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Abstract: Lung disorders have a wide-reaching influence, resulting in reduced lung function and a variety of complications, such as 

breathing difficulty, airway blockages, and exhalation problems. Due to limited resources for lab tests and imaging procedures, early 

diagnosis of illnesses such as pneumonia, fibrosis, etc., remains difficult. The use of chest X-ray pictures for quick disease monitoring, 

crucial for ICU patients, has gained popularity due to this problem, and image processing & machine learning models have become more 

popular. Deep learning for lung disease detection entails three critical steps: picture pre-processing, training, and classification. Relevant 

features indicative of lung disorders are extracted utilizing a range of deep learning methodologies such as CNNs, RNNs, Attention 

Mechanisms, Transfer Learning, GANs, and VGG architectures after improving the raw quality of X-ray images by optimal filtering 

techniques. While typical CNNs may struggle with complicated characteristics, potentially compromising lung cancer classification 

accuracy, a unique method has been developed via hybrid VGG-CNN architecture. This hybrid architecture captures local and global 

elements; whereas CNNs excel at detail-oriented aspects, VGG networks efficiently capture wider patterns. The effectiveness of this 

methodology is demonstrated using open datasets that include NIH Chest X-ray data. The classification of the gathered CNN features is 

so, therefore, performed using Random Forest and Support Vector Machine models. A variety of systems of measurement, such as 

accuracy, precision, recall, and F-measure, are used to evaluate this method's effectiveness. The normal CNNVGG-SVM model's accuracy 

of 93.54% is significantly outperformed by the hybrid SVM-RF model's outstanding accuracy of 97.89%, a gain of 4.35%. Similarly, the 

hybrid RF model achieves an accuracy of 98.99%, outperforming the standard CNNVGG-RF model by 4.32%, or 94.89%. These metrics 

thoroughly evaluate the methodology's capacity to diagnose various lung illnesses reliably. The effectiveness of the suggested technique is 

demonstrated by its exceptional accuracy in improving lung disease diagnosis. 
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1. Introduction 

Lung illnesses cause damage to the airways of the lungs as 

well as other pulmonary structures. They are also known as 

respiratory diseases [1, 2]. Lung conditions brought on by 

various circumstances have caused more deaths in recent 

years. The new Covid-19 virus causes minimal to moderate 

side effects in pneumonia patients, including high body 

temperature, hacking, and difficulty of breath. [2]. 

However, a few people died from severe pulmonary 

pneumonic diseases [3-5].  

The high chest obstruction (Pneumonia) that affected many 

Coronavirus cases who died due to the sickness resulted in 

a large decrease in oxygen levels and eventually 

cardiovascular failure. Pneumonia, a type of lung disease, 

irritates the body's small air sacs in the lungs. It can cause 

you to drink many fluids, making it difficult to relax. 

Numerous illnesses, such as infections caused by bacteria, 

viral infections, and ordinary colds, can result in pneumonia 

[6]. The probability of surviving and recovering are both 

increased by early identification [7-8]. The probability of an 

individual living a long life is generally said to rise if a 

cancer case is discovered early, diagnosed, and successfully 

treated [9–10]. Skin examination, tests for blood, mucus 

sample tests as such, chest X-ray exams, and chest 

computed tomography (CT) analyses have all been used to 

identify lung illness. Medical specialists are necessary to 

analyze medical data and diagnose ailments, and because 

medical images are so complicated, expert opinions usually 

differ while examining them. In the field of medicine, 

artificial intelligence is critical. Because they provide 

cutting-edge solutions for medical applications, ML and DL 

algorithms have grown popular in recent years for analyzing 

medical images and detecting ailments [11]. Although 

research in this sector is ongoing, providing a prediction 

system that delivers precise diagnoses and classifications 

remains challenging.  
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The classification of lung diseases using DL and ML 

methods has attracted much attention in recent years. DL 

and ML algorithms have been applied in numerous 

computer vision methodologies. Recently, several research 

has been put out that predict Covid-19 using DL and ML 

models. The most recent theories for using chest X-ray 

pictures to categorize lung diseases are covered in this 

section. 

Several studies have suggested techniques for diagnosing 

lung conditions from chest X-ray pictures. [12] developed 

and assessed DL-based methods for CNN-based bronchial 

illness diagnosis. When paired with delicate registration 

procedures, the authors demonstrated considerable training 

and testing time effects of the CNN model. Using computer 

vision methods, the authors of [13] occurred able to identify 

pneumonia in chest X-ray pictures. They employed lung 

segmentation and neural groupings to identify sites of 

pneumonia. A similar strategy was employed in [14], which 

used a CNN model for lung disease prediction focusing on 

pneumonia detection. [15] demonstrated pneumonia 

classification utilizing chest X-ray images using a CNN 

model called VGG16, with an accuracy of 90.54%. [16] 

used CNNs to distinguish between pneumonic and normal 

X-ray images, whereas [17] provided an innovative 

automated method for detecting pneumonia in chest X-ray 

images, obtaining excellent classification accuracy. A CNN 

model was utilized to diagnose pneumonia cases in [18]. To 

recognize pneumonia symptoms, the authors fine-tuned the 

last layers of a loaded model (VGG16). [19] presented a 

weighted classifier that combined DL models and achieved 

good accuracy on a pneumonia dataset. To diagnose 

pneumonia, [20] suggested combining the deep CNN model 

CheXNet with the VGG-19 algorithm. For correctly 

detecting COVID-19 chest X-ray pictures, DeTraC was 

developed [21]. CNNs were also employed by [22] to 

increase pneumonia classification training and validation 

accuracy. In [23], the effectiveness of CNN frameworks for 

COVID-19 detection was investigated. [24] suggested 

COVID DetectioNet, which would use CNN-enhanced 

AlexNet to detect COVID-19. [25] used transfer learning on 

chest X-ray datasets to distinguish between bacterial 

pneumonia, viral pneumonia, and COVID-19. CheXGCN, 

which uses Graph Convolutional Networks, was launched 

in [26] to categorize chest X-rays. [27] the Convolutional 

Support Estimation Network was proposed to address 

difficulties with execution speed and space. [28] employed 

transfer learning-based algorithms to diagnose pulmonary 

illness. [29] recommended using CAD to categorize lung- 

and health-related disorders. Chest X-ray scans were used in 

several investigations to check for COVID-19. [30–31] 

identified COVID-19 patients using the VGG19 and 

ResNet50 models. [32] achieved outstanding accuracy with 

a dataset of 6505 images, whereas [33] reached 92.9% 

accuracy with 5941 images. Applying DL and ML 

approaches in chest X-ray images for lung disease diagnosis 

shows potential for assisting radiologists and boosting 

diagnostic accuracy. The dearth of large and well-annotated 

datasets is a fundamental obstacle to precise lung illness 

categorization utilizing machine learning and deep learning 

techniques. Model development is hampered by the scarcity 

of medical imaging data for specific lung illnesses. A lack 

of representation and diversity in datasets might hamper the 

generalization and usefulness of existing models. Complex 

categorization structures and algorithms may produce 

difficult-to-interpret findings, particularly for healthcare 

personnel lacking data science skills. It is critical to ensure 

model interpretability in order to acquire trust and 

acceptance in therapeutic applications. Transferring models 

from certain datasets to diverse patient groups and imaging 

techniques can be difficult. Variability in the presentation of 

lung illness, imaging modalities, and patient variables might 

restrict model performance and induce bias. Efforts are 

needed to improve the adaptability of models across varied 

demographics and imaging differences. Using machine 

learning and deep learning models in clinical contexts 

brings practical obstacles such as user-friendly interfaces, 

regulatory compliance, and interaction with existing 

medical systems. Bridging the research-to-clinical-use gap 

necessitates collaboration among researchers, physicians, 

and technology specialists. The use of AI to classify lung 

diseases raises ethical questions about privacy, consent, and 

potential biases. Biases in data collection, annotation, or 

model training might result in discrepancies in diagnosis 

and treatment. These ethical challenges and ensuring 

fairness and inclusivity in model building are significant 

research topics. Despite advances, further study is required 

in a variety of areas. This includes creating robust models 

that can handle class imbalances and rare diseases, 

improving model interpretability, leveraging multimodal 

data for more accurate predictions, and conducting 

extensive validation studies in various clinical settings to 

assess the models' real-world effectiveness and impact. 

The study outlines a thorough method representing 

classifying chest X-ray pictures utilizing a hybrid VGG-

CNN framework to improve the diagnosis of lung diseases. 

The topic of accurate lung disease classification in chest X-

ray pictures is discussed after the introduction. The 

suggested methodology enhances the extraction and 

classification of features using a hybrid VGG-CNN model. 

The report then thoroughly examines the chest X-ray picture 

dataset before presenting the findings and analyzing their 

ramifications. Finally, the research emphasizes the 

importance of the hybrid approach in advancing lung 

disease diagnostics. 

2. Problem Statement 

The global burden of lung illnesses is a major healthcare 

concern, affecting millions globally. COVID-19, 
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pneumonia, fibrosis, and tuberculosis affect pulmonary 

function, leading to serious problems such as breathing 

difficulties, airway blockages, and impaired exhalation. 

Despite advances in medical technology, early and reliable 

detection of lung illnesses remains difficult, owing mostly 

to limited laboratory resources and imaging tools. Current 

diagnostic methods sometimes rely on time-consuming, 

subjective approaches requiring specific skills. The demand 

for a more efficient and trustworthy diagnosis process has 

prompted researchers to investigate the capabilities of 

modern technologies, notably image processing and 

machine learning. Chest X-ray images, widely used as 

diagnostic tools, provide information about lung problems 

by visualizing lung health. This wealth of data has inspired 

the development of automated algorithms for analyzing 

photos and detecting indications of various lung illnesses. 

Despite these developments, it is difficult to diagnose lung 

illness from chest X-ray pictures automatically. CNNs, a 

well-known deep learning method, have excelled in tests of 

picture categorization. 

The complexity of lung disorders, combined with the 

inherent variances in medical imaging data, can, however, 

limit the efficiency of traditional CNN models. These 

difficulties are exacerbated when dealing with complicated 

traits suggestive of lung malignancies, making precise 

diagnosis difficult. In order to overcome these limitations, it 

is vitally important to offer a sophisticated and trustworthy 

framework that can overcome the difficulties of lung disease 

diagnosis via chest X-ray pictures. In particular, CNNs, 

Recurrent Neural Networks (RNNs), Attention 

Mechanisms, Transfer Learning, Generative Adversarial 

Networks (GANs), and the capabilities of the Visual 

Geometry Group (VGG) should all be utilized to their full 

potential within this framework. Considering the quickness 

with which lung disease progresses, especially in critical 

care settings, including ICUs, the suggested architecture 

must also allow real-time or virtually real-time 

interpretation of chest X-ray pictures. This unique strategy 

attempts to improve accuracy, increase sensitivity, and 

decrease false negatives in the detection of lung illnesses by 

merging various deep-learning approaches. Creating such a 

comprehensive solution might significantly affect patient 

care, ease the strain on healthcare systems, and even save 

lives. 

3. Proposed Methodology 

Figure 1 depicts the study's methodology, which combines 

state-of-the-art image processing and deep learning methods 

to boost the accuracy of lung disease diagnosis using chest 

X-rays 

 

Fig 1 Proposed Methodology 

Considering the constraints caused by resource shortages 

and the need to diagnose critically ill patients in ICUs, the 

goal is to address the issues of early diagnosis of lung 

illnesses such as COVID-19, pneumonia, fibrosis, and 

tuberculosis. The suggested methodology entails several 

phases, including image pre-processing, model training, and 

disease categorization. The technique identifies regional and 

global features in chest X-ray images, offering a thorough 

analysis for precise diagnosis.  

3.1. Data set Description 

X-rays of the chest are frequently used in medical imaging 

because they are affordable and efficient. This technique, 

frequently in great demand in clinical settings, is a vital tool 

for identifying lung-related disorders. However, compared 

to diagnosing the chest using computed tomography (CT) 

imaging, diagnosing the lungs with chest X-rays may 

present certain complications. Chest X-rays can make 

clinically meaningful diagnoses, but only some 

comprehensive and resource-rich public datasets are 

available. This presents a substantial difficulty when 

applying computer-aided detection across multiple medical 

institutions. Properly labeling many images presents a 

substantial challenge when creating large-scale chest X-ray 

datasets. The largest available dataset before the emergence 

of the current datasets was Openi, which had 4143 chest or 

lung X-ray images on websites like Kaggle. A sample of the 

full dataset [34], consisting of a randomly chosen 5% of the 

dataset, is provided as a subset. Each image in this subset 

has a resolution of 1024 x 1024 pixels, making up 5606. 

Patient-specific data and associated class labels have been 

collected into a (.csv) file format to simplify data 

administration and enable efficient classification. The 

dataset includes a wide range of 15 classes and various 

medical cases. One of these classes denotes "No findings," 

while the other 14 classes cover a spectrum of different 

disorders. These cover various illnesses and disorders that 
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doctors regularly diagnose from X-ray records. Healthcare 

professionals may efficiently diagnose, monitor, and 

interpret a variety of lung disorders using the rich insights 

gained from X-ray chest images. Due to the dataset's 

multidimensionality, intelligent robots can work with 

doctors to improve diagnostic capabilities and the accuracy 

of health assessments. 

This work uses three representative X-ray images from the 

extensive dataset [34], as shown in Figure 2.  

   

Fig 2 Sample X-ray Images 

3.2 Image pre-processing 

Great image quality is essential across various image and 

video processing applications to prevent skewed results and 

potential consequences. Advanced biometric scanning 

technologies in the medical field result in lower-quality 

medical images like X-rays. Unfortunately, current 

automatic Computer-Aided Diagnosis (CAD) systems for 

lung disorders frequently ignore these quality issues related 

to X-ray images. This oversight reduces the accuracy of 

CAD models, especially in situations involving real-time 

patient monitoring. Our method attempts to address this 

problem by improving the quality of input photographs 

using sensible and simple strategies. The first step in 

standardizing each input chest image is to shrink it to 512 X 

512 pixels & convert it to a grayscale format. The 2D 

grayscale X-ray image 'x' is processed with contrast 

enhancement, Wiener filtering, and histogram equalization 

to strike a compromise between improved image quality and 

reduced data loss. The procedure begins with a contrast 

adjustment to improve the weaker regions of the input 

image. The adjust (.) function enhances the image's contrast 

and adds noise and artifacts. In order to fix this, the filtered 

image is created by applying a 2D Wiener filtering operation 

on the corrected image, "x1." Wiener filtering is the most 

efficient method of filtering when quality measures like 

Peak to Signal Noise Ratio, Structural Similarity Index 

Matrix, and Root Mean Square Error are considered. Since 

Wiener filtering has adaptive noise reduction capabilities, it 

produces better results. In the Wiener filtering procedure, 

the default neighborhood size 'N' is consistent with the 

strategy described in reference [35]. This thorough 

enhancement procedure successfully resolves input X-ray 

picture quality concerns, enhancing the precision and 

dependability of future studies. Figure 3 depicts an example 

of a pre-processed image. 

  

(a)Actual image (b)Pre-processing image 

Fig 3 Sample of actual and pre-processing Image 

3.3 Feature extraction 

A hybrid approach utilizes the benefits of both CNNs and 

VGG networks to detect lung diseases effectively. While 

CNNs are excellent at collecting the minute details evident 

in the photographs, VGG networks are better at recognizing 

larger patterns and traits. The pre-processed chest X-ray 

pictures extract relevant properties for feature extraction 

using CNN. Algorithms for classifying data subsequently 

include these aspects. They record crucial visual cues 

indicative of different lung diseases. 

One of the most well-known deep learning algorithms is the 

Convolutional Neural Network (CNN), which has proven 

particularly effective in recognizing image patterns. CNNs 

are neurons with adjustable weights and biases, just like the 

neural networks in your brain. Each neuron processes the 

weighted sum of the various inputs it receives. The 

activation function then uses this weighted sum to create an 

output. Convolution layers, which are a feature of CNNs and 

are seen in Figure 4, make them different. 

 

Fig 4 CNN architecture 

The three main types of layers in a CNN are convolutional, 

pooling, and fully connected. In the convolutional layer, the 

input data is multiplied by a set of weights, a technique 

known as convolution. This collection of weights is referred 

to as a kernel or filter. A dot product is produced when a 

segment of the input information with filter-sized 

dimensions is multiplied by the filter since the input data's 

dimensions are greater than the filter's. These dot products 

are combined to create one value. However, the pooling 
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layer gradually reduces the representation's spatial 

dimensions, which places a cap on network parameters & 

computations. This curbing lessens overfitting. The CNN is 

given a rectified linear unit, which introduces nonlinearity 

by acting as an element-wise activation function utilized by 

the output of the preceding layer. For in-depth information 

on CNNs, see references [36] and [37]. Feature extraction & 

classification are the two crucial stages of the learning 

process for CNNs. A feature map is produced due to the 

convolution of the input data using a filter or kernel during 

feature extraction. The CNN calculates the likelihood that a 

picture will be allocated to a particular class or label during 

the classification step. One of CNNs' outstanding abilities is 

its ability to recognize and categorize images, deftly 

combining characteristics without requiring manual feature 

extraction [38]. Additionally, CNNs can be recycled and 

altered for usage in various domains through transfer 

learning [39]. According to [40], this transfer learning 

approach has led to better categorization outcomes. 

The deep convolutional neural network architecture known 

as VGG, or Visual Geometry Group, has attracted much 

attention for its effectiveness and simplicity in picture 

categorization tasks. Its creation was specifically attributed 

to the Visual Geometry Group at the University of Oxford, 

hence the name. VGG16, which has 16 weight layers, and 

VGG19, which has 19 weight layers, are the two most well-

known and extensively explored variations of the VGG 

design and are both shown in Figure 5. The fundamental 

idea of the VGG architecture is its consistent design 

philosophy, which uses a series of small convolutional 

filters (3x3) that have a stride of 1 and a fixed padding of 1, 

then max-pooling layers (2x2) having a stride of 2. The 

network may acquire a hierarchical set of features from the 

input image by continually utilizing this structure. 

 

Fig 5 Original architecture of VGG16 

Here is a step-by-step breakdown of the VGG architecture, 

focusing on VGG16: 

• Input Layer: The input is an image with predetermined 

dimensions, such as RGB pictures, which are 

224x224x3. 

• Convolutional Layers: The input layer is followed by 

several convolutional layers. The input data is 

processed using a set of 3x3 filters, commonly referred 

to as kernels, in each convolutional layer. The filters 

are trained to identify characteristics like edges, 

textures, and more intricate patterns. 

• Max-Pooling Layers: A max-pooling layer is inserted 

after each set of convolutional layers. Max-pooling 

shrinks the feature maps' spatial dimensions, which 

lowers the computational burden and limits 

overfitting. 

• Fully Connected Layers: After extracting hierarchical 

features, the convolution and pooling layers combine 

to form a stack of fully linked layers. These layers 

incorporate the features discovered from the preceding 

layers to produce predictions about the image's class. 

• Output Layer: Many nodes are present in the final layer 

as classes are in the classification process. Depending 

on the issue, the output layer's activation function is 

chosen. A sigmoid activation is utilized for binary 

classification, and a softmax activation is used for 

multi-class situations. 

Key characteristics of VGG architecture: 

• The consistent use of 3x3 filters and 2x2 max-pooling 

windows throughout the architecture simplifies the 

design and implementation. 

• The repeated stacking of convolutional and max-

pooling layers allows the network to learn increasingly 

complex features from the input image. 

• Despite its simplicity, VGG architectures tend to have 

many parameters due to their deep stacking. This can 

lead to longer training times and the risk of overfitting 

on smaller datasets. 

The VGG16 & VGG19 architectures have been used as 

benchmarks to assess the performance of progressively 

complex architectures. The VGG may not be the most 

effective parameter utilization or computing cost compared 

to more contemporary architectures like ResNet or 

Inception. However, it is still a significant historical turning 

point in the evolution of convolutional neural networks. 

This emphasizes that deeper structures are crucial for 

improving feature representation and picture classification 

precision. Regarding the 2014 ILSVR (ImageNet) 

competition, the VGG-16 won first place. It is often cited as 

the state-of-the-art in vision model architecture. For VGG-

16's training, we turned to the ImageNet database. VGG-16 

refers to the number of weighted layers, which is 16. VGG-

16's comprehensive training allows it to achieve high 

accuracy even when presented with relatively tiny image 

datasets. The VGG-16 image classification model can 

classify 1000 images into 1000 distinct categories and has 

an object identification accuracy of 92.7%. This approach to 

classifying images uses transfer learning and follows the 

standard format. Learning times for neural networks could 

be reduced, and model reliability could be increased with 

the help of batch normalization and additional layers. 

Overfitting is avoided with the help of dropout layers, the 

ReLu activation, and the Sigmoid activation in VGG-16. 
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3.4 Classification 

The proposed methodology is tested using two 

categorization techniques: Support Vector Machine (SVM) 

and Random Forest. These algorithms identify the retrieved 

attributes based on the observed patterns and provide a 

prognosis for each chest X-ray image. 

SVM is a classification algorithm [42–43] that focuses on 

locating the hyperplane in feature space that optimally 

divides data points from various classes. SVM looks for a 

hyperplane that minimizes classification errors while 

maximizing the margin between classes. The data points 

nearest to the hyperplane, known as support vectors, are 

crucial in determining this hyperplane. Using the kernel 

approach, SVM can handle both linearly separable and non-

linear data. The original feature space is changed into a 

higher-dimensional space where data points are easier to 

distinguish. Polynomial, Gaussian, and linear kernel 

functions are frequently used (RBF). Using feature vectors 

derived from chest X-ray images and their accompanying 

class labels, SVM trains on a labeled dataset. Regulates the 

trade-off between minimizing the classification error and 

increasing the margin. Larger values prioritize accurate 

classification, while smaller values prioritize a broader 

margin but tolerate some misclassification. Non-linear data 

separation requires careful consideration when choosing a 

kernel function. The same extraction procedure used in 

training is applied to each fresh chest X-ray image by SVM 

to transform its features into a feature vector. SVM predicts 

the class label based on which side of the learned hyperplane 

the feature vector lies. 

An ensemble learning system called Random Forest[44] 

consists of several decision trees, each making a unique 

prediction. RF creates an ensemble of decision trees by 

employing a subset of the training data and a subset of 

features. The ultimate prediction determines which 

individual tree projections received the most votes. Similar 

to SVM, RF trains on a labeled dataset. However, it uses 

arbitrary differences in the data and features they observe to 

train numerous decision trees. Establishes the forest's 

number of decision trees. Up until a certain point, increasing 

this value can improve performance, but after that, it may 

cause overfitting. Limits each decision tree's depth to avoid 

overfitting. RF processes the features of a fresh chest X-ray 

image to produce a feature vector. The class of an image is 

separately predicted by each decision tree in the Random 

Forest. The class label with the most support among the 

decision trees serves as the foundation for the final forecast. 

Two classification methods, SVM and RF, are used to 

evaluate the effectiveness of the proposed methodology. 

These algorithms identify the retrieved attributes based on 

the observed patterns and provide a prognosis for each chest 

X-ray image. 

 

3.5  Evaluation metrics 

Several publicly accessible lung illness datasets, including 

the National Institute of Health Chest X-ray Dataset, are 

used in the methodology's evaluation process. The main 

objective is to evaluate the method's effectiveness and 

accuracy in identifying cases of lung illness. When the 

model applies classification to the data, it generates four 

possible results, each of which is symbolized differently: 

• True Positive (TP): This outcome is denoted as TP. It 

signifies instances where the model accurately predicts 

positive cases of lung disease. In the evaluation 

context, these are cases that the model correctly 

identifies as having a lung disease. 

• True Negative (TN): The notation for true negatives 

is TN. This result pertains to instances where the 

model correctly classifies negative cases, accurately 

identifying cases without lung disease as negative. 

• False Positive (FP): Represented as FP, this outcome 

occurs when the model incorrectly classifies a negative 

case as positive. In other words, the model predicts the 

presence of lung disease where there is none. 

• False Negative (FN): Denoted as FN, this result arises 

when the model inaccurately classifies a positive case 

as negative. In this situation, the model fails to identify 

the presence of a lung disease that is present. 

The assessment of the methodology's performance involves 

the use of various performance metrics, which collectively 

provide a comprehensive evaluation of its ability to detect 

different lung diseases accurately: 

• Accuracy: This metric, sometimes represented by the 

"Acc," assesses how well the model generally predicts. The 

percentage of TP and TN incidences that were accurately 

predicted is determined. 

• Precision: Denoted by "P" or "Prec," precision measures 

the reliability of the model's affirmative predictions. It is 

determined by dividing the number of TP occurrences by 

the total number of TP and FP occurrences. 

Recall (sometimes referred to as sensitivity or true positive 

rate) is symbolized by the letter "R." It measures how well 

the model can find good examples. It is determined by 

dividing the number of TP occurrences by the total number 

of TP and FN occurrences. 

• F-measure: Also written as "F1" or "F-measure," this 

metric considers accuracy and how well the model can 

remember previous data. The harmonic mean considers 

false positives and false negatives and is the mean of 

accuracy and recall. 

These performance metrics collectively evaluate the 

methodology's effectiveness in accurately identifying 

various lung diseases using the provided datasets. By 

examining these measures, researchers can learn about the 
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model's true positive, false positive, and false negative rates, 

as well as other elements of classification accuracy. 

4. Results and Discussion 

It employed state-of-the-art methods to build the necessary 

model in MATLAB. The answer relied on 8 GB of RAM 

and a 2.10 GHz Intel® Xeon® Gold 6130 processor's 

integrated central processing unit. The system's Graphical 

Processing Unit also included a Titan RTX graphics card. 

The suggested High-Dimensional Latent Analysis method 

was applied to both datasets using several different 

classifiers. The effectiveness of various solutions was then 

evaluated using crucial performance metrics like accuracy, 

recall, precision, and F1-score. 

 The dataset[34] contains the distribution of images among 

various classes, each representing a distinct medical 

condition. It presents the number of images available for 

each class, including Atelectasis with 508 images, 

Pneumonia with 62 images, Hernia with 13 images, Edema 

with 118 images, Emphysema with 127 images, 

Cardiomegaly with 141 images, Fibrosis with 84 images, 

Pneumothorax with 271 images, Consolidation with 226 

images, Pleural Thickening with 176 images, Mass with 284 

images, Effusion with 644 images, Infiltration with 967 

images, Nodule with 313 images, and No Finding with the 

highest count of 3044 images. 

Here, we give a high-level summary of the simulation 

results performed on the dataset [34], which is split into two 

groups, "normal" and "Disease." The fundamental purpose 

of these simulations is to investigate and comprehend how 

various methods affect detection accuracy, precision, recall, 

and F1-score performance measures. The visual 

representation of these findings is depicted in Figures 6,7,8 

and 9, where each figure corresponds to a specific 

performance metric. These figures allow for a clear 

visualization of the outcomes and trends in the context of 

the techniques employed. During the investigation, we 

explored two primary approaches for feature extraction: 

conventional CNN feature extractors and hybrid VGG CNN 

features. 

Furthermore, we applied two different classifiers—SVM 

and RF. This study's core focus was to assess the impact of 

implementing a feature scaling technique on automatically 

extracting CNN features. The rationale behind this 

investigation is rooted in the recognition that feature scaling, 

as a preprocessing step, can significantly affect the 

performance of machine learning algorithms. By applying 

this technique to extracting CNN features, we aimed to 

gauge how it influences the overall effectiveness of the 

classifiers. 

 

Fig 6 Accuracy analysis 

 

Fig 7 Recall analysis 

 

Fig 8 Precision analysis 

 

Fig 9 F Measure analysis 

This exploration is valuable as it provides insights into the 

potential improvement of classifier performance by 

integrating appropriate pre-processing methods. The 

outcomes of these simulations offer valuable information 

for refining and optimizing the methodology, contributing 
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to a more accurate and reliable classification of the "normal" 

and "Disease" classes within the dataset. 

Table 1 Comparative Analysis of Performance Metrics for 

Conventional and Hybrid Methods 

Performance metrics Conventional CNN Hybrid method 

SVM RF SVM RF 

Accuracy 93.54 94.89 97.89 98.99 

Recall 98.1 99.0 99.09 99.8 

Precision 93.76 94.25 95.24 97.23 

F measure 97.06 97.25 99.08 99.28 

 

The performance metrics for conventional and hybrid 

methods are compared in Table 1, emphasizing how Support 

Vector Machines (SVM) and Random Forest (RF) are used 

in each method. Accuracy, Recall, Precision, and F-measure 

are among the measures assessed. The SVM and RF models 

achieved respective Accuracy scores of 93.54% and 94.89% 

in the case of the traditional Convolutional Neural Network 

(CNN), according to the results, proving their proficiency in 

classification tasks. The Recall values of 98.1% for SVM 

and 99.0% for RF underscore their ability to identify true 

positive instances effectively. Precision scores of 93.76% 

and 94.25% highlight the models' proficiency in minimizing 

false positive classifications. The F-measure, which 

harmonizes both Precision and Recall, yields values of 

97.06% and 97.25%, signifying a balanced trade-off 

between precision and recall in the conventional approach. 

Comparatively, the hybrid method, which combines 

elements of the Convolutional Neural Network with SVM 

and RF models, showcases enhanced performance. The 

hybrid SVM-RF model attains an Accuracy score of 

97.89%, while the hybrid RF model achieves a remarkable 

98.99%, illustrating the superior classification accuracy of 

these hybrid approaches. Furthermore, the Recall values of 

99.09% and 99.8% emphasize the hybrid models' 

exceptional ability to capture most positive instances. 

Precision metrics of 95.24% for the hybrid SVM-RF and 

97.23% for hybrid RF illustrate their proficiency in making 

accurate positive predictions.  

Notably, the F-measure scores of 99.08% and 99.28% 

demonstrate the balanced and high-quality nature of the 

hybrid models' classification outcomes. In summary, the 

comparative analysis of the performance metrics 

underscores the advantages of the hybrid approach, where 

combining Convolutional Neural Networks with SVM and 

RF models results in notably improved classification 

performance. Such hybrid models outperform their 

traditional counterparts on measures of accuracy and 

resilience for classification tasks, including Accuracy, 

Recall, Precision, and the F-measure. 

 

 

5. Conclusion 

The research presented here reveals the tremendous promise 

of hybrid VGG-CNN models for improving the precision 

with which chest X-ray pictures are used to diagnose lung 

illness. The hybrid technique has improved performance 

metrics noticeably by merging CNNs and VGG with 

Support Vector Machines and Random Forest classifiers. 

The hybrid SVM-RF model achieved an accuracy of 

97.89%, showcasing a 4.35% enhancement over the 

conventional CNN-SVM accuracy of 93.54%. Similarly, the 

hybrid RF model achieved an accuracy of 98.99%, 

surpassing the conventional CNN-RF accuracy of 94.89% 

by 4.32%. These advancements are further emphasized by 

the hybrid models' significantly improved recall, precision, 

and F-measure scores. In terms of future scope, expanding 

this approach to larger and more diverse datasets, 

integrating clinical information, and exploring emerging 

techniques could amplify its impact on precise lung disease 

diagnosis and contribute to the evolution of global 

healthcare practices. 
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