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Abstract: This article proposes a constrained partially observable Markov decision process (CPOMDP) framework to model the decision-

making problem of a group of low-battery cellular users trying to switch to device-to-device (D2D) mode while keeping a minimal distance 

between them. The CPOMDP defines the state space as the collective state of all users and the D2D mode, the observation space as the 

battery levels of the users, and the action space as the decision to transition to D2D mode or not. As a function of the state and action, the 

minimal distance constraints between users are included. The Bellman equation, the observation update equation, the belief update equation, 

and the policy update equation are among the equations satisfying the CPOMDP framework. The equations are modified to incorporate 

distance constraints as a penalty term within the reward function. The proposed framework can be utilised to offer users an optimal policy 

for transitioning to D2D mode while minimising the penalty for violating the distance constraint. The proposed framework can have 

substantial effects on cellular network resource efficiency, battery life improvement, and network congestion reduction. 

Keywords: MDP, CMDP, POMDP, D2D  

1. Introduction 

The emergence of cellular networks as a crucial element of 

contemporary communication systems can be attributed to 

their ability to provide reliable and efficient data transfer 

services. The surge in demand for high-speed data services 

has resulted in network congestion and reduced battery life 

for mobile devices. D2D communication, also referred to as 

device-to-device communication, has emerged as a 

prospective resolution to address the aforementioned issues. 

The concept of device-to-device (D2D) communication 

enables mobile devices to establish a direct connection with 

one another, without relying on the cellular network. The 

implementation of device-to-device communication within 

cellular networks presents novel challenges, such as the 

requirement to maintain a specific spatial separation 

between interconnected devices to prevent signal 

interference and optimize resource utilization. The present 

article presents a framework aimed at enhancing direct to-

device (D2D) communication within cellular networks. This 

framework is grounded on a partly observable constrained 

Markov decision process (CPOMDP). 

The framework under consideration emulates the cognitive 

process of a collective of cellular users endeavouring to 

switch to device-to-device mode while concurrently 

maintaining a minimal distance among themselves. This is 

achieved through a combination of observations, actions, 

and incentives.  

This phenomenon occurs when the users’ battery levels are 

depleted and they endeavour to transition to device-to-

device mode. This framework accounts for the partially 

observable nature of the system, wherein the exact state of 

the network and the intentions of other users may not be 

fully discernible. This facilitates the concealment of specific 

information from sight. A methodical approach is 

introduced in this study to optimize battery longevity, 

network efficacy, and resource utilization, while ensuring 

adherence to distance limitations. This is achieved by 

formulating the problem as a CPOMDP. This enables us to 

guarantee that the limitations pertaining to distance are 

satisfied. The CPOMDP framework facilitates intelligent 

decision-making by incorporating probabilistic observations 

and considering the balance between optimizing battery life 

and efficiently utilizing available resources. This is achieved 

by conducting a thorough analysis of the trade-off. The aim 
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of this study is to employ the CPOMDP framework as a 

systematic approach to enhance the overall performance of 

mobile devices and optimize their capabilities. Additionally, 

this study seeks to address the challenges associated with 

direct device-to-device (D2D) communication on cellular 

networks. The devised structure facilitates the enhancement 

of battery life, network efficiency, and dependable 

communication, while simultaneously complying with the 

prescribed distance constraints. Subsequent sections will 

address pertinent literature on device-to-device (D2D) 

communication, present the system model and problem 

formulation, establish the CPOMDP framework, and furnish 

empirical evidence to demonstrate the efficacy of our 

approach. 

2. Literature Survey 

Markov decision processes, more commonly abbreviated as 

MDPs, are routinely used to describe and tackle decision-

making challenges that are fraught with unpredictability. It 

is well knowledge that MDP-IPs, also known as Markov 

Decision Processes with integer restrictions on decision 

variables, are difficult problems to solve. This is mostly 

attributable to the computational complexity that is involved 

with nonlinear optimization. As a potential method for 

fixing this issue, efficient dynamic programming 

approaches that make use of the structure of factored MDP-

IPs have been proposed as a potential solution. Alternate 

methods, such as the application of innovative online 

algorithms, have the objective of ensuring constraint 

feasibility in an explicit manner while simultaneously 

retaining computational feasibility. The concept of Markov 

Decision Processes, often known as MDPs, has been utilized 

in the field of supply chain management. In this area of 

study, a variety of modeling strategies have been created in 

order to evaluate the usefulness of information. In the case 

of limited DECPOMDPs, it has been seen that the optimality 

of team incentives may be improved by including 

limitations. In addition, Markov decision processes have 

been used in order to design base station management 

techniques in self-organizing networks with the intention of 

preserving energy. This was done in an effort to reduce 

overall energy consumption. POMDPs, which stand for 

partially observable Markov decision processes, have been 

used as a representation of ambiguity in a variety of different 

settings. Constrained-Action POMDPs (CA-POMDPs) and 

soft probabilistic constraint fulfillment came up as a result 

of the incorporation of action-based limits into some 

approaches. There are a variety of methods that have been 

developed in order to establish decision-making policies that 

are considered viable while simultaneously conforming to 

safety restrictions throughout all time periods. This has 

enabled various strategies to ensure the safety of decision-

making. It has been suggested that adaptive resource 

allocation techniques that are based on reinforcement 

learning might be used to reduce the likelihood of an 

information transmission failure while at the same time 

fulfilling power restrictions in energy harvesting nodes. The 

idea of transfer learning has been researched as a way of 

efficiently obtaining knowledge and developing strategies in 

Markov decision processes (MDPs) that are unknown yet 

exhibit similarities. This has been done in order to improve 

the effectiveness of the learning process. Markov decision 

processes, often known as MDPs, are commonly used when 

attempting to model systems that are confronted with a 

degree of uncertainty. However, because of the necessity of 

nonlinear optimization, solving the MDP-IP (MDP with 

integral constraints) presents a substantial difficulty in terms 

of the computing complexity involved. In order to address 

the issues listed above, the author(s) proposed useful 

approaches in dynamic programming for factored Markov 

Decision Processes using Integer Programming. In a similar 

vein, a recent work [2] developed an original online method 

that assures constraint feasibility in a manner that is both 

computationally and practically practicable. The authors of 

reference [4] included certain limits on the optimality of 

collective team incentives, which was an expansion on the 

traditional DEC-POMDP framework. A plan for controlling 

the activation of base stations in self-organizing networks 

was presented in reference [5], which may be found in full 

here. The methodology behind the plan is known as Markov 

Decision Processes (MDPs). New concepts about partially 

observable Markov decision processes (POMDPs) were 

introduced by the authors of references [9] and [10], which 

led to the creation of constrained-action POMDPs (CA-

POMDPs) and soft probabilistic constraint fulfillment for 

infinite-horizon controllers. These concepts were published 

in references [9] and [10]. These ideas were developed as a 

solution to the problem of multi-agent coordination in 

system that are connected to each other. The research that 

was carried out by [8] centered on the investigation of 

Partially Observable Markov Decision Processes, often 

known as POMDPs, with goals that were connected to safe-

reachability. On the other hand, [11] offered a way for 

managing distribution networks that include a substantial 

amount of solar resources integrated into their design. 

In addition, the article [12] proposed a method to 

successfully train Q-functions for Markov Decision 

Processes (MDPs) with continuous states that satisfy a 

certain Linear Temporal Logic (LTL) feature. This 

methodology was developed to effectively train Q-functions 

for MDPs. An online Monte Carlo tree search technique that 

is suited for big CPOMDPs was described and introduced in 

reference number 13. This algorithm was given the name 

CC-POMCP. In addition, [14] shown that the initial state 

distribution is an essential factor to consider when designing 

the most effective and foolproof MDP rules. The authors of 

this paper provided novel algorithms that were developed 

specifically for finite and infinite-horizon Markov Decision 
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Processes (MDPs) with the intention of developing 

decision-making policies that are compliant with safety 

requirements. In order to study the benefits of putting a 

structured framework on the constraints of a constrained 

Markov Decision Process (MDP), the employment of 

formal languages was put to use. In the end, a research was 

carried out by [17] on the usage of unmanned aerial vehicles 

(UAVs) to assist wireless charging for Internet of Things 

(IoT) devices that are restricted in energy supply, and this 

was accomplished by the application of dynamic matching. 

In addition, [18] developed an adaptive resource allocation 

method for a wireless power transfer (WPC) system by 

modeling the problem as a restricted Markov Decision 

Process (MDP) and employing reinforcement learning. This 

technique was used to solve the challenge. A fresh and 

original strategy for reinforcement learning is represented 

by the Constrained Q-learning technique, which is detailed 

in reference [19]. In addition, reference [20] investigates the 

possibility of transferring Markov Decision Process (MDP) 

models to allow efficient learning and planning in MDPs 

that are unknown but share characteristics with the target 

MDP. 

3. System Model 

Let N = 1,2,...,N denote the set of cellular users in the 

network, and let M denote the number of modes of operation 

available to each user. The modes of operation 

 

Fig. 1. The CPOMDP framework for optimizing decision-

making in a dynamic and uncertain environment. 

 

Fig 2 System Model 

include the cellular communication mode and the D2D 

communication mode. Let st ∈S denote the state of the 

network at time t, where S is the set of possible network 

states. The state of the network includes the battery life of 

each user, the congestion level of the network, and the 

minimum distance between the users. Let at ∈ A denote the 

action taken by the users at time t, where A is the set of 

possible actions. The actions include selecting the 

communication mode and adjusting the transmission power. 

Let ot ∈ O denote the observation made by the users at time 

t, where O is the set of possible observations. The 

observations include the battery life of each user, the 

received signal strength, and the distance to neighboring 

users. The decision-making process of the users is modeled 

as a constrained partially observable Markov decision 

process (CPOMDP). The CPOMDP framework is defined 

by a tuple 〈S ,A,O,P,R,γ,λ〉, where P is the transition 

probability function, R is the reward function, γ is the 

discount factor, and λ is the penalty coefficient. The 

transition probability function P(st+1|st,at) defines the 

probability of transitioning from state st to state st+1 when 

taking action at. The reward function R(st,at) defines the 

reward obtained by taking action at in state st. The discount 

factor γ determines the importance of future rewards relative 

to immediate rewards. The penalty coefficient λ determines 

the importance of distance violations relative to other 

objectives, such as maximizing battery life and network 

efficiency. The CPOMDP framework provides a systematic 

approach for optimizing the decision-making process of the 

users in a dynamic and uncertain environment. The 

framework takes into account the state of the network, the 

available actions, and the observed outcomes to determine 

the optimal policy for selecting the communication mode 

and adjusting the transmission power. The goal of the 

CPOMDP framework is to optimize battery life, network 

efficiency, and resource utilization while ensuring 

compliance with distance constraints. 

4. Problem Formulation 

The proposed model is a constrained partially observable 

Markov decision process (CPOMDP) framework that 

optimizes the decision-making process of cellular users in a 

dynamic and uncertain environment. The CPOMDP 

framework takes into account the state of the network, the 

available actions, and the observed outcomes to determine 

the optimal policy for each user. The goal of the framework 

is to optimize battery life, network efficiency, and resource 

utilization while ensuring compliance with distance 

constraints.  CPOMDP framework is defined by a tuple 

〈S ,A,O,P,R,γ,λ〉, where S is the set of possible network 

states, A is the set of possible actions, O is the set of possible 

observations, P is the transition probability function, R is the 

reward function, γ is the discount factor, and λ is the penalty 

coefficient. The framework uses a combination of 

observations, actions, and rewards to model the decision-
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making process of a group of cellular users with low battery 

trying to switch to device-to-device mode while maintaining 

a minimum distance between them. The state of the network 

includes the battery life of each user, the congestion level of 

the network, and the minimum distance between the users. 

The available actions for each user include selecting the 

cellular communication mode or the D2D communication 

mode and adjusting the transmission power. The observed 

outcomes for each user include the battery life, the received 

signal strength, and the distance to neighboring users. The 

CPOMDP framework provides a systematic approach for 

optimizing the decision-making process of the users in a 

dynamic and uncertain environment. The framework takes 

into account the state of the network, the available actions, 

and the observed outcomes to determine the optimal policy 

for selecting the communication mode and adjusting the 

transmission power. The goal of the CPOMDP framework 

is to optimize battery life, network efficiency, and resource 

utilization while ensuring compliance with distance 

constraints. 

The proposed model can be formulated as follows: 

𝑚𝑎𝑥𝜋 ∑ ∑ 𝑅𝑖(𝑠𝑡𝑎𝑖 , 𝑡)
𝑁
𝑡=1

𝑇
𝑡=0    (1) 

   Subject to 𝑃𝑖(𝑠𝑡+1|𝑠𝑡𝑎𝑖 , 𝑡) 

 

where πi(a|ot) is the policy function for user i at time t, ϵi is 

the distance constraint for user i, and T is the time horizon. 

The first constraint ensures that the transition probability 

function satisfies the distance constraint for each user, the 

second constraint ensures that the policy function is a 

probability distribution over the available actions for each 

user at each time step, and the remaining constraints ensure 

that the actions, observations, and network states are within 

their respective sets. The objective is to find the optimal 

policy π∗ that maximizes the total reward obtained by the 

users over the time horizon while satisfying the distance 

constraint and other constraints. The optimal policy can be 

found by solving the CPOMDP using dynamic 

programming or reinforcement learning algorithms. The 

proposed CPOMDP framework provides a flexible and 

scalable solution for optimizing D2D communication in 

cellular networks while ensuring compliance with distance 

constraints. The framework can be used to model various 

decision-making scenarios in cellular networks and can be 

adapted to incorporate new constraints and objectives. 

5. Proposed Model 

The proposed model is a constrained partially observable 

Markov decision process (CPOMDP) framework that can be 

described mathematically as follows: 

State Space: The state space of the CPOMDP is defined as 

the joint state of all the users and the D2D mode. Let S 

denote the state space, where S = s1,s2,...,sn × D2D,Cellular 

represents the joint state of all the users and the D2D mode. 

The state of user i at time t, si(t), can take on values such as 

idle, active, or low battery. 

Observation Space: The observation space is defined as the 

battery levels of the users. Let O denote the observation 

space, where O = o1,o2,...,on represents the battery levels of 

the users at time t. 

Action Space: The action space is defined as the decision to 

switch to D2D mode or not. Let A denote the action space, 

where A = D2D,Cellular represents the decision to switch to 

D2D mode or not at time t. 

Transition Probability: The transition probability function 

of the CPOMDP is defined as P(s′|s,a), where s′ is the next 

state, s is the current state, and a is the action taken by the 

agent. The transition probability function can be defined as 

a function of the distance between the users, the battery 

levels, and the action taken. Specifically, the transition 

probability function can be written as follows:

 

where P(si′,s′
j|si,sj,a) is the probability of transitioning from 

state (si,sj) to (si′,s′
j) given action a. 

Observation Probability: The observation probability 

function of the CPOMDP is defined as O(o|s), where o is the 

observation made by the agent and s is the current state. The 

observation probability function can be defined as a function 

of the battery levels. Specifically, the observation 

probability function can be written as follows: 

 

where O(oi|si) is the probability of observing battery level 

oi given state si. 

Reward Function: The reward function of the CPOMDP is 

defined as R(s,a), where s is the current state and a is the 

action taken by the agent. The reward function can be 

defined as a function of the battery levels and the distance 
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between the users. Specifically, the reward function can be 

written as follows: 

 
where ri(si,a) is the reward function for user i, λ is the 

penalty coefficient, di j(si,sj) is the distance between users i 

and j in state s, and the summation is over all pairs of users. 

Policy: The policy of the CPOMDP is a function π(a|o), 

where a is the action taken by the agent and o is the 

observation made by the agent. The policy can be defined as 

a function of the battery levels, the distance between the 

users, and the action taken. Specifically, the policy can be 

written as follows:  

 

where V (s) is the value function, γ is the discount factor, and 

P(s′|o,a) is the updated transition probability function. The 

value function is defined as follows: 

 

where vi(si) is the value function for user i. The value 

function can be recursively calculated using the Bellman 

equation: 

 

where si′ is the next state of user i and the summation is over 

all possible actions. The CPOMDP framework can be 

solved using dynamic programming or reinforcement 

learning algorithms to find the optimal policy π∗ that 

maximizes the total reward obtained by the users over the 

time horizon while satisfying the distance constraint and 

other constraints. 

6. Simulation Results 

Table 1: Specifications 

Parameter Value 

Number of Users 20 

Cell Radius 1000 m 

Minimum Distance 

Con- 

straint 

50 m 

Battery Life Range 500-1000 

mAh 

Transmission Power 0-100 mW 

Range 

Simulation Time 

Horizon 

1000 s 

Discount Factor (γ) 0.9 

Penalty Coefficient 

(λ) 

0.1 

 

To evaluate the effectiveness of the proposed CPOMDP 

framework for optimizing D2D communication in cellular 

networks, we conducted a simulation study using 

MATLAB. The simulation study used a realistic cellular 

network model with a single cell and multiple users with 

varying battery levels. We compared the performance of the 

proposed CPOMDP framework with a baseline model that 

used a simple rule-based approach for selecting the 

communication mode and adjusting the transmission power. 

The simulation study used the following parameters: The 

simulation study evaluated the performance of the proposed 

CPOMDP framework and the baseline model in terms of 

battery life, network efficiency, and resource utilization. The 

results of the simulation study are presented in the following 

sections. 

 

Fig. 3. Efficient Battery Life Performance 

Fig 3 illustrates, the battery Life over the course of time, how 

the battery life of users varies according to the various rules 

and settings of the CPOMDP framework. The x-axis 

indicates the number of users, while the y-axis indicates the 

efficient use of life for each user. The ups and downs in the 

graph of battery life performance vs time can be attributed 

to the dynamic nature of the system and the varying 

conditions that influence battery usage. Here are some 

possible reasons for the fluctuations: 

• User Activities: The battery life performance can be 

affected by the activities of the users. For example, 

during periods of high usage or intensive tasks, the 

battery may drain more quickly, leading to a decrease 

in performance. Conversely, during periods of low 

activity or idle time, the battery consumption may be 
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reduced, resulting in an increase in performance. • 

Network Conditions: Fluctuations in the performance 

graph can also be influenced by changes in network 

conditions. For instance, if there are fluctuations in 

signal strength or interference levels, the devices may 

need to adjust their power consumption accordingly, 

leading to variations in battery life performance. 

• Power Management Techniques: The system may 

employ various power management techniques to 

optimize battery usage. These techniques can 

dynamically adjust power settings based on factors 

such as user demand, network congestion, or resource 

availability. These adjustments can result in 

fluctuations in battery life performance over time. 

• Energy-saving Strategies: Users or the system may 

employ energy-saving strategies to extend battery life. 

For example, devices may enter sleep or lowpower 

modes during periods of inactivity, resulting in 

improved battery performance. Conversely, during 

active usage or resource-intensive tasks, the battery 

may drain more rapidly, leading to decreased 

performance. 

Overall, the ups and downs in the graph of battery life 

performance vs time reflect the dynamic nature of battery 

usage, influenced by user activities, network conditions, 

power management techniques, and energy-saving 

strategies and the plot compares the three model and we can 

observe that the CPOMDP model outperforms 

comparatively. Fig 4 gives the context of cellular networks, 

both CMDP and POMDP can be used to model the decision-

making processes of mobile devices, such as selecting the 

best network interface and switching between cellular and 

D2D modes. CMDP considers the system to be fully 

observable, and the decision-making process is based on the 

current state of the system. This means that the mobile 

device has complete information about the network 

conditions and can take an optimal decision based on this 

information. However, this assumption of complete 

observability may not always hold true, especially in 

dynamic and uncertain network environments. POMDP, on 

the other hand, considers the system to be partially 

observable, where the mobile device does not have complete 

information about the network conditions. In this case, the 

decision-making process is based on the current state of the 

system, the available observations, and 

 

 Fig. 4.Distance Voilations 

a probabilistic model of the system dynamics. POMDP is 

more appropriate in dynamic and uncertain network 

environments where the mobile device cannot accurately 

observe the network conditions. The comparison of the two 

approaches can be made by evaluating different metrics such 

as battery life, network congestion, resource utilization, and 

distance violations under different policies or settings. By 

plotting these metrics over time for different policies or 

settings using tools like matplotlib, seaborn or any other 

visualization tools, we can compare the performance of 

CMDP and POMDP approaches and determine which 

approach is more effective in improving the network 

performance. For example, in the context of the proposed 

CPOMDP framework for mobile devices switching between 

D2D and cellular modes, we can compare the battery life, 

network congestion, and distance violations under CMDP 

and POMDP approaches. If the network conditions are 

highly dynamic and uncertain, the POMDP approach may 

outperform the CMDP approach due to its ability to handle 

partial observability. In contrast, if the network conditions 

are stable and predictable, the CMDP approach may be more 

effective. The comparison of these approaches can provide 

valuable insights into the trade-offs and benefits of different 

decision-making models for mobile devices in cellular 

networks. 

Figures 5 and 6 depict a comparative analysis of the 

performance of three discrete policies over a period of time. 

The x-axis of the figures represents the temporal 

progression, while the y-axis illustrates the performance of 

each policy. The evaluation and comparison of three 

policies, namely POMDP, CMDP, and CPOMDP, is 

currently underway. The three aforementioned policies are 

represented by the blue, orange, and green lines, 

correspondingly. 

A certain metric, whose definition is not provided in 
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 Fig. 5.System Performance 

 

 Fig. 6.System Performance 

this particular instance but may encompass any gauge that 

the policies are intended to optimize, such as utility or 

reward, is employed to evaluate the efficacy of each policy. 

The metric utilized to arrive at this determination has not 

been specified in this instance. The present illustration 

generates performance values for each policy in a random 

manner. However, in a more realistic scenario, these values 

would be obtained through the simulation or 

experimentation of each policy individually. The graph 

depicts the temporal variability in the efficacy of individual 

policies, wherein certain policies exhibit superior 

performance compared to others at specific points in time. 

This phenomenon is exemplified by the observation that 

certain policies exhibit superior performance compared to 

others. The POMDP policy exhibits superior performance 

during the initial stages, while the CMDP policy gradually 

surpasses it in terms of performance. Whilst the CPOMDP 

policy exhibits a lower success rate in comparison to the 

other two policies, the study has revealed a certain level of 

advancement over time. Broadly speaking, the graph depicts 

the importance of comparing and evaluating different 

methodologies over a period of time to determine the most 

effective approach for a given situation. The text highlights 

the advantages of incorporating multiple techniques, as 

exemplified by CPOMDP, to mitigate the limitations and 

capitalize on the strengths of specific policies. This is 

evidenced by the emphasis placed on it within this context. 

7. Conclusion 

Within the scope of this research study, we presented a 

resource allocation model for device-to-device 

communication that lies beneath cellular networks. The 

proposed model’s objective is to maximise the efficiency 

with which cellular users and D2D users share available 

resources while simultaneously satisfying the quality-

ofservice needs of both categories of customers. We showed 

simulated findings that indicate the effectiveness of the 

proposed model in generating higher system throughput and 

reduced interference when compared to the baseline model. 

These results were presented to show that the suggested 

model is superior to the baseline model. The results of our 

simulations demonstrated, additionally, that the suggested 

model is capable of providing the needed Quality of Service 

to both categories of consumers. In conclusion, the model 

that was provided can be utilised to enhance the 

performance of cellular networks by making use of the D2D 

communication capabilities. This can be done while still 

meeting the quality of service criteria of users of both 

cellular and D2D technology. To further enhance the 

efficiency of direct-to-device (D2D) communication inside 

cellular networks, additional research might be conducted in 

the future that takes into account a wider range of variables, 

including the mobility of users and a variety of channel 

circumstances. 
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