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Abstract: In medical image processing, segmentation is essential for identifying and analyzing various body sections, including organs 

and tumors inside of them. This can support the diagnosis and treatment planning process, perhaps saving many lives. To obtain a more 

precise interpretation of the image, breast pectoral muscles must be removed, among other intricate pre-processes involved in the detection 

of breast cancer. The most popular deep learning architectures for image segmentation are SegNet and U-Net; however, fine-tuning 

hyperparameters will yield more accurate results from these networks. This research work combines Particle Swarm Optimization with 

Grey Wolf Optimization to address issues with the U-Net's hyper-parameter tuning for the excision of the breast pectoral muscle. The 

epoch cycles, learning ratio, Dropout Ratio, number of kernels, and activation function—all of which are hyper-parameters of the U-Net 

network are optimized. In comparison to traditional U-Net, U-Net with Grey Wolf, and U-Net with PSO, which show accuracies of 77.19%, 

84.76%, and 89.13%, respectively, the suggested model achieved an accuracy rate of 94.28%. After segmenting the photos, the 

DenseNet201, EfficientNetB5, ResNet101, and VGG19 ImageNet models are used to classify them. These models produce classification 

accuracies of 92.01%, 97.48%, 89.56%, and 93.32%, respectively.   

Keywords: Segmentation, Breast Cancer, Pectoral Muscle, Mammogram, Hyper-parameters, Classification.  

1. Introduction 

The process of splitting an image into several segments that 

are highly linked with its Region of Interest (RoI) area is 

known as image segmentation [1, 2]. The prime objective of 

segmenting medical images is to meaningfully characterize 

the raw image so that the target area may be located and the 

anatomy analysed to help determine the medication dose 

and make decisions before treatment planning. In recent 

decades, there has been a growing requirement for Artificial 

Intelligence (AI) based systems to execute AI-based 

segmentation tasks because of the rapid increase in tumors 

among people and the scarcity of experts in medical imaging 

science [3]. Due to their improved and fully automated 

performance, deep learning techniques have supplanted 

traditional machine learning (ML) based algorithms in 

recent years. Traditional segmentation methods on images, 

like region-centric, threshold-centric, and edge-centric 

approaches, have several shortcomings, including over-

segmentation and high noise sensitivity [4,5]. To overcome 

these problems, Deep Learning networks have been utilised 

in recent years to create more performant photo 

segmentation models. Semantic, instance and panoptic 

segmentation are the three broad categories into which Deep 

Learning-based picture segmentation falls [6]. For pixels, 

semantic segmentation is another variant of the 

classification task. This segmentation method gives each 

pixel in the image to a class that belongs to [7]. 

Segmentation based on instances of objects is used to locate 

and identify every object of interest in the given image, is 

an instance segmentation [8]. The segmentation method, 

which is novel in this field, separates each instance of the 

area in the image and finds its distinctiveness by combining 

the properties of semantic and instance segmentation 

methods [9]. Convolution-based networks [10], encoder-

decoder-based networks [11], regional CNN-based 

networks [12], and Deep Lab-based networks [13] are just a 

few of the deep-learning-oriented segmentation networks 

under development. Of them, networks based on encoder-

decoders yielded the best results, especially when it came to 

tasks involving the segmentation of medical images [14, 

15]. One of the encoder-decoder-based segmentation 

algorithms, U-Net was created and used for the first time in 

2015 to handle biomedical images [16]. It is becoming 

increasingly popular among deep learning specialists, 

especially those who work with medical images. Although 

good performance is achieved, silent, hyper-parameters are 

crucial to get robust findings for optimal U-Net algorithm 

performance. To solve this problem, we introduced a fusion-

based grey wolf particle swarm optimisation strategy to the 

U-Net model in this study. This technique helps the model 

avoid accepting the limits of monotonic optimisation 

methods and linear approaches to hyperparameter learning. 

The optimisation of the U-Net model's number of kernels, 

epoch cycles, learning ratio, dropout ratio, and activation 

functions is achieved by a combination of particle swarm 
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and grey wolf optimisation approaches. That is contrasted 

with independent implementations of the Grey Wolf along 

with Particle Swarm Optimisation techniques. Lastly, the 

ImageNet models DenseNet201, EfficientNetB5, 

ResNet101, and VGG19 are used to classify the segmented 

images.  

1.1. A Contributions 

1. Novel U-Net architecture segments the New Contrast 

Enhanced Spectral Mammography types of images. 

2. A novel U-Net is implemented to optimize both Model 

training and designing hyper-parameters. 

3. A novel Fusion-based Gray Wolf Particle Swarm 

approach is proposed and segmented images are 

classified with various ImageNet DeepCNN models. 

2. Literature Survey 

Several pieces of research have been carried out on the 

process of segmentation of breast pectoral muscle over the 

past few decades. But very few of them have implied the 

deep learning approach; Özkan Inik and Erkan Ülker [17] 

developed a segmentation model that segments follicles in 

ovarian tissue using the CNN model with various 

optimization algorithms including Artificial Bee Colony 

optimizer, Grey Wolf Optimizer, Classical Genetic 

Algorithm, and Particle Swarm Optimizer, methods. 

Among all, PSO based U-Net model attained a high 

accuracy value of 93.79%. However, the authors optimize 

only the model parameters, not the hyperparameters.  

Mortazi, A. et. al. [18] introduced a new cyclic optimization 

method built upon deep learning models including U-Net, 

and a CNN-based DenseNet model for segmenting the 

cardiac MRI images and optimizing the two 

hyperparameters such as learning ratio and momentum rate. 

Qiang Geng, and Huifeng Yan [19] designed a U-Net model 

that improves the accuracy and efficiency of the image 

segmentation process consuming the krill herb technique 

along with a maximum intra-class variance technique and 

achieved a high level of accuracy of 93.1%. Kai Zhang et. 

al. [20] proposed a Model-Agnostic Meta-Learning based 

U-Net model that employs the Particle Swarm optimization 

technique to segment satellite images and obtained an 

accuracy level of 75.44%. Diwan Baskaran et.al. [21] 

applied a hybrid optimization method with Multi-Scale 

Residual Fusion Network to segment the skin cancer data 

and achieved an accuracy level of 93.4% with Deep 

Residual Network for cancer detection.  

3. Proposed Methodology 

Figure 1 illustrates the building blocks of the human breast, 

which comprises ligaments, lymph nodes, lobules, 

glandular tissue, ducts, and connective tissues [22]. 

Although they are firmly positioned beneath the breast 

tissue [23], pectoral muscles are not a part of the human 

breast and are consistently seen in breast medical imaging. 

 

Fig. 1. Anatomy of Human Breast [24] 

It is a very vital process to remove the pectoral muscle part 

from images for finding breast cancer using machine 

learning techniques particularly when images are in 

mammogram modality [25].  

3.1. U-Net Model 

U-Net, one of the deep artificial networks, and heavily 

employed in the segmentation of images[26]. Encoding-

Decoding centered U-Net network is a kind of semantic 

deep neural network for the segmentation process that 

consists of two identical computational fragments such as 

down sampling and up sampling [27]. The structure of 

suggested U-Net network is presented in Figure. 2. 

 

Fig. 2. The architecture of the proposed U-Net Model 
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The design of the suggested U-Net consists of two parts with 

the bottleneck portion being a down sampling part that 

performs a down sampling operation and an up sampling 

portion part performs an up sampling process on given input 

images. Each set of the down sampling layer consists of two 

convolution layers, a max-pooling layer, and a dropout layer 

along with an activation function. This portion is typical to 

utilize traditional image classification networks without the 

fully connected layer. The original input image is subjected 

to a convolution kernel pooling operation, which can 

provide contextual semantic information to address the 

classification issue in the image segmentation process [28]. 

Correspondingly, from the bottleneck part to the bottom of 

the model is an upsampling portion which is symmetrical to 

the down sampling portion. Each set of a layer in the 

upsampling portion consists of two convolution layers that 

perform upscaling of latent features of images and maintain 

(copy) the same dimensions of the image attuned in the 

down sampling portion along with concatenation 

(transpose) layer [29]. Also, at each upsampling level 

dropout layers are included for the elimination of 

overburdened neurons from the model which is very 

important to avoid the feature overlapping that kills the 

performance of the overall model [30].  

3.2. Particle Swarm Optimization 

Particle Swarm Optimization was originally published by 

Kennedy and Eberhart to simulate the behavior of bird 

grouping or fish schooling in 1995 [31]. The concept behind 

the PSO is simple, Birds either separate or assemble while 

hunting before relaxing in an available location. This is 

because birds move from one place to another in search of 

prey. But while in the hunting process, constantly there is 

always one bird that can smell the prey very clearly; this 

indicates that the bird is aware of where prey can be found 

and has the proper prey source communication. As they are 

sending and communicating messages to each other, all 

birds will fly at once in the right direction to the spot where 

food can be found and catch it very accurately. Initially, a 

set of K individual swarm particles is generated randomly 

and each swarm is denoted as Xi in D-dimensional vector 

space. The D-dimensional vector space like (xi1, xi2,...,xnd) 

is calculated based on movement speed(P)and velocity(V) 

of the swarm(s). Every swarm also keeps track of the best 

fitness level they have ever attained through the search 

process, together with the location where this fitness value 

was saved and recorded as pbest. Location and position 

corresponding to the global optimal fitness among all 

members of the swarm are rerecorded as gbest. The 

updation of each swarm is preserved by its velocity as 

denoted by Vmin, and Vmax. Finally, the mathematical 

modeling of PSO is shown in Equations 1 and 2.  

𝑣_𝑖𝑑^(𝑡 + 1) = 𝑤 ×  𝑣_𝑖𝑑^𝑡 +  𝑐_1  ×  𝑟_1  ×

(𝑝𝑏𝑎𝑠𝑒𝑡_𝑖𝑑^𝑡  −  𝑥_𝑖𝑑^𝑡) + 𝑐_2  ×  𝑟_2  ×

(𝑔𝑏𝑒𝑠𝑡_𝑖𝑑^𝑡 −  𝑥_𝑖𝑑^𝑡)                                                            (1) 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1                                                              (2) 

Here, i is denoted as the maximum amount of iterations. The 

values of v and x are the real values generated in each 

iteration particularly, v_id^i  is the velocity of a swarm in D 

dimensional space at a particular iteration t and x_id^t is the 

location factor of the same. w is the weight, c1, and c2 are 

accelerate constants. The r1 and r2 are two random numbers 

that are evenly distributed in the range [0, 1].  

3.3. Grey Wolf Optimization 

Grey Wolf Optimisation technique is a relatively recent 

approach to optimisation problem resolution. It was 

introduced by Seyedali Mirjalili et al. in 2014 to address 

design issues in the field of optical technology [32]. The 

basic structure of the GWO is derived from the hierarchical-

oriented hunting behavior of the grey wolves. Wolves often 

fall into one of four categories according to the hunting 

hierarchy. Namely, they are Omega (γ), Beta (β), Delta (δ), 

and Alpha (α). Among the four wolves, the alpha wolf 

serves as a leader and assumes responsibility for daily 

activities such as hunting and surviving. The subordinates 

of an alpha wolf, known as beta wolves, give their decisions 

and backing support to the alpha wolf. The next location of 

the group is occupied by Omega, who upholds dominance 

in the hierarchy of the group. The remaining wolves that 

answer to the Omega are referred to as Delta. The 

mathematical model of GWO consists of four important 

steps, Equations illustrate the actions of surrounding, 

hunting, attacking, and searching the target. from 3 to 13. 

The alpha wolf must serve as the head of all four processes 

and uphold the wolf hierarchy. 

 𝐷⃗⃗ =  |𝐶 . 𝑋 𝑝(𝑡) −  𝑋 𝑝(𝑡)|                   (3)                                                                                                  

𝑋 (𝑡 + 1) =  𝑋 𝑝(𝑡) − 𝐴 . 𝐷⃗⃗                                 (4) 

                                                                                

In Equations 3 and 4, D   is the encircling behavior of each 

wolf, X   is the location parameter of each wolf. t is the 

factor of the current iteration, and A and C are coefficient 

factors. Equations 5 and 6 are shown below how the values 

of A and C are computed as follows. 

𝐴 = 2𝑎  𝑟 1  − 𝑎                                                            (5) 

𝐶 =  2𝑟 2                                                         (6)

                                                                                                  

Here, the 𝑎  it decreases its value linearly from 2 to 0 with 

an increase in the number of cycles, and within the interval 

of [0, 1], the value of random vectors 𝑟 1 and 𝑟 2 are selected 

[33]. From wolves' inherent hunting behavior, all types of 

wolves except omega, are positioned their best from the 

prey and it requires the positional adjustment for omega 

wolves for optimized prey encircling and hunting. But, 

before that, the position and distance of alpha, beta, and 
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delta are very crucial because omega is positioned based on 

these three categories of wolves. For that, Equations 7 to 9 

find distance between the position of α, β, and δ. 

𝐷⃗⃗ 𝛼 = |𝐶 1. 𝑋 𝛼  −  𝑋 |    (7) 

𝐷⃗⃗ 𝛽 = |𝐶 2. 𝑋 𝛽  −  𝑋 |                                (8) 

𝐷𝛿 = |𝐶 3. 𝑋 𝛿  −  𝑋 |                                            (9)

                                                          

Based on Equations 7, 8, and 9, the locations of α, β, and δ 

are established through 𝑋 𝛼, 𝑋 𝛽 , and 𝑋 𝛿 . 𝐶 1, 𝐶 2, and 𝐶 3 are 

coefficient vectors that are randomly produced and 𝑋  

indicates the current position of consistent wolves. Also, the 

above equations 5 to 7, based on the locations of three 

dominant wolves, calculate an omega wolf's step size. 

Finally, the optimal place of alpha (𝑋 1), beta (𝑋 2), delta (𝑋 3) 

are calculated as the following vectors shown in equations 

10, to 13. 

𝑋 1 = 𝑋 𝛼  −  𝐶 1. (𝐷⃗⃗ 𝛼)    (10) 

 

  𝑋 2 = 𝑋 𝛽  −  𝐶 2. (𝐷⃗⃗ 𝛽)      (11) 

 

 𝑋 3 = 𝑋 𝛿  −  𝐶 3. (𝐷⃗⃗ 𝛿)       (12) 

 

𝑋 (𝑡 + 1) =  
𝑋⃗ 1 + 𝑋⃗ 2 + 𝑋⃗ 3

3
      (13) 

From equations 10 to 13, 𝐶 1, 𝐶 2, and 𝐶 3 are the final 

positions of the α, β, and δ wolves using random vectors, 

and determine the exact position of the omega wolves using 

the fixed placements of the other three wolf types. t 

represents the number of iterations it takes. In achieving 

optimal results using GWO, it is very important to attain the 

balance value between the random vectors 𝐴  and 𝐶 . From 

the above equation 3, if the range of random values of 𝐴  and 

𝐶  are greater than the [1a, -1a], it improves the searchability 

known as the exploration capability of the wolves. Else, the 

random values of 𝐴  and 𝐶  is less than the range [1a, -1a], it 

improves the exploitation (victimization) capability of the 

wolves [34]. Once the search process for hunting the prey, 

The number of cycles rises, and the value of the vector 

𝐴  falls linearly, eventually boosting the wolf's capacity for 

exploitation. However, because the value of 𝐶  is produced 

at random throughout the optimisation process, the 

exploration and exploitation of the wolf may find symmetry 

at any time, particularly in the last stages of iterations. It can 

prevent the GWO algorithm from being stuck at local 

minima. 

3.4. Fusion Grey Wolf and Particle Swarm Optimisation 

for Hyper-parameter Optimisation of U-Net 

Particle Swarm and Grey Wolf are two highly potent, bio-

inspired optimisation strategies that are successful in 

resolving optimisation problems involving nonlinear 

objective functions. PSO approach can be used to 

effectively fix almost all real-world issues. However, there 

must be a means to determine the possibility that the PSO 

will be trapped by the local minimum problem. In this 

proposed technique, based on the literature review, a more 

exploited and result-proven PSO optimization algorithm is 

fixed as the root optimization method for the novel U-Net 

used in this work.  Naturally, PSO evades the local minima 

problem by changing some particles from one random 

position to another position in search space. But this does 

not always give the expected solution and there may be 

misleading the training of the algorithm into the erroneous 

path. To avoid this limitation, GWO is implemented with 

PSO. Instead of moving particles randomly in PSO, GWO 

gives regularity due to its hierarchical-based ranking of 

alpha, beta, and delta wolf characteristics into the random 

particles that may lead to the proper position in the available 

search space. The proposed model of the Fusion of Gray 

Wolf Particle Swarm Optimization (FGWPSO) is shown in 

the Figure. 3. By combining the GWO approach with the 

PSO, it is shown that the U-Net model is better for errors, 

and the processing time is remarkably gained with minimum 

epoch cycles. Moreover, without interruption of execution 

of both the algorithms, fusing GWO’s alpha, beta, and delta 

particle values into PSO random particle values provides the 

seamless performance of the proposed model. 

𝐷⃗⃗ 𝛼 = |𝐶1. 𝑋 𝛼  − 𝑤 × 𝑋 (𝑡)|                                          (14) 

𝐷⃗⃗ 𝛽 = |𝐶2. 𝑋 𝛽  − 𝑤 × 𝑋 (𝑡)|                                          (15) 

𝐷⃗⃗ 𝛿 = |𝐶3. 𝑋 𝛿  − 𝑤 × 𝑋 (𝑡)|                                           (16) 

 

Fig. 3. The design of the proposed U-Net Model 
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In equations 14, 15, and 16, the position of GWO alpha, 

beta, and delta has been fixed with the initial inertia weight 

of PSO. Every iteration of GWO has been updated with PSO 

w value to maintain the parallelity to the PSO algorithm, and 

PSO has utilized ordered alpha, beta, and delta values for 

adjusting with random particle position in the training 

process. Now, the model utilises both PSO along with GWO 

properties to yield better accuracy with a minimum error 

rate and a short execution cycle. Once, the PSO’s random 

particles are placed in proper search space, then the velocity 

and positions are going to be updated in PSO. Equations 17 

and 18 show the update process of velocity and position. 

𝑣𝑖(𝑡 + 1) = 𝑤 × [𝑣𝑖𝑡 + 𝐶1𝑟1(𝑋1  −  𝑥𝑖𝑡) + 𝐶2𝑟2(𝑋2  −

 𝑥𝑖𝑡)  +  𝐶3𝑟3(𝑋3 − 𝑥𝑖𝑡)]                                                        (17) 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖𝑡 + 𝑣𝑖(𝑡 + 1)                                              (18) 

In the proposed Fusion Gray Wolf Particle Swarm 

optimisation method shown above in equations 17 and 18, 

an optimal value of the model is found using Dixen-Price 

Benchmark Objective Function that is shown in Equation 

19. 

𝑓(𝑥) =  (𝑥𝑖 − 1)2 + ∑ 𝑖(2𝑥𝑖
2  −  𝑥𝑖−1)

2 𝑑
𝑖=2                            

(19) 

Dixen-Price is one of the best benchmark optimisation test 

functions that are continuous, differentiable, highly 

scalable, well suited for unimodal, non-separable, and 

definable on the d-dimensional space [35, 36]. 

4. Result and Discussion 

The proposed Gray Wolf Particle Swarm Optimisation 

technique is implemented separately on two standard digital 

mammogram datasets CDD-CESM, and INBreast.  

4.1. Datasets Description and Preprocessing 

In Breast is a very popular but not as much of an exposed 

digital mammogram dataset [37], it follows both ACR and 

BI-RADS standards which are strictly followed in the 

medical imaging science for evaluating whether the patient 

has cancer or not from their breast images. INBreast 

contains a total of 410 digital mammogram images from 115 

cases of women. Both the Mediolateral Oblique (MLO) and 

Bilateral Craniocaudal (CC) perspectives are present in the 

images. Since MOL photos only show the pectoral muscle 

area, 206 MLO images out of 410 photographs were 

selected for this study. A recent entrant in this sector is the 

CDD-CESM dataset, which contains a unique mammogram 

image modality called Contrast-enhanced spectral 

mammography [38]. The 2006 images in the CDD-CESM 

image data, which adheres to the BI-RADS standard, are 

divided into two categories: low-energy images and 

subtracted contrast images. From these two types, Low-

energy images were only considered for this research work. 

Out of 1003 low-energy images that contain both CC and 

MLO views, 503 MLO images are taken into consideration 

for this research work. In any machine learning or deep 

learning model, a significant amount of effort into data pre-

processing should be carried out to attain the proper results 

we expect. In this research work, all the images from both 

CDD-CESM and INBreast have applied two types of 

preprocessing methods: (i) to convert images from RGB 

into Grayscale mode, and (ii) histogram correction using 

Contrast Limited Adaptive Histogram Equalisation 

(CLAHE) method [39]. 

4.2. Hyper parameters space for optimisation 

The universal value setting of hyper-parameters that are 

implemented by the proposed FGWPSO technique and the 

other three types of implementations. The range of hyper-

parameters, number of kernels, Dropout Ratio, activation 

function, epoch cycles, and learning ratio are defined in 

Table 1 The activation function for the output layer in the 

proposed U-Net is fixed as a Sigmoid function. 

Table 1 Universal Setting of Hyper-parameters Range 

Hyper-parameter Minimum Range 
Maximum 

Range 

Number of 

Kernels 

8 512 

Dropout Ratio 0.0 0.6 

Activation 

Function 

ReLU [40], LReLU [41], EReLU 

[42], PReLU [43], GReLU [44] 

Epochs Cycles 10 100 

Learning Ratio 0.001 0.0000001 

4.3. Evaluation Measures 

An assessment measures to quantify the efficacy of a 

suggested model. The performance of the suggested U-Net 

model was assessed in this study using two different 

assessment measures: the Mean of Intersection over Union 

[46] and Dice Loss [45], which are presented in equations 

20 and 21. The value accuracy is obtained for all four 

implementations but it is not included in the results because 

there is a high chance of class imbalance that results in 

accuracy not showing the original pixel label [47]. It is not 

recommended accuracy is suitable for segmentation 

problems. 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                 (20) 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                    (21) 

4.4. Result Discussion 

The results from four different implementations of the 

various optimisation methods on the CDD-CESM dataset, 

and INBreast which were used for testing purposes, are 

described in this part. Table 2 displays the outcome of the 

optimal hyperparameters that were chosen, and Figures 4 

and 5 display the results of the IoU and dice loss measures 
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of the traditional U-Net network. 

 

Fig. 4. IoU of the U-Net without any optimization 

 

Fig. 5. Dice Loss of the U-Net without any optimization 

Table 2 Best Hyper-parameter Values For U-Net Model 

Without Optimization Methods. 

Hyper-parameter 
Best Values 

Obtained 

Number of Kernels  32, 64, 128, and 256 

Dropout Ratio 0.2 to 0.4 

Activation 

Function 

ReLU 

Epochs Cycles 61 

Learning Ratio 0.00001 

 

Results from Figures 4 and 5 show that the implemented U-

Net model without any optimisation methods converged in 

61 epochs and obtained an average IoU value of 76.08% in 

training and 77.19% in the testing phase. However, the 

model is highly unstable convergence in the Dice loss it 

obtained 0.41% in training and 0.37% in testing 

respectively. The U-Net model's implementation using the 

PSO optimisation approach is depicted in Figures 6 and 7, 

and Table 3 provides information on the optimal 

hyperparameters that were determined. 

 

Fig. 6. IoU of U-Net with PSO Optimisation 

 

Fig. 7. Dice Loss of U-Net with PSO Optimisation 

 

Table 3 Best Hyper-parameter Values for U-Net Model 

with PSO Optimisation. 

Hyper-parameter 
Best Values 

Obtained 

Number of Kernels  32, 64, 128, and 256 

Dropout Ratio 0.1, 0.2 and 0.4 

Activation 

Function 

LReLU 

Epochs Cycles 67 

Learning Ratio 0.000016 

Results from Figures 5 and 5 show that the implemented U-

Net model with PSO optimisation itself has toked a few 

additional epochs and converged in 67 epochs. The PSO U-

Net model got an average IoU value that also increased 

significantly from 76.08% in simple U-Net to 83.87% in the 

training phase and 84.76% in the testing phase which is not 

a huge difference in train-test performance. But the model 

is highly convergence in the Dice loss measure, obtained 

0.38% in training and 0.32% in testing has shown an 

acceptable performance difference.  Also, the selection of 

the best hyper-parameters got different values. In particular, 

LReLU instead of ReLU is chosen as the function of 

activation in the PSO U-Net architecture. There are also 

slight variations in the learning ratio and dropout ratio.  
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Fig. 8. IoU of U-Net model with GWO Optimisation 

 

Fig. 9. Dice Loss for U-Net with GWO Optimisation 

Table 4. Best Hyper-parameter Values For U-Net Model 

with GWO Optimisation. 

Hyper-parameter 
Best Values 

Obtained 

Number of Kernels  32, 64, 128, and 256 

Dropout Ratio 0.2 to 0.5 

Activation 

Function 

LReLU 

Epochs Cycles 65 

Learning Ratio 0.000012 

 

U-Net with GWO performs better in terms of numerical 

values but it gives a very closer performance compared with 

PSO implementation. Moreover, all five hyper-parameters 

best values are identical compared with values obtained in 

the PSO implementation model. Finally, Figures 10 and 11 

show the result of U-Net model with the proposed Fusion-

based Gray Wolf Particle Swarm optimisation method, and 

Table. 5 shows the best values of all five hyper-parameters 

using the proposed method. 

 

Fig. 10. IoU value of suggested U-Net 

 

Fig. 11. Dice Loss value of the suggested U-Net 

 

Table 5 Best Hyper-parameter Values for U-Net Model 

with FGWPSO Optimisation. 

Hyper-parameter Best Values Obtained 

Number of Kernels  16, 32, 64, 128, 256, and 

512 

Dropout Ratio 0.2 to 0.5 

Activation 

Function 

ReLU 

Epochs Cycles 61 

Learning Ratio 0.000028 

The suggested FGWPSO U-Net model yielded some 

unexpected results, as shown in Figures 10, 11, and Table 5. 

The proposed model's IoU values obtained the greatest 

value and also demonstrated substantial variations in 

performance between the training and testing stages. The 

suggested model attained an IoU rate of 92.33% during the 

training phase and 94.28% during the testing phase. This 

rate was sustained during the model's execution in both 

phases. Additionally, the suggested model attains the best 

Dice Loss of 0.14% during the testing phase and 0.21% 

during training. It demonstrates that, when compared to the 

three implementations, the suggested FGWPSO U-Net has 

the finest performance. The hyper-parameters were selected 

by the suggested method also getting significant value 

ranges. 
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The proposed method selects the maximum number of 

kernels of 512 from a minimum of 16 kernels. The values of 

the Dropout Ratio are selected from 0.2 up to 0.5 at different 

layers of the model. But, in the selection of the activation 

function side, the proposed method is stable with ReLU. It 

shows the adaptability and power of ReLu in various 

domain problems including medical image segmentation 

also. However, the learning ratio and epoch cycles are not 

getting very deviation compared to GWO implementation. 

Table. 6, and Figure 12 shows the overall difference 

between IoU and Dice Loss of all four U-Net model values. 

The results of segmented Images are shown in Figures 13 to 

16. 

Table 6 Comparison of All Four U-Net Models IoU and 

Dice Loss Values. 

U-Net Models 
IoU Dice Loss 

Training Testing Training Testing 

Simple U-Net 76.08 % 77.19 % 0.41 % 0.37 % 

U-Net with 

PSO 
83.87 % 84.76 % 0.38 % 0.32 % 

U-Net with 

GWO 
87.45 % 89.13 % 0.28 % 0.22 % 

U-Net with 

FGWPSO 
92.33 % 94.28 % 0.21 % 0.14 % 

 

 

Fig. 12. The design of the proposed U-Net Model 

 

Fig. 13. (a) Raw Image (b) Pectoral Portion (c) Pectoral 

Predicted 

 

Fig. 14. (a) Raw Image (b) Pectoral Portion (c) Pectoral 

Predicted 

 

Fig. 15. (a) Raw Image (b) Pectoral Portion (c) Pectoral 

Predicted 

 

Fig. 16. (a) Raw Image (b) Pectoral Portion (c) Pectoral 

Predicted 

The performance of segmentation process results for each 

of the four implementations are provided in Figures 13 

through 16. The original raw input image is shown in (a) of 

all four figures, the ground truth annotation of the pectoral 

muscles region is shown in (b), and the execution of the 

applied U-Net model with different configurations is shown 

in (c). 

Classification using ImageNet models. The segmented 

images obtained are trained with benchmark transfer 

learning methods DenseNet201, EfficientNetB5, 

ResNet101, and VGG19 to identify the breast tumor more 

accurately [48, 49]. 
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Table 6 Evaluation Measures of Various Pre-Trained 

Models for Classification. 

Model Name 
Accura

cy 

Precisi

on 
Recall 

F - 

Score 

DenseNet20

1 

92.01% 91.95

% 

92.03

% 

92.10% 

EfficientNet

B5 

97.48% 97.37

% 

97.22

% 

97.29% 

ResNet101 
89.56% 89.97

% 

89.69

% 

89.43% 

VGG19  93.32% 93.18

% 

93.29

% 

93.26% 

It is evident from Table 7 and Figure 17 that the pre-trained 

DeepCNN Xception model outperforms the pre-trained 

networks examined in this work. It has been noted that the 

EfficientNetB5 and ResNet101 models had the highest 

performance and lowest recognition rates, respectively, with 

99.18% and 96.21% accuracy. 

 

Fig. 17. Performance of Pre-Trained Models for 

Classification  

5. Conclusion 

One of the biggest issues facing the globe now is the early 

diagnosis of breast cancer. A digital mammogram is a well-

suited type of medical imaging that is crucial for early 

diagnosis of breast cancer. By using the DeepCNN 

approach, medical report times can be significantly reduced, 

and patients have a better chance of survival by having a 

tumor found more accurately. This study suggests an 

improved image segmentation model that more precisely 

segments images by optimising the deep U-Net hyper-

parameters with the combination of Particle Swarm 

Optimisation and Grey Wolf. Furthermore, the 

comprehensive testing shows that the suggested approach 

FGWPSO performs better than the classical architecture of 

U-Net, U-Net with Grey Wolf, and U-Net with PSO. To 

identify the breast tumor more precisely, the segmented 

pictures were lastly trained using ImageNet DeepCNN 

models, specifically DenseNet201, EfficientNetB5, 

ResNet101, and VGG19. These models produced 

accuracies of 92.01%, 97.48%, 89.56%, and 93.32%, 

respectively. 
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