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Abstract: The most dangerous disease in the world is chronic kidney disease (CKD). Identifying the disease is challenging when the doctor 

conducts various investigations without analyzing the facts. CKD data analysis is important for prediction and risk reduction. Furthermore, 

prior methodologies failed to pay attention to the mutual relations of the features and increased the dimensionality ratio, so the result 

produced inaccuracy. To resolve this problem, we propose an efficient approach using an ANFIS (Adaptive Network-Based Fuzzy 

Inference System) for feature selection and a Deep Convolution Neural Network Classifier (DCNN) for predicting CKD based on a deep 

neural network model. The Chronic Disease Impact Rate (CDIR) is estimated by taking into account the importance of the features affected 

by the medical margins identified. Using K-Cross Fold Validation (K_CFV), feature limit patterns are formed and validated to extract 

feature weight importance. The extracted features are selected with the support of the ANFIS to reduce the feature dimension. The selected 

features are trained with the Deep Convolution Neural Network Classifier (DCNNC) to classify chronic disease severity. The proposed 

model utilizes a large dataset of patient information to accurately identify individuals at high risk of CKD. The proposed approach has 

been demonstrated to be effective and efficient through experiments, outperforming traditional methods and achieving high prediction 

accuracy. Furthermore, the proposed model shows significant potential for early intervention and prevention of CKD. 

Keywords: Deep learning, Chronic kidney disease, Artificial Neural network, Fuzzy neural network, convolution neural network.  

1. Introduction 

Chronic kidney disease (CKD) significantly affects 

hospitalized patients’ morbidity and mortality. 

Furthermore, CKD is rapidly spreading and has become a 

significant cause of death globally. Rural regions lack 

knowledge and understanding of CKD. According to the 

World Health Organisation, tcontribute to the observed 

group differences in CKD prevalence, including a small 

sample size, study period, and cross-sectional study 

design with an urban-rural geographical distribution [3]. 

Diabetic complications, hypertension, obesity, and 

diabetes are among the risk factors for CKD. As a result, 

severe complications may arise, including heart disease, 

kidney failure, and premature death. It is imperative that 

CKD be detected early and treated effectively in order to 

prevent its progression. Using predictive models is critical 

for identifying CKD as a serious health problem for 

individuals at high risk and for providing them with 

individualized care. 

Various medical applications rely on deep neural 

networks for detecting, predicting, and prognosing 

diseases. We propose a deep neural network model to 

predict CKD in this paper. We leverage a comprehensive 

dataset of patient information and clinical measurements. 

 

Fig 1. Work process of CKD 

Figure 1 illustrates the basic architecture diagram of CKD. 

This diagram can be used to assess chronic diseases 

accuracy using impact rate, feature extraction, selection, and 

classification. However, when patients are in the end-stage 

of the condition, dialysis or kidney transplantation is often 

required, CKD can be detected, and biomarkers and risk 

factors are established. Moreover, diagnostic delays often 

cause severe outbreaks in many developing countries. As a 

result, there is an increased need for primary healthcare in 

rural areas, especially those with limited access to primary 

healthcare. In addition to the costs to public health, CKD 
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treatments like dialysis and kidney transplants also raise the 

risk of illness and death [4]. 

In addition, kidney function rapidly declines with a late-

stage CKD diagnosis. Early-stage CKD becomes 

undiagnosed and results in irreversible renal failure. This, in 

turn, can cause patients to suffer from various other health 

problems, including but not limited to osteoporosis, anemia, 

and nerve damage. In view of the erratic and often 

nonspecific symptoms of this disorder, it is imperative to 

detect it at its earliest stage [5]. The contribution is, In the 

past, traditional methodologies have failed to consider the 

interrelationship of features and the increase in 

dimensionality ratio, leading to inaccurate results. Using an 

ANFIS for feature selection and a DNN model for CKD 

prediction, it is suggested in this study that the two methods 

can be effectively combined. 

The estimation of the Chronic Disease Impact Rate (CDIR) 

is crucial for identifying the importance of features affected 

by medical margins. To achieve this, we employ K-Cross 

Fold Validation (K_CFV) to establish and validate feature 

limit patterns, extracting feature weight importance. The 

selected features are then trained with the ANFIS to reduce 

feature dimensionality. Subsequently, these selected 

features are trained with the DCNNC to classify chronic 

disease severity. This approach allows for a more accurate 

prediction of CKD, as it takes into account the interrelation 

of features and reduces dimensionality. This leads to more 

precise results. Finally, the proposed approach offers a 

comprehensive solution to prior methodologies’ challenges 

by incorporating advanced techniques for feature selection 

and classification. By leveraging ANFIS and DCNN 

capabilities, we can improve CKD prediction accuracy and 

provide more reliable insights into chronic disease severity. 

This has the potential to significantly impact medical 

diagnostics and contribute to more effective and efficient 

patient care

. 

Table 1. Classification of CKD based on prognosis 

Author Year Technique 
Learning 

Category 
Limitation 

P. Yadav [16] 2023 

Synthetic Minority 

Over-Sampling 

Technique (SMOTE) 

ML 

However, they face 

numerous challenges 

in acquiring crucial 

datasets. 

N. Bhaskar [17] 2021 

One-Dimensional 

Correlational Neural 

Network (1-D CoNN) 

DL 

However, analysis 

takes longer due to the 

complexity of the 

process. 

S. I. Ali [18] 2020 

Cost-Sensitive 

Ensemble Feature 

Ranking (CSEFR) 

ML 

CKD problems can 

get more destructive if 

they are not treated 

early. 

Xiaoqing Zhang  

[19] 
2019 CNN ML 

However, it is 

challenging for 

medical professionals 

to make an early 

diagnosis. 

S. T. Himi [20] 2023 
Support Vector 

Regression (SVR) 
ML 

Visiting the doctor 

and undergoing a 

pathology test requires 

both time and money. 

 

2. Related Work 

In the study, [6] applied ML techniques for early CKD 

diagnosis in developing countries. However, the high costs 

of treatments such as dialysis and kidney disease result in 

many deaths. In addition, data from CKD patients can be 

easily accessed to build Deep Learning (DL) models based 

on clinical and laboratory characteristics, manipulating end-

stage renal disease (ESRD) models to determine public 

health costs [7]. Similarly, the improved Deep Belief 

Network (DBN) method can predict kidney-related diseases 

through an intelligent classification and prediction model 
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using Softmax as an activation function [8]. A predictive 

model [9] for determining different patients’ clinical 

characteristics can be developed as part of the CKD 

approach [9]. Delay in diagnosis can lead to premature death 

and higher healthcare costs. However, the ML framework 

can be deployed in clinics with low retention rates of 

healthcare professionals [10]. Nonetheless, CKD is 

considered a disease that causes  

chronic deterioration of kidney function in global 

guidelines. 

As an additional measure, modified metrics based on 

machine learning techniques have been employed to 

evaluate the Composite Hypercube Based on the CHIRP 

scheme on datasets of kidney patients [11]. To evaluate 

feature selection methods, we use data from the UCI 

repository on CKD. It is important to note, however, that 

CKD may cause many health complications [12]. Utilized 

CKD clinical features and advanced DL algorithms to 

predict and classify the disease[32]. Nevertheless, 

guideline-based prognostic surveillance for CKD remains 

underutilized due to multiple factors [13]. Afterward, the 

developed system can use backpropagation ANN (BP-

ANN), a method for estimating blood urea and glucose 

levels in individuals with chronic kidney disease (CKD) 

[14]. In addition, neural network case-based reasoning (NN-

CBR) techniques can establish CKD predictions using 

techniques to determine explanatory events [15][34]. There 

have been studies that use ML algorithms for CKD 

prediction, including Random Forests and SVMs [16]. 

Table 1 illustrates the CKD predictive model based on 

classification, with details on techniques, learning type, and 

limitations provided in the citation. 

 

Table 2. Analysis of Chronic Kidney Disease Prediction 

Ref. No Year Methods Advantages Result Achieved 

21 2020 
ResNet Neural 

Network (RNN) 

The medical 

community has reached 

a consensus that a 

certain threshold exists. 

76% 

22 2020 XgBoost 

The possibility of 

various ML approaches 

for early detection of 

CKD 

90% 

23 2020 

Multi‐Kernel 

Support Vector 

Machine (MKSVM) 

Processing of selected 

features in clinical 

datasets 

86% 

24 2020 

Cost-Sensitive 

Feature Ranking 

(CSFR) 

The cost of collecting 

data can be decreased 

to improve automated 

detection systems. 

74% 

25 2021 
Random Forest 

(RF) 

The attributes used for 

classification showed 

high accuracy in 

diagnosing CKD 

80% 

 

Table 2 can be utilized to estimate the significance of CKD 

prognostication methods and analyse their benefits and 

results. Similarly, Decision Tree (DT) models can calculate 

feature values in CKD datasets and incorporate cost 

sensitivity into feature rankings [26]. However, most 

methods focus more on classification models’ accuracy. 

Moreover, by selecting a high-performance base model, the 

Extreme Gradient Boosting (XGBoost) method can be 

analysed in the context of CKD [27]. An optimized dataset 

is generated by analyzing the data and selecting the most 

relevant features. The dataset can be used to evaluate 

various classifiers’ performance using the K-FCV method. 

However, patients suffering from CKD experience severe 

neurological and immune system issues, which significantly 

affect their quality of life [28]. In addition, a DCNN 

algorithm could be implemented to objective is to increase 

the accuracy and quality of the classification model [29]. In 

addition, ANN and ML algorithms can also be implemented 
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to predict analytical performance in clinical diagnostics 

[30]. The novel proposes a classifier, ANFIS, to detect CKD 

through a neuro fuzzy model. It is important to note, 

however, that it can also result in kidney failure in the long 

run. There is, however, a possibility that it could result in 

permanent kidney damage [31][33]. 

 3. Proposed Methodology 

A deep neural network architecture that is specifically    

designed for analyzing medical data is proposed as the basis 

for CKD prediction. This architecture captures intricate 

patterns associated with CKD risk factors. Models consider 

a variety of patient attributes, including demographic 

information, medical history, results of laboratory tests, and 

clinical measurements. It is necessary to preprocess and 

normalize these input features in order to make sure their 

compatibility with the architecture of a neural network.  

 

Figure 2: Proposed architecture ANFIS-DCNNC 

The DNN model consists of multiple layers, including input, 

hidden, and output layers, with non-linear activation 

functions to enable complex feature extraction and 

representation of input data. When performing classification 

or regression tasks, SoftMax is used to activate the output 

layer. 

The DCNN model makes predictions on upcoming patient 

data, accurately estimating the risk of CKD development 

based on the input features. Figure 2 shows the proposed 

architecture, ANFIS-DCNNC. Our approach involves 

estimating the Chronic Disease Impact Rate (CDIR) by 

identifying the importance of features affected by medical 

margins. Through K-Cross Fold Validation (K_CFV), we 

can form and validate feature limit patterns to extract feature 

weight importance. Our objective is to reduce the feature 

dimension using ANFIS by selecting the features that are 

most relevant to us. 

Once the features have been selected, they are trained using 

the Deep Convolution Neural Network Classifier (DCNNC) 

to classify chronic disease severity. This innovative 

approach allows us to identify the most significant features 

for predicting CKD and categorize the severity of the 

disease. By combining ANFIS for feature selection and 

DCNN for prediction, we can overcome prior 

methodologies’ limitations and achieve more accurate 

results. Using this approach could lead to a major 

improvement in the diagnosis and treatment of chronic 

diseases as well as a significant advancement in medical 

prediction. The use of ANFIS and DCNN together provides 

a comprehensive and robust solution for predicting CKD 

and other chronic diseases. By leveraging the strengths of 

both systems, we can effectively address feature selection 

and prediction accuracy challenges. This will lead to better 

outcomes for patients and healthcare providers. In 

conclusion, our approach, using ANFIS for feature selection 

and DCNN for prediction, represents a major breakthrough 

in medical prediction. By focusing on the mutual 

relationship between features and reducing the 

dimensionality ratio, we can produce more accurate and 

reliable results. Ultimately, this is likely to lead to improved 

patient outcomes and better healthcare practices by 

revolutionizing the way chronic disorders are diagnosed and 

treated 

3.1 Dataset Collection 

Data from various patients in India was collected for two 

months, including characteristics such as red blood cell and 

white blood cell counts. Recover data from Kaggle, classify 

their targets as "CKD" or "NOTCKD," and predict the 

number of 400 sequences among them. Pertinent clinically 

relevant variables can be utilized in this CKD dataset. In 

addition, some variables may be interconnected after 

activation and analysis to improve the model fit. 

Additionally, the dataset provided within these can be 

analyzed to determine the most appropriate approach based 

on individual requirements and objectives. 

Table 3. Dataset Collection 

Id Age BP SG AL SU RBC PC PCC BGR 

0 49 79 1.01 2 1 - Normal 
Not 

present 
121.2 

1 7 50 1.02 4 0 - Normal 
Not 

present 
- 

2 62 80 1.01 2 3 Normal Normal 
Not 

present 
423 

3 48 70 1.005 4 0 Normal abNormal Present 117 
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4 51 80 1.01 2 0 Normal Normal 
Not 

present 
106 

5 60 90 1.015 3 0 - - 
Not 

present 
43 

6 68 70 1.01 0 0 - Normal 
Not 

present 
100 

7 24 - 1.015 2 4 Normal abNormal 
Not 

present 
410 

8 52 100 1.015 3 0 Normal abNormal 
Not 

present 
138 

9 53 90 1.02 2 0 abNormal abNormal 
Not 

present 
70 

10 50 60 1.01 2 4 - abNormal 
Not 

present 
490 

11 63 70 1.01 3 0 abNormal abNormal 
Not 

present 
380 

12 68 70 1.015 3 1 - Normal 
Not 

present 
208 

13 68 70 - - - - - 
Not 

present 
98 

14 68 80 1.01 3 2 Normal abNormal Present 157 

15 40 80 1.015 3 0 - Normal 
Not 

present 
76 

16 47 70 1.015 2 0 - Normal 
Not 

present 
99 

17 47 80 - - - - - 
Not 

present 
114 

18 60 100 1.025 0 3 - Normal 
Not 

present 
263 

19 62 60 1.015 1 0 - abNormal 
Not 

present 
100 

20 61 80 1.015 2 0 abNormal abNormal 
Not 

present 
173 

21 60 90 - - - - - 
Not 

present 
- 

22 48 80 1.025 4 0 Normal abNormal 
Not 

present 
95 

23 41 70 1.01 0 0 - Normal 
Not 

present 
- 

24 42 100 1.015 4 0 Normal abNormal Present - 

25 61 60 1.025 0 0 - Normal 
Not 

present 
108 

26 75 80 1.015 0 0 - Normal 
Not 

present 
156 

27 69 70 1.01 3 4 Normal abNormal 
Not 

present 
264 

This dataset can be used for predictions, and by analyzing 

Table 3, datasets obtained from hospitals and CKD can be 

analysed. Some features include RBC, al-Albumin, BGr, pc-

Pus cells, pcc-Pus cell clumps, and hemoglobin. These 

features are crucial for identifying and predicting CKD. 

These features are crucial for identifying and predicting 

CKD accurately. 

3.2 Chronic Disease Impact Rate (CDIR)  

The Z-transform of the normalized variable can be 

employed to determine the impact ratio using the CDIR 

method to specify the value of the Z-score of the normalized 

variable based on the mean and standard deviation. The 

CDIR method predicts a normalization value that equals the 

average of all feature values. CDIR can identify the 
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proportion of negative or positive numbers that affect values 

below the mean and above the standard. Furthermore, the 

patient’s feature values can be standardized to determine the 

maximum possible impact ratio of the data. The CDIR 

method can be implemented to identify potential new 

patients by observing the patient impact rate in the patient’s 

medical data. And compare it to the predetermined threshold 

to determine whether the patient qualifies as a potential new 

patient. 

Estimate the normalized impact variable using the Z-

transform as shown in Equation 1. Let’s assume 

𝑎′(𝑢) −normalized data value, a-score, 𝜇 −mean, 

𝜍 −standard deviation 

𝑎′(𝑢) =
𝕒−𝜇

𝜍  
                                                                                    

(1) 

Calculate the patient characteristic values with max-min 

normalization as illustrated in Equation 2. Where 

𝐹𝑜 −normlized data, 𝑎(𝑢) −original data value, 

𝓂𝕚𝕟(𝓊) −the minimum data value, 𝑀𝑎𝑥(𝑖) −maximum 

data value. 

𝐹𝑜 =
𝔞(𝕦)−𝓂𝕚𝕟(𝓊)

𝕞𝒶𝓍(𝔲)−𝓂𝕚𝕟(𝑢)
                                                                       

(2)     

As shown in Equation 3, calculate the minimum and 

maximum similarity between the new patient and the other 

patient data. Where a-value of the feature, N- represents the 

feature index data, 𝕝 -new patient data, M-feature health data 

store, N- new patient similarity value, i,j-values, 

𝑄𝑢,𝑣 −similarty data’s. 

𝑞𝑢,𝑣 = 1 − ∑ ∑ ∑ √(𝐴𝓊,𝓋 − 𝔞𝑁,𝑣)
2𝑒

𝑁=1
𝑓
𝑣=1

𝕝
𝑢=1              

(3)  

As shown in Equation 4, Estimate the impact rate of weight 

on patient health records. Where 𝑃𝑢 −represents the feature 

impact rate, P-feature value, K-Number of specific type 

chronic disease, 𝑃𝑢
𝑣 −feature value of new and previous 

patients, 𝑝̅𝑣 −average feature value, G-weight, 𝐺𝑢 −new 

feature weight, 𝐺𝑢
𝑣 −new and previous feature weight. 

𝑞𝑢,𝑣 = ∑ (𝓅𝓊 +
∑ (𝒫𝔲

𝔳−𝑝̅𝑉)∗ℊ𝑢
𝔳𝑘

𝓋=1

∑ |𝐺𝓋|𝕜
𝕧=1 +|𝒢𝓊|

)𝑒
𝑝=1                                   

(4) 

In this section, the new patient’s impact ratio weighting can 

be normalized according to clinical data. It can also be 

compared to the impact ratios of other patients in the same 

database.  

3.3 K-Fold Cross Validation (K-FCV) 

The K-FCV method can be used to partition the data into 

subsets for training and measuring the models. The K-FCV 

technique is typically trained on an existing dataset with 

class labels for predictive analytics. After building the 

model, evaluate its performance and test the dataset with 

updated data with unknown output labels. Furthermore, the 

K-FCV method separates data into multiple K-folds based 

on repeated tests and training. After that, a template can be 

used to evaluate the model in other areas. The K-FCV model 

repeats itself by generating and testing each fold. Finally, 

the mean of all k cross-validation test errors is computed. 

The ability of the model to generalize can be determined by 

assessing its performance and generalization abilities. 

Algorithm 1: K-FCV 

Input: Chronic Impact rate 𝒫𝑢 

Output: Accuracy of cross-validation  

Start 

Step 1: Divide the K data into equally sized validation folds. 

 For each H in value (0, h) do 

Step 2: 𝐻 ← 𝑁ℎ in data 

Step 3: 𝑍 ← 𝑂
𝐽⁄                                                                                                    

(5) 

Step 4: Training T 

Step 5: 𝑋𝐻 ← 𝑗 Utilize trained models for assessment 

  End for Each 

Step 6: Accuracy validation ←
1

𝐾
∑ 𝒳𝕙

𝐻
𝓀=1                                                          

(6) 

Step 7: Return 𝑋𝐻 

End 

As presented in Algorithm 1, we can assess the prediction 

model for the dataset and compute the mean experimental 

error. Let’s assume H-validation folds, J-validation, Z-

trained model, O-data, F-fold, 𝑋𝐻 − accuracy 

validation. 

 

Fig 3. K-FCV Architecture Diagram 

K-folds can be divided into validation and approximation of 

the data set as test and training sets for model building, as 

depicted in Figure 3 blow. 
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3.4 Adaptive Neuro-Fuzzy Inference System Prediction 

(ANFIS)  

The ANFIS method integrates linguistic variables into fuzzy 

logic to implement computer capability in fuzzier rules for 

inferential systems. The ANFIS method utilizes supervised 

algorithms to establish a rule base based on neural network 

strategies. Furthermore, the ANFIS method is applied to 

inference-based CKD systems and uses learning processes 

continuously to update the system parameters. The output 

function coefficients are modified using the least squares 

method, while the fundamental factors of the CKD system 

are determined through the ANFIS prediction method. The 

ANFIS prediction method combines fuzzy logic and neural 

networks to make accurate predictions. 

Calculate the input variables generated at each node using 

the membership function as illustrated in Equations 7 and 8 

to obtain the final result. Where x and y-input variables, u-

number of nodes, P and q-terms of linguistic, ℓ -layer, S-

Generate node. 

𝑆1
ℓ = 𝑋𝐻 𝜇𝑝ℓ(𝑥), 𝑈 = 0,.                                                (7) 

𝒮2
𝕝 = 𝜇𝑞𝑙 (𝑦), 𝑢 = 0,1, . .3                                                        (8) 

Calculate using the bell-shaped membership function as 

described in Equation 9. Where a,b and t- varies 

membership parameter,  

𝜇𝑃𝔩(𝑥) = 1
[1 + |(𝑥 − 𝑡)/𝐴|2𝑏𝕃],     𝔲 = 1,2,3⁄                                   

(9) 

Calculate the firing strength of each node in the output layer 

using Equation 10. Let’s assume 𝐺ℓ −ouput layer of 

strength. 

𝑆2,𝑙 =  𝐺ℓ = 𝜇𝓈𝕃[𝓍] ∗ 𝜇𝔰𝕝[𝓎],     𝕦 = 1, . .3                   (10) 

Calculate the normalized firing strength of the output layer 

as depicted in equation 11. 

𝔰3,𝕝 = 𝐺̅𝐿 =
(𝑔𝕝)

(ℊ1+𝒢2+𝕘3)
, 𝓊 = 1, . .3,4                        

(11)  

As demonstrated in Equation 12, calculate the output 

exponential product of the normalized firing strength. 

Where 𝑊̅𝑓 −firing strength, p, q, and r- identify parameters 

training process. 

𝑆4,ℓ = 𝒢𝑁̅ = ℊ̅(𝑟𝑢(𝑥) + 𝕊𝓊(𝑦) + 𝑝𝔵),    𝔲 = 1, … 2,3                         

(12) 

Calculate the sum of all inputs and output layers as shown 

in Equation 13.  

𝔰4,𝑙 = ∑ 𝕘̅𝓃𝕃
,      𝕌 = 1, . .3,4,5                                   

(13) 

The coefficients of the output function may be estimated 

using the least squares method and updated using the 

essential factors of the CKD system. 

3.5 Convolutional Neural Network (CNN) 

CNN is the most popular DL model, with three layers: 

convolutional, pooled, and fully connected. Furthermore, 

the information layer categorizes the image data into 

multiple layers, widths, and channels while specifying the 

input map type. Moreover, feature maps can be 

approximated through CNN techniques by utilizing various 

convolution kernels for the convolutional layers. It is 

necessary to experiment with CNN parameters in order to 

ensure that each neuron in the feature map is primarily 

connected to neighboring neurons in the layer preceding it. 

In addition, each CNN consists of multiple layers, with the 

convolutional and subsampling pooling layers being 

particularly crucial. As an option, CNN can be used to 

calculate the output feature estimates for the final layer. A 

CNN method can be used to make predictions or 

classifications based on the output feature estimates of the 

final layer. 

As shown in Equation 14, compute the feature map of the 

homogeneous channel range of convolutional layers. Where 

𝑂𝑢,𝑢,𝑣 −convolution’s output, ℓ -layer, R, S-channel range, 

E-feature map, 𝐾𝑅𝑆ℎ𝐸 −Convolutional weight applied, 

𝑌𝑢𝑣𝐸
− represents bias applied to the convolution. 

𝒪𝓊,𝔲,𝕧 = 𝑄4,𝑙 ∑ ∑ ∑ 𝒰𝑢+𝑟+𝑠,ℎ
ℓ−1𝒦−1

𝑆=0
𝐾−1
𝑅=0

𝐻−1
ℎ=0 𝐾𝑅𝑆ℎ𝐸 − +𝑌𝑢𝑣𝐸

        

(14) 

Calculate the padding and striding layers as described in 

Equation 15. Let’s assume G-weight, N-feature, R-padding, 

Q-striding. 

([𝐺 − 𝑁 + 2𝑅]/𝑄) + 1                                   (15) 

Evaluate the layer used to construct the ReLU activation 

function as depicted in Equation 16 and 17. Where 

ℛℰℓ𝒰 −rectified linear unit, 𝑁(𝑎) −represents the ReLu 

parametric function, ℴ𝑢,ℎ −Connotes the convolutional 

channel and feature map, and O-disease convolutional layer. 

𝑁ℛℰℓ𝒰(ℴ𝑢,ℎ) = 𝕞𝑎𝓍(0, 𝕆𝑢
𝕜)                                         (16) 

𝑁(𝑎) = {
𝑋𝒶 𝑓𝑜𝑟 𝔞 < 0
𝕒 𝑓𝑜𝑟 𝑎 ≥ 0

                                              (17) 

Calculate the predicted Softmax activation for the 

subsection depicted in Equation 18. Where T- feature 

activation. 

(𝑇) =
ℰ𝒳𝒫(ℴ)

∑ 𝑒𝓍𝓅(𝑑)
                                                            (18) 

Compute the stack of related values in the feature map as 

illustrated in Equation 19. Let’s assume 

𝑇𝑥,𝑦,ℂ
ℓ −corresponding feature value, 𝐺𝑥

𝕝𝑧
−denotes the 
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weight, ℓ -layer, ℂ -feature map, (X, y)-centered location, 

𝑌ℂ𝑙 −bias filter corresponding layer. 

𝑇𝑥,𝑦,ℂ
ℓ = 𝐺𝑥

𝕝𝑧
𝐽𝓍,𝓎

𝕝 + 𝑌ℂ𝑙                                               (19) 

Calculate the activation value for the functional feature as 

shown in Equation 20. Let’s assume 𝐴𝑎,𝑏,𝑐
𝑙 −activation 

function. 

𝐴𝑎,𝑏,𝑐
𝑙 = 𝑎(𝑍𝑎,𝑏,𝑐

𝑙 )                                                     (20) 

As shown in Equation 21, calculate the assessment 

expressed in the pool function. Where 𝐼𝑥,𝕪,𝒸
𝕃 −value, 

𝑃𝑙 −pooling layer, 𝑋𝐸,ℎ,𝕔
ℓ −corresponing pooling function, 

𝑃𝑥
𝑦

−rectified location.  

𝐼𝑥,𝕪,𝒸
𝕃 = 𝑅ℓ(𝑋𝐸,ℎ,𝕔

ℓ ), ∀(𝑒, 𝐻) ∈ 𝑃𝑥
𝑦

                                      (21)   

Calculate the classification of the target label in the output 

layer as described in equation 22. Let’s assume 𝕃 -loss, H-

input feature, 𝜗 −overall parameter, 𝐼(𝒽) −target labels, 

𝐷(ℎ) −corresponding output layer. 

𝕃 =
1

𝐻
∑ ℓ𝒽

𝕙=1 (𝜗; 𝐼(𝒽), 𝐷(ℎ))                                          (22) 

The convolution kernel of the convolution layer can be used 

to approximate the feature map of the output layer in this 

category. An activation function is applied to the feature 

map of the previous layer in order to generate the final 

output of the neural network.

 

Fig 4. DCNN Flowchart Diagram 

Based on the convolutional layer, a DCNN flowchart can be 

used to estimate the value of the feature map. Figure 4 

illustrates how this can be done. Through the use of 

convolutional layers and pooling layers, the spatial 

information and patterns underlying the input are extracted 

and transformed. 

4. Results and Discussion 

CKD prediction models based on DNNs are tested on a 

comprehensive dataset of patient records. Based on 

experiments, this approach has demonstrated to be highly 

accurate and outperforms traditional methods. CKD 

outcomes can be captured effectively with DNN models due 

to their robustness and generalization abilities. Using cross-

validation, the model is further validated, with superior 

accuracy, sensitivity, and specificity in terms of measuring 

CKD outcomes compared to existing predictive models. 

The proposed model for chronic kidney disease is based on 

DCNN prediction appears to offer several advantages over 

conventional methods, including its ability to handle high-

dimensional, heterogeneous medical data, to learn complex 

patterns, and to provide accurate and personalized 

predictions. A large-scale deployment of this model is 

suitable in clinical settings since it is efficient and scalable. 

It is therefore possible to identify at an early stage 

individuals who are at high risk of developing CKD and 

timely interventions and individualized healthcare plans can 

be provided. Furthermore, the interpretability of the DNN 

model allows healthcare professionals to gain insights into 

the key risk factors and features contributing to CKD 

prediction. This enhances clinical decision-making and 

patient management. 

Classifiers are evaluated using precision, sensitivity, error 

rate, F-measure, root mean square recall, and log loss. 

Compared to alternative systems, the proposed model 

provides much higher accuracy than alternative systems and 

outperforms them in terms of overall performance. 

Table 4. Simulation Parameter 

Simulation Limit Variable 

Name of the dataset Kaggle 

The number of datasets 4982 

Number of Training Data 3556 

Number of Testing Data 1426 

Language Python 

Tool jupyter 

 

To detect CKDs using Python and Jupyter Notebook, Table 

4 lists the proposed simulation parameters. The kidney CKD 

dataset was collected from Kaggle and includes a bulk 

dataset that can be used for training and testing to achieve 

accurate CKD detection. A variety of characteristics are 

included in the dataset, including age, blood pressure, 

specific gravity, albumin, sugar, red blood cells, pus cells, 

and so on. This information provides comprehensive 

information for analyzing and predicting CKD. 
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4.1 Performance Matrix    

A number of performance metrics are analyzed in this 

section of the paper, including precision, sensitivity, 

precision, F1 score, and recall, to evaluate the CKD 

detection classifier. Classifiers are evaluated based on their 

ability to recognize and classify congenital kidney disease 

through the use of metrics. Data from the training and 

testing phases is used to calculate the metrics. To determine 

whether the proposed classifier is accurate and effective at 

detecting and categorizing CKDs, a comparison is made 

between the proposed classifier and existing state-of-the-art 

classifiers. 

 

Fig 5. Analysis of Sensitivity 

In Figure 5, we illustrate how the ANFIS-DCNN approach 

suggested by our method can be used to determine the 

accuracy of sensitivity analysis for detecting kidney CKDs. 

According to literature analysis, the proposed method 

achieves a higher accuracy of 69% than the existing 

methods of BPANN, MKSVM, and RNN. There is an 

accuracy rate of 43% for these methods. In addition to 

outperforming these, the proposed method is also more 

accurate and reliable in terms of precision and recall than 

other methods. 

 

Fig 6. Analysis in Precision 

In Figure 6, the proposed method of using ANFIS-DCNN 

for CKD detection shows a significant increase in accuracy. 

This method involves obtaining CKD data from a dataset 

and conducting training and testing analyses to determine its 

accuracy. Compared to other techniques, such as BPANN, 

MKSVM, and RNN, the accuracy is less than 52%. 

However, the proposed method improves accuracy by up to 

73%. In conclusion, the developed method shows a 

significant improvement in accuracy compared to other 

techniques, with an increase of up to 73%. 

 

Fig 7. Analysis in F1-Score 

Figure 7 shows an estimate of F1-score analysis using the 

proposed ANFIS-DCNN approach to detect kidney CKD 

accuracy. The data can be collected from the dataset and 

processed to obtain kidney lateralization accuracy using 

training and testing. The F1 score can be analyzed using 

this. Also, the ANFIS-DCNN method increased to 78%. 

However, the accuracy of the BPANN, MKSVM, and RNN 

methods determined from literature analysis is less than 

55% compared to the suggested method.  

 

Fig 8. Analysis of Error Rate 

In Figure 8, it was demonstrated that CKD accuracy can be 

achieved through the use of error rates. The accuracy of 

BPANN, MKSVM, and RNN techniques increased by 79% 

due to reduced error rates. When testing the proposed 

ANFIS-DCNN method, the error rate accuracy was less than 

57%. 
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Fig 9. Analysis in Accuracy 

Figure 9 presents a method for collecting CKD data called 

ANFIS-DCNN. This method has been trained and tested for 

accuracy. When compared to other methods like BPANN, 

MKSVM, and RNN, the proposed method has shown an 

improvement in accuracy to 95.30%. 

5. Conclusion 

In conclusion, the proposed approach to efficient CKD 

prediction based on deep neural network modelling holds 

significant promise for preventing CKD and improving its 

management. In terms of accurate identification of people at 

high-risk for CKD, the DNN model performs admirably. 

This is done by leveraging a diverse set of patient attributes 

and complex relationships. The model’s effectiveness, 

efficiency, and interpretability make it a valuable tool for 

healthcare professionals. It enables personalized healthcare 

strategies and proactive interventions to mitigate the burden 

of chronic kidney disease. Future work may involve further 

refinement and validation of the DNN model using diverse 

patient cohorts and real-world clinical data, as well as 

integration into clinical decision support systems for 

widespread adoption and impact. Overall, the proposed 

DCNN-based CKD prediction model represents a 

significant advancement in leveraging deep learning 

techniques for proactive and personalized healthcare 

solutions. 
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