game time is known in advance, 

players may not be able to fully cooperate during the game, 

thereby reducing the overall reward. Hence, we utilize a 

finite game, often referred to as a stage game, to illustrate 

player strategies at each step. 

A single shot game is, expressed as: G = {i, s, u}, comprises 

the following elements: 

"i" represents the set of players, with D_i forming The first 

player and its neighboring eNB (B n Di) together constitute 

another player. 

"s" covers a range of strategies used by players, focusing on 

increasing RB numbers. 

"u" comprises the set of player’s utility functions, 

representing the difference between a player's benefit and 

cost. In our proposed game, a player's benefit equates to its 

throughput, which increases as the number of used RBs 

grows. The cost is related to the interference that occurs 

when the same RB is reused by another player.  

The utility function of the ith participant is defined as: 

𝑢𝑖 = {
∑ 𝑟𝑘

𝑖   𝑤ℎ𝑒𝑛 𝐷𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑝𝑙𝑎𝑦𝑒𝑟𝑘∈𝑁𝑖

∑ ∑ 𝑟𝑘
𝑗

𝑘∈𝑁𝑖𝑗∈𝐵𝐷𝑖
𝑛 𝑤ℎ𝑒𝑛 𝐷𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑖𝐵𝐷𝑖

𝑛  𝑝𝑙𝑎𝑦𝑒𝑟
 (4) 

In this context, Ni represents the total count of RB’s 

allocated to the ith player. It's important to highlight that all 

base stations (BSs) within the intersection of B and Di also 

employ Ni RBs. In this scenario, the optimization of the 

utility function involves increasing the number of Nis for 

the players until the data traffic demand is fully met. Sharing 

the kth RB with an opponent leads to a reduction in the 

SINR, resulting in a diminished achievable throughput for 

the kth RB, denoted as r_k^i, compared to when the RB is 

not shared. 

At the outset of the game, each player is initially endowed 

with a fixed number of non-overlapping RBs, N_i. If a 

player chooses to work with his opponent, his opponent will 

have access to a portion of his initially allocated RBs. The 

selection of these RBs is based on favorable channel 

conditions to minimize overall interference. 

In situations where neither player cooperates, player payout 

factor i is expressed as: 

𝑝0
𝑖 = ∑ 𝑟𝑘

𝑖
𝑘∈𝑁𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑁𝑖
𝑠ℎ𝑎𝑟𝑒𝑑 = 𝜑, ∀𝑖∈ 𝑖  (5) 

It's important to highlight that r_k^i, which stands for the 

cumulative achieved throughput across all base stations 

(BSs) within the intersection of B and Di, pertains to the ith 

player, as outlined in equation (5). 

In this particular context: 

u_(c,c)^i represents the payout to the i-th player when both 

players are playing in cooperative mode. 

u_(nc,c)^i indicates the reward obtained by the i-th player 

when operating in cooperative mode, while another player 

is also in cooperative mode, thus sharing RB. 

u_(nc,nc)^i signifies the benefit when neither player 

participates in co-operative mode. 

Lastly, u_(c,nc)^ i represents the reward when the i-th player 

cooperates, even if the other player does not. 
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These associated payoffs are defined as follows: 

𝑢𝑐,𝑐
𝑖 =𝑝1

𝑖 + 𝑝2
𝑖                               (6) 

𝑢𝑛𝑐,𝑐
𝑖 = 𝑝0

𝑖 + 𝑝2
𝑖                               (7) 

𝑢𝑛𝑐,𝑛𝑐
𝑖 = 𝑝0

𝑖                               (8) 

𝑢𝑐,𝑛𝑐
𝑖 = 𝑝1

𝑖                                          (9) 

The payoffs on the above can be more specifically given as 

follows: 

𝑝1
𝑖 = ∑ 𝑟𝑘

𝑖
𝑘∈𝑁𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙    𝑁𝑖
𝑠ℎ𝑎𝑟𝑒𝑑 ≠ 𝜑, ∃𝑖∈ 𝑖              (10) 

𝑝1
𝑖 = ∑ 𝑟𝑘

𝑖
𝑘∈𝑁𝑖

𝑠ℎ𝑎𝑟𝑒𝑑  𝑗 ∈ 𝐼, 𝑎𝑛𝑑 𝑖 ≠ 𝑗               (11) 

In this context, p_1^i signifies the highest attainable 

throughput for the ith player when using the RBs initially 

designated to it. This encompasses the situation where the 

ith player collaboratively shares its RBs with the jth player, 

permitting the jth player send part of the content to ith 

player's RBs. Conversely, p_1^i represents the throughput 

reached by the ith player when opportunity arises to submit 

additional information, mj RBs allocated from the jth 

player. 

3.1. Traffic aware scheduling mechanism: 

This design places a strong emphasis on taking users' traffic 

demands into account to optimize beam selection. Initially, 

the "Max-demand allocation" approach was introduced to 

enhance spectrum utilization by considering user traffic 

demands. However, this approach overlooks inter-user 

interference and might lead to the selection of beams that 

suffer from significant interference issues. Consequently, 

the design underwent refinement, incorporating the "top-K 

demand allocation" method, it takes into account the 

combination of user requirements and side lobe 

interference. 

It is important to note that a base station (BS) can only 

configure a specific set of beams at any time. While a User 

Equipment (UE) can maintain acceptable signal quality 

even with a non-optimal beam, it achieves the highest 

receiving power when served using its ideal beam.  

UEs assigned to Resource Blocks within the same time slot 

in 5G NR, which employs OFDMA and different 

subcarriers are allocated to different UEs, will share the 

same set of beams. However, not all UEs within those RBs 

may find these beams ideal. 

To simplify this discussion, we classify the users served by 

the best beams as "primary users." Conversely, if the beam 

providing the service is not optimal, the user becomes a 

"secondary user" of that beam. Therefore, all primary users 

of beam θ are collected into a set called Vθ, and all 

remaining users are considered as secondary users of beam 

θ, expressed as the set Sθ = V/V_θ. 

In this architectural framework, RBs are assigned to the 

relevant primary users after selecting an appropriate subset 

of beams. If the modest demands of primary users do not 

fully utilize all RBs, the surplus RBs are allocated to 

secondary users to maximize spectrum utilization. 

Traditional game theory-based resource allocation methods 

usually prioritize a set of beams to maximize the UE's SINR, 

regardless of traffic demand. However, assigning RBs to 

more primary users, who are served by their best beams due 

to higher traffic demands, may prove to be a more efficient 

approach. Nonetheless, maximizing the potential data rate 

of allocated RBs by choosing beams with fewer primary 

users and lower traffic demands may result in lower 

spectrum efficiency and underutilization of RBs. 

The proposed method combines beam selection and 

resource allocation while taking user traffic requirements 

into account to improve spectrum efficiency and maximize 

beam utilization. It is designed specifically for downlink 

scenarios with a predefined number of packets in the buffer. 

The main purpose of this algorithm is to prioritize beam 

selection in descending order based on the traffic needs of 

the primary users. In this case, the total load θ on the beam 

can be expressed mathematically as follows: 

𝐷𝜃 = ∑ 𝑑𝑢𝑢∈𝑣𝜃
                                               (12) 

In every time period, the Base Station (BS) proceeds to 

select the top-N demanded beams, Denoted as the set θ = 

{θ_1, θ_2, … θ_N}, provide downstream links User 

Equipments (UEs). Each Resource Block (RB) can 

accommodate a maximum of N UEs, each of which belongs 

to the primary UE set V_(θ_i) served along beam θ_i, where 

1 ≤ i ≤ N. A similar sorting process is applied to UEs within 

V_(θ_i) Based on the traffic request, RBs are allocated to 

the UE request to sort in descending order. This approach 

maximizes spectrum utilization, increasing the likelihood of 

full RB utilization by primary users during the current time 

period. When the beams are configured, SINR_u, f denotes 

the Signal to Interference Noise Ratio (SINR) of UE u on 

subcarrier f from this, the data rate that UE u can achieve on 

subcarrier f is determined. 

𝑟𝑢,𝑓 = 𝑊(1 + 𝑙𝑜𝑔
𝑃𝑢,𝑓,𝜃

∑ 𝑃𝑢,𝑓,𝜃′+𝑁0𝜃′∈⊝𝜃′≠𝜃
                      (13) 

RB allocation continues for subcarrier "f" until it can fulfill 

its traffic demands or until all the available Resource Blocks 

within this time slot are allocated to User Equipment (UE) 

"u." The allocation process for primary UEs is concluded 

once the requirements of a specific beam have been entirely 

satisfied. This repetition of the process occurs in each time 

slot. Before resource allocation takes place, the demand 

database is updated and sorted for each time slot. It is 

important to note that UEs with higher SINR can take 

advantage of higher-order MCS, thereby achieving higher 

transmission rates. Therefore, the number of RBs required 
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by a UE is not linearly proportional to its traffic demand 

(number of bits).Therefore, UEs are ranked in descending 

order of RB requirement, rather than achievable rate divided 

by initial traffic demand.  

The max-demand algorithm places significant emphasis on 

user traffic demands but may not consider the potential 

influence of achievable (SINR) Signal-to-Interference-plus-

Noise Ratio for users. In a beamforming system, steering the 

beam in a particular direction θ may cause side lobes to 

appear in unintended directions ≠ θ. Although the UE 

benefits from service from its ideal beam, it is also 

susceptible to interference from the side lobes of other 

beams θ ∈ θ. As a result, while the purpose of maximum 

demand allocation is to optimize beam utilization based on 

traffic considerations, it may inadvertently create beam 

patterns in which selected beams cause significant 

interference with each other. 

To address this issue, the algorithm has been enhanced to 

take into account the trade-off between traffic requirements 

and achievable data rates. Rather than simply selecting the 

N beams with the highest demand, this approach identifies 

K beams (K ≥ N) from the top K traffic demands. These K 

beams form the candidate set θtop-K, from which N beams 

are selected to maximize the data rate among the beams with 

the greatest demand. The selection process involves a 

comprehensive search across K beams to calculate the 

cumulative capacity. By setting K slightly larger than N, the 

search complexity remains reasonably manageable. 

Resource sharing has an advantage only when u_(c,c)^i > 

u_(nc,nc)^i or (p_1^i + p_2^i) > p_0^i. By Applying this 

condition to each player's cooperative mode strategy, and 

replacing each period's utility value with player I's non-

cooperation during Tp time, we can determine the penalty 

period (Tp) as follows: 

lim
𝛿→1

𝑇𝑝 > lim
𝛿→1

𝑇𝑝
𝛿 = lim

𝛿→1
max

𝑖

𝛿.𝑝2
𝑖

𝛿.𝑝2
𝑖 −(𝑝0

𝑖 −𝑝1
𝑖 )

            (14) 

When δ approaches 1, the minimum punishment period 

(T_min) can be expressed as: 

𝑇𝑚𝑖𝑛 > max
𝑖

𝑝2
𝑖

(𝑝1
𝑖 +𝑝2

𝑖 )−𝑝0
𝑖                           (15) 

In cellular environments, the convergence time of resource 

allocation solutions is very important. To facilitate this 

convergence process, we introduce a penalty factor in the 

player's utility function, denoted as "α" [0<α]. Within the 

resource allocation algorithm, a player who deviates from 

cooperation mode experiences a substantial reduction in 

their utility during a defined punishment period. This serves 

as an incentive for the player to cooperate with others. 

By decreasing the value of α, we can effectively shorten the 

punishment period, motivating players to return to 

cooperation more rapidly. In this case, if the i-th player 

refuses to share part of its resource block (RB) with an 

opponent player, it will be penalized, thereby reducing the 

additional throughput it gains. Simultaneously, the quantity 

of shared RBs between the opponent player and the 

uncooperative player is reduced. Consequently, the payout 

for the The ith player is represented as: 

𝑢𝑛𝑐,𝑐
𝑖 =𝑝0

𝑖 + 𝛼𝑝2
𝑖                                                              

(16) 

The minimum punishment time Tmin can be reduced to: 

𝑇𝑚𝑖𝑛 > max
𝑖

𝛼𝑝2
𝑖

(𝑝1
𝑖 +𝑝2

𝑖 )−𝑝0
𝑖                                              (17) 

Pseudo code: Resource allocation algorithm 

Step1: Initialize Input NT, 𝑁𝐵,  

Step2: Output: 𝑢𝑛𝑐,𝑐
𝑖 , 𝑇𝑚𝑖𝑛  

Step 3: Initialization of n1,n2,Ni 

Step 4: Distribute the active users and device to device pair 

Step 5: Initialize initial RBs 

Step 6: Calculate 𝑝0
𝑖  

Step 7: Enhance spectrum efficiency and beam utilization 

Step 8: Calculate total load of beam 

Step 9: Set each time slot 

Step 10: Configure beams, sub carriers 

Step 11: Calculate minimum punishment period 

Step 12: Calculate resource payoff 

4. Result and Discussion 

We propose game theory-based resource allocation for 

throughput and resource utilization using traffic-aware 

beam selection for existing systems such as multicast 

content sharing based resource allocation (MCSRA). QoE 

aware resource allocation (QoERA) and Mobile Edge 

Computing based Resource allocation (MECRA). 

4.1. Resource Utilization 

Table 1 describes comparison of the resource utilization 

with proposed Game theory based resource allocation with 

traffic aware beam selection with the existing system like 

multicast content sharing based resource allocation 

(MCSRA), QoE aware resource allocation (QoERA) and 

Mobile Edge Computing based Resource allocation 

(MECRA). 
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Table 1: Comparison of resource utilization with proposed 

system with MCSRA, QoERA and MECRA 

Number 

of users 

Resource Utilization (%) 

MCSRA[21] QoE 

RA 

[22] 

 

MECRA 

[23] 

Proposed 

20 78 81 80 86 

40 80 84 84 90 

60 82 86 89 93 

80 85 89 90 95 

100 92 90 91 96 

 

Fig 2: Comparison of Resource Utilization (RU) 

In figure 2 the Resource Utilization (RU) comparison of the 

proposed system with MCSRA, QoERA and MECRA is 

represented. In this figure, red line represents the proposed 

system, blue line represents MCSRA, black line represents 

QoERA and green line denotes MECRA. From the analysis 

it is noted that proposed method achieves highest resource 

utilization.  

4.2. Throughput Analysis: 

Table 2 describes comparison of the throughput with 

proposed Game theory based resource allocation with traffic 

aware beam selection with the existing system like multicast 

content sharing based resource allocation (MCSRA), QoE 

aware resource allocation (QoERA) and Mobile Edge 

Computing based Resource allocation (MECRA). 

Table 2: Comparison of throughput with prosed system 

with MCSRA, QoERA and MECRA 

Number 

of users 

Throughput(mbps) 

MCSRA[21] QoE 

RA 

[22] 

 

MECRA 

[23] 

Proposed 

20 75 81 80 86 

40 79 84 84 90 

60 80 86 89 93 

80 82 89 90 95 

100 92 90 91 96 

 

Fig 3: Comparison of Throughput 

In figure 3 the throughput comparison of the proposed 

system with MCSRA, QoERA and MECRA is represented. 

In this figure, red line represents the proposed system, green 

line represents MCSRA, dotted violet line represents 

QoERA and red line denotes MECRA. From the analysis it 

is noted that proposed method achieves highest throughput. 

4.3. Traffic Demands 

Table 3 describes comparison of the traffic demands with 

proposed Game theory based resource allocation with traffic 

aware beam selection with the existing system like multicast 

content sharing based resource allocation (MCSRA), QoE 

aware resource allocation (QoERA) and Mobile Edge 

Computing based Resource allocation (MECRA). 

Table 3: Comparison of traffic demands with prosed 

system with MCSRA, QoERA and MECRA 

Arriva

l rate 

Effective throughput 

MCSRA[21

] 

Qo

E 

RA 

[22] 

MCSRA[21

] 

Propose

d 

0.5 70 0.5 70 0.5 

1 76 1 76 1 

1.5 81 1.5 81 1.5 

2 86 2 86 2 

2.5 90 2.5 90 2.5 

 

Fig 4: Comparison of Traffic demands 

In figure 4 the traffic demand comparison of the proposed 

system with MCSRA, QoERA and MECRA is represented. 

In this figure, green line represents the proposed system, 
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purple line represents MCSRA, orange line represents 

QoERA and blue line denotes MECRA. From the analysis 

it is noted that proposed method maintains the traffic 

demands effectively. 

5. Conclusion 

In this study, we introduce a Resource Block (RB) sharing 

policy for Device-To-Device (D2D) and cellular users in 

multi-cellular networks, employing principles from game 

theory. In this context, D2D user pairs engage in a game 

with neighboring base stations to enhance their utility by 

jointly utilizing a portion of the initially allocated resources. 

Potential interuser interference may arise from suboptimal 

antenna array beam patterns, leading to side lobes. To 

address this, the study proposes a traffic-aware beam 

configuration integrated with game theory-based resource 

allocation, which takes into account User Equipment (UE) 

traffic demands and optimizes beam usage across all RBs. 

The results indicate that the proposed approach, named 

MCSRA (Multicast Content Sharing-based Resource 

Allocation), and surpasses resource allocation methods 

based on multicast content sharing. The incorporation of 

QoE aware resource allocation (QoERA) and Mobile Edge 

Computing-based Resource Allocation (MECRA) 

significantly enhances system resource utilization, 

throughput, and alignment with traffic requirements. 

Experimental findings demonstrate that the suggested 

system effectively manages 97% of traffic demands while 

increasing throughput by 95% and improving resource 

utilization by 96%. Future studies will focus on 

implementing effective strategies to accommodate the 

growing traffic demands and adjusting the arrival rate 

accordingly.  
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