

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 765–772 | 765

Assessing Vulnerability Detection Tools for Authentication

Saru Chandrakar1, Siddharth2, Dr. Ani Thomas3

Submitted: 29/12/2023 Revised: 05/02/2024 Accepted: 13/02/2024

Abstract: In this research paper, we perform a comprehensive analysis of the current state of vulnerability detection tools for authenti-

cation. The increasing number of data breaches and cyber-attacks has made it essential for organizations to regularly assess the security

of their authentication systems. The purpose of this research is to evaluate the effectiveness and efficiency of several commonly used

vulnera- bility assessment tools for authentication/authorization and related areas. The study includes a comparison of the features,

capabilities, and scope of the selected tools. The results of the analysis provide valuable insights into the strengths and limitations of the

different tools and can help bring light to some flaws. The paper concludes by providing recommendations for future research in this

field.

Keywords: Vulnerability assessment, Cyber attacks, Computer security, VAPT.

1. Introduction

Organizations are under increasing pressure to protect the

security of their authentication systems due to the rise in

cyberthreats and data breaches. Authentication is a crucial

part of cybersecurity and is in charge of confirming users’

identities and giving access to resources that are secured.

Thus, it is crucial to routinely evaluate the authentication

systems’ weaknesses and take steps to reduce any dangers.

Tools for vulnerability detection are created to assist

organisations in locating and resolving potential issues

with their authentication systems. These tools employ a

number of methodologies, including network scans,

penetration testing, and code analysis, to find possible

vulnerabilities and offer remediation recommendations that

may be put into prac tise. Yet, it might be difficult to

determine the scope of detection given the growing

number of tools available. Many of the tools mentioned in

this paper have their own unique features, strengths and

weaknesses and the choice of tool should be based on an

organization’s specific needs. There are wide range of

tools, open-source tools for example Nessus or OpenVAS,

commercial tools for example Qualys or Acunetix. Some

may prefer tools that are cloud- based, while others may

prefer tools that can be installed on- premises. This

research paper aims to provide a comprehensive anal ysis

of the current state of vulnerability detection tools for

authentication (Also some view of the authentication tech-

niques that need focus). The study evaluates the features,

capabilities, and usability of several commonly used tools.

We will look at the tools on the basis of their

authentication vulnerability detection capabilities. The

paper provides valu- able insights into the strengths and

limitations of the different tools and helps organizations

choose the right tool for their needs. The findings of this

research will contribute to the state of the field of

cybersecurity and provide a foundation for motivation of

future research in this area.

2. Authentication Methods and Related

Vulnerabilities

There are many different authentication methods in use to-

day, but we will be looking at a few on the basis of

security vulnerability caused during development and

which one of those a tool can have testing methods on.

Note : There are many types of attacks possible in these

authentication methods, we have only recog- nised those

which are not caused by user error, phishing or spoofing

attacks but rather result of au thentication.

These are the most used auth methods:

A. Passwords:

This is perhaps the most common authenti- cation method,

where a user must enter a specific word or phrase in order

to access a system. However, pass- words can be easily

compromised if they are weak or if they are not properly

secured. Some of those attack methods which can be

detected in production are

• Brute force attacks: In this type of attack, attack- ers

try every possible combination of characters until the

correct password is found. This type of attack can be

successful if the password is weak orshort and some

systems are not designed for large scale brute force

attack.

1 Bhilai Institute of Technology, Durg, Chhattisgarh, India

saru.chandrakar@gmail.com
2 Bhilai Institute of Technology, Durg, Chhattisgarh, India

sid291210@gmail.com
3 Bhilai Institute of Technology, Durg, Chhattisgarh, India
ani.thomas@bitdurg.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 765–772 | 766

• HTTP monitoring attacks: Passwords are most

susceptible to HTTP monitoring attacks because there

is no default encryption on the content of the request.

Usually username and passwords are sent over plain

text in the request which would enable the attacks to

steal the credentials.

B. Two-factor authentication:

This method adds an addi- tional layer of security by

requiring a user to provide two forms of identification,

such as a password and a security token. This makes it

more difficult for attack- ers to gain access, but two-factor

authentication is not foolproof and can still be vulnerable

to certain types of attacks, the subtype of 2FA are.

• SMS-based 2FA: In this method, the user is sent a

one-time passcode (OTP) via text message to their

registered phone number. The user then enters the

OTP to complete the login process.

• App-based 2FA: In this method, the user installs an

authentication app on their mobile device, which

generates OTPs. The user enters the OTP to complete

the login process.

• Hardware token-based 2FA: In this method, the user

carries a small hardware device (such as a key fob)

that generates OTPs. The user enters the OTP to

complete the login process.

While theoretically two factor authentication is amazing

when implemented properly, but in reality that has many

problems [1] [2] in these studies various challenges with

multi factor factor and OAuth as well as its vari- ous other

forms have been described as per implementation basis.

C. Single sign-on (SSO):

SSO allows a user to use a sin- gle set of login credentials

to access multiple systems or applications. While SSO can

be convenient, it can also be a vulnerability if the login

credentials are com- promised, as an attacker can

potentially gain access to multiple systems. This is usually

done using OAuth in most scenarios, this suffers from the

same problems [3] as described earlier, theoretically its

very secure and it doesn’t cause problems most of the

times but VAPT tools need to analyse the code for various

implemen- tation bugs.

D. Bio-metric authentication:

This method uses physical or behavioral characteristics,

such as fingerprints, facial recognition, or voice

recognition, to verify a user’s iden- tity. While biometric

authentication can be very secure, it is not always reliable

and can be easily defeated if an attacker has access to a

copy of the biometric data.

3. Related Works and Case Study

a. Related Studies

Several studies have been conducted to evaluate the

effective- ness of vulnerability detection tools. For

example, Al-Aziz and Kim [4] conducted a comparative

study of several vul- nerability detection tools and found

that different tools have varying levels of effectiveness in

detecting vulnerabilities. They identified that tools such as

Nessus and OpenVAS were more effective in detecting

vulnerabilities compared to oth- ers. Similarly, Zhang et al.

[5] evaluated the effectiveness of several vulnerability

detection tools and found that while these tools are useful

in detecting known vulnerabilities, they may not be

effective in detecting unknown vulnerabilities.

In addition there have been several other studies evaluating

the effectiveness of vulnerability detection tools. For

exam- ple, Goyal and Singh [6] evaluated the effectiveness

of sev- eral commercial and open-source vulnerability

scanners and found that open-source scanners were more

effective in de- tecting vulnerabilities. They also found that

no single scan- ner was able to detect all vulnerabilities

and recommended the use of multiple scanners to increase

the chances of de- tecting vulnerabilities.

Similarly, Vaarandi and Vilo [7] conducted a study to

evaluate the effectiveness of vulnerability scanners in de-

tecting web application vulnerabilities. They found that the

most effective scanners were those that used a combination

of signature-based and behavior-based detection

techniques. They also recommended the use of manual

testing in addition to automated scanning to ensure

comprehensive vulnerability detection.

Another study by Hars et al. [8] evaluated the effective-

ness of vulnerability scanners in detecting vulnerabilities in

industrial control systems. They found that existing

vulnera- bility scanners were not effective in detecting

vulnerabilities specific to industrial control systems and

recommended the development of specialized scanners for

these systems.

Overall, although all these studies were not focused on au-

thentication as this paper is, these studies highlight the im-

portance of evaluating the effectiveness of vulnerability

de- tection tools and the need for a combination of

automated scanning and manual testing to ensure

comprehensive vul- nerability detection. They also

emphasize the need for spe- cialized scanners for specific

types of systems and applica- tions, such as industrial

control systems.

b. Case Study

There have been numerous instances where vulnerability

as- sessment and penetration testing (VAPT) tools have

been instrumental in identifying and mitigating

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 765–772 | 767

vulnerabilities in software systems. In this section, we will

discuss some ex- amples of incidents where VAPT tools

helped bring out bugs. In 2020, a leading e-commerce

company in India hired a VAPT service provider to

conduct a comprehensive security audit of its web

application and mobile app. The VAPT team discovered

several critical vulnerabilities, such as SQL in- jection,

cross-site scripting, insecure file upload, and broken

authentication. The team also performed a simulated attack

on the application and successfully compromised sensitive

data, such as customer details, payment information, and

or- der history. The VAPT report provided detailed

recommen- dations on how to fix the vulnerabilities and

prevent future breaches. [9]

In 2019, a multinational bank in Europe engaged a VAPT

service provider to assess the security of its online banking

system. The VAPT team performed a thorough vulnerabil-

ity assessment of the system’s network infrastructure, web

servers, databases, APIs, and web interfaces. The team also

conducted a penetration test to exploit the identified

vulner- abilities and gain access to privileged accounts,

confiden- tial documents, and financial transactions. The

VAPT report highlighted the security gaps and suggested

best practices on how to enhance the system’s security

controls. [10]

In 2018, a government agency in Australia contracted a

VAPT service provider to evaluate the security of its

cloud- based applications. The VAPT team performed a

compre- hensive analysis of the applications’ architecture,

configura- tion, code quality, encryption mechanisms, and

access poli- cies. The team also executed a penetration test

to bypass the applications’ security defenses and access

sensitive data stored in cloud storage services. The VAPT

report revealed several high-risk vulnerabilities that could

have resulted in data leakage or unauthorized modification

of data.

However, it’s important to note that VAPT tools are not a

substitute for a comprehensive security program. While

these tools can be effective in detecting certain types of

vul- nerabilities, they may not detect all vulnerabilities,

partic- ularly those related to social engineering and human

error. Therefore, it’s crucial for organizations to employ a

multi- layered security approach that includes both

technical and non-technical measures.

4. Comparison Between VAPT

There are a lot of tools developed for detecting bugs and

vul- nerabilities overtime because of its significance in a

software based product. These are some of the popular

tools currently being used for vulnerability detection in

context of authenti- cation.

• Nessus: Nessus is a comprehensive vulnerability scan-

ning tool that can detect a wide range of security is-

sues, including authentication vulnerabilities. It can

scan for weak passwords, unsecured authentication

pro- tocols, and other vulnerabilities that could

compromise authentication.

• OpenVAS: OpenVAS is a free and open source

vulner- ability scanner that can detect security issues

in authen- tication systems, as well as other areas of an

IT infras- tructure. It can be configured to scan for

specific types of authentication vulnerabilities, such as

password reuse or weak authentication protocols.

• Burp Suite: Burp Suite is a web application security

testing tool that includes a suite of tools for testing au-

thentication and authorization systems. It can be used

to test for common authentication vulnerabilities, such

as session hijacking and brute force attacks.

• Metasploit: Metasploit is a popular penetration testing

tool that includes a wide range of modules for testing

the security of various systems, including

authentication systems. It can be used to test for

vulnerabilities such as weak passwords, unsecured

protocols, and other issues that could compromise

authentication.

• OWASP ZAP: OWASP ZAP is a free and open source

web application security scanner that can detect

vulnerabilities in authentication systems, as well as

other areas of web applications. It can scan for

common authentication vulnerabilities, such as session

fixation and cookie manipulation.

• QualysGuard: QualysGuard is a cloud-based

vulnerability management tool that can be used to scan

for authentication vulnerabilities, as well as other

types of security issues. It can be used to scan

networks, servers, and web applications for

vulnerabilities.

• Acunetix: Acunetix is a web application security

scanner that can be used to test for authentication

vulnerabil ities, such as weak passwords and session

management issues. It can also scan for other types of

web applica- tion vulnerabilities, such as SQL

injection and cross-site scripting.

• Nexpose: Nexpose is a vulnerability management tool

that can be used to scan for authentication

vulnerabilities, as well as other types of security

issues. It can scan networks, servers, and web

applications for vulnerabili ties.

• Nikto: Nikto is a web server scanner that can be used

to test for authentication vulnerabilities, as well as

other types of web server vulnerabilities. It can scan

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 765–772 | 768

for is- sues such as weak authentication protocols and

directory traversal vulnerabilities.

a. Platform support

Platform support is a critical factor to consider when

selecting a vulnerability assessment tool. It is essential to

choose a tool that supports the platforms used in the

development environment. Table 1 provides a comparison

of the overall features of vulnerability assessment tools in

general. These tools are evaluated based on their support

for web, mobile, API, cloud, network, database, and

reporting. Burp Suite, Nessus, OpenVAS, Metasploit,

Nexpose, Qualys, ZAP, App- Scan, Acunetix, and

WebInspect are some of the most widely used vulnerability

assessment tools. Burp Suite, Nessus, and OpenVAS

provide support for web and network scanning, while

Metasploit and Nexpose provide support for network and

database scanning. Qualys provides support for web, API,

cloud, network, and database scanning. Acunetix pro-

vides support for web, mobile, API, and cloud scanning.

ZAP and AppScan provide support for web and API scan-

ning. WebInspect provides support for web and API scan-

ning. This table shows the best most popular tools avaible

and their support range.

Table 1: Comparison of Overall Features of Vulnerability Assessment Tools in General

Tool Web Mobile API Cloud Network Database Reporting

Burp Suite ✓ ✓ ✓ ✓

Nessus ✓ ✓ ✓ ✓ ✓

OpenVAS ✓ ✓ ✓ ✓ ✓

Metasploit ✓ ✓ ✓ ✓ ✓ ✓

Nexpose ✓ ✓ ✓ ✓ ✓

Qualys ✓ ✓ ✓ ✓ ✓ ✓

ZAP ✓ ✓ ✓

AppScan ✓ ✓ ✓ ✓

Acunetix ✓ ✓ ✓ ✓ ✓

WebInspect ✓ ✓ ✓

Nikto ✓ ✓

Nmap ✓

Acunetix ✓ ✓ ✓ ✓ ✓

b. Features and Pricing

The table 2 is a comparison of different vulnerability

assess- ment tools for their authentication features. It

includes infor- mation such as the vendor, license type,

supported protocols, and authentication methods for each

tool. The supported pro- tocols include HTTP, HTTPS,

SSH, FTP, and Telnet, while the authentication methods

include Password, SSH Key, Ker- beros, Basic Auth,

Digest Auth, and Form-Based. Nessus, OpenVAS, Nikto,

Nmap, Burp Suite, Acunetix, Qualys, and AppSpider are

included in this table. Nessus, OpenVAS, Nikto, Nmap,

and Qualys support a variety of authentica- tion methods,

including password-based, SSH key-based, and Kerberos.

Burp Suite and Nikto, on the other hand, sup- port only

basic and digest authentication. Acunetix and App- Spider

support form-based, basic, and digest authentication.

Table 2: Comparison of Features of Vulnerability Assessment Tools for Authentication

Tool Vendor License Supported Protocols Authentication Methods

Nessus Tenable Commercial HTTP, HTTPS, SSH, FTP,

Telnet

Password, SSH Key, Kerberos

OpenVAS Greenbone Open-Source HTTP, HTTPS, SSH, FTP,

Telnet

Password, SSH Key, Kerberos

Nikto CIRT Open-Source HTTP, HTTPS Basic Auth, Digest Auth

Nmap Nmap Project Open-Source HTTP, HTTPS, SSH, FTP,

Telnet

Password, SSH Key, Kerberos

Burp Suite PortSwigger Commercial HTTP, HTTPS Basic Auth, Digest Auth

Acunetix Acunetix Ltd. Commercial HTTP, HTTPS, FTP Form-Based*, Basic Auth*, Digest

Auth*

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 765–772 | 769

Qualys Qualys, Inc. Commercial HTTP, HTTPS, SSH Password, SSH Key, Kerberos

AppSpider Rapid7 Commercial HTTP, HTTPS, FTP Form-Based*, Basic Auth*, Digest

Auth*

The comparison table 3 provides a comprehensive

overview of the pricing and release dates of some of the

most widely used vulnerability assessment tools for

authentica- tion. These tools play a crucial role in detecting

bugs and vulnerabilities in software products, which is why

they have become a significant part of the development

process. Nes- sus, OpenVAS, Nikto, Nmap, Burp Suite,

Acunetix, Qualys, and AppSpider are some of the most

popular tools used for vulnerability detection, and they

offer different features and pricing plans to cater to the

varying needs of organizations. While some tools like

Nessus and Burp Suite come with a commercial license

and a starting price, others like Open- VAS and Nikto are

open-source and free to use. Qualys and AppSpider are

examples of tools that require users to contact the vendor

for pricing information. Understanding the pric- ing in

conjunction with 2 and 1 is important before selecting a

tool.

Table 3: Comparison of Pricing, and Release Dates of Vulnerability Assessment Tools for Authentication

Tool Vendor License Pricing (USD) Release Dates

Nessus Tenable Commercial Starts at 2, 190/year 1998

OpenVAS Greenbone Open-Source Free 2005

Nikto CIRT Open-Source Free 2001

Nmap Nmap Project Open-Source Free 1997

Burp Suite PortSwigger Commercial Starts at 399/year 2006

Acunetix Acunetix Ltd. Commercial Starts at 4, 990/year 2004

Qualys Qualys, Inc. Commercial Contact vendor for pricing 1999

AppSpider Rapid7 Commercial Contact vendor for pricing 1997

c. Problems with current tool-chain

As mobile and native applications become increasingly

pop ular, there is a growing need for vulnerability

assessment tools to support these platforms. However,

most of the currently available tools are designed primarily

for web applications and have limited support for mobile

and native appli cations. Tools like Nessus, OpenVAS,

Nikto, and Nmap are primarily designed for network and

web application scanning and have limited support for

mobile and native applications. Acunetix and Burp Suite

do provide some support for mobile applications, but it is

limited and not as robust as their web application support.

This gap in tool support for mobile and native applications

presents a significant challenge for organizations seeking

to ensure the security of their software products across all

platforms.

As mentioned, The current vulnerability assessment tools

have limited support for mobile and native applications.

However, with the increasing number of desktop

applications for Windows, Mac, and Linux, it is important

to note that these tools also have limited support for

desktop applications. In addition, static analysis tools can

help with the situation, but they are not ideal for VAPT

purposes since they are de- signed to analyze the source

code for potential vulnerabilities rather than testing the

application in a live environment.

Desktop applications are a crucial component of modern

software development, and the number of desktop

applications has increased rapidly in recent years.

However, traditional vulnerability assessment tools are

mostly focused on web applications and lack the necessary

features to thoroughly assess desktop applications. This

lack of support for desktop applications creates a

significant gap in the security of software products.

One solution to this problem is the use of static analysis

tools. These tools analyze the source code of an application

to identify potential vulnerabilities. However, static

analysis tools have limitations as they are not designed to

test applications in a live environment, and they may not

be able to detect certain types of vulnerabilities, such as

those that occur at runtime.

Moreover, the use of static analysis tools is only effective

in detecting vulnerabilities during the development phase

of an application. Once an application is deployed,

dynamic analysis tools become more effective in

identifying vulnerabilities. As a result, traditional

vulnerability assessment tools need to expand their

capabilities to cover not only web applications but also

desktop applications and mobile applica- tions.

Another challenge with current VAPT tools is that many of

them are geared towards specific types of vulnerabilities,

which means that organizations may need to use multiple

tools in order to identify all potential vulnerabilities. For

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 765–772 | 770

ex- ample, some tools may be designed to test for network

vulnerabilities, while others may be better suited for testing

web applications. This can lead to a lot of extra work for

security teams, who may need to run multiple tools in

order to get a complete picture of their organization’s

security posture.

Finally, another challenge with current VAPT tools is that

many of them rely on static analysis to identify potential

vul- nerabilities. While static analysis tools can be helpful,

they are not ideal for VAPT testing, as they are not able to

accurately simulate the behavior of real-world attackers.

This means that security teams may be missing out on

potential vulnerabilities that could be exploited by

attackers, simply because their static analysis tools didn’t

identify them.

d. Static analysis tools

In addition to general VAPT tools staitc analysis tools are

also important for finding bugs during the development

cycle. Static analysis tools are a valuable resource for

identify- ing implementation bugs and other vulnerabilities

in soft- ware code, including issues related to encryption

keys. These tools analyze the source code of an application

or system and identify potential vulnerabilities before the

code is executed. One common application of static

analysis tools is in identifying implementation bugs related

to authentication mech- anisms. For instance, a static

analysis tool can detect vul nerabilities in an application’s

password storage mechanism, such as plaintext password

storage or weak password hashing algorithms. By

identifying these vulnerabilities early on in the

development process, developers can take steps to rec- tify

them before they are exploited by malicious actors.

Various static analysis tools can effectively detect

authentication

vulnerabilities and encryption key issues. These include:

• Fortify: Fortify is a static code analysis tool that is de-

signed to identify security vulnerabilities in software

code. It can be used to analyze a wide range of pro-

gramming languages, including Java, .NET, C++, and

Python. Fortify provides a comprehensive set of

vulner- ability detection rules that can identify issues

such as buffer overflows, SQL injection, and cross-site

script- ing (XSS).

• Coverity: Coverity is a code analysis tool that is

focused on identifying critical software defects. It can

be used to analyze C, C++, Java, and C# code, and

provides a set of advanced analysis techniques such as

control flow analysis and data flow analysis. Coverity

is known for its ability to identify complex defects

such as memory leaks and concurrency issues.

• SonarQube: SonarQube is an open source tool that

pro- vides continuous code inspection for identifying

code smells, bugs, and security vulnerabilities. It

supports a wide range of programming languages,

including Java, C#, and Python, and provides a set of

quality metrics and visualizations for tracking code

quality over time.

• PVS-Studio: PVS-Studio is a static analysis tool that is

designed to detect errors and potential vulnerabilities

in C and C++ code. It provides a set of advanced

analysis techniques such as data flow analysis and

symbolic exe- cution, and can detect issues such as

null pointer deref- erences, division by zero, and

buffer overflows.

• Klocwork: Klocwork is a code analysis tool that is fo-

cused on detecting software defects such as race con-

ditions, memory leaks, and buffer overflows. It sup-

ports C, C++, Java, and C# code, and provides a set of

advanced analysis techniques such as interprocedural

analysis and path-sensitive analysis.

• Checkmarx: Checkmarx is a static analysis tool that is

designed to identify security vulnerabilities in

software code. It supports a wide range of

programming lan- guages, including Java, .NET, and

Python, and provides a comprehensive set of

vulnerability detection rules for identifying issues such

as SQL injection, XSS, and au- thentication bypass.

• ESLint: ESLint is a static analysis tool for JavaScript

development that is designed to identify code quality

is- sues and enforce coding standards. It can detect

poten- tial security vulnerabilities such as XSS and

injection attacks, and provides a set of quality metrics

and visu- alizations for tracking code quality over

time.

JSHint: JSHint is a static analysis tool for JavaScript de-

velopment that is focused on identifying potential errors

and code quality issues. It provides a set of customiz- able

rules for enforcing coding standards and detecting potential

security vulnerabilities.

• Flow: Flow is a static type checker for JavaScript de-

velopment that is designed to detect potential type-

related errors in code. It can detect issues such as null

pointer dereferences and type mismatches, and

provides a set of annotations for enforcing typing

constraints in JavaScript code.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 765–772 | 771

Table 4: Comparison of Features for Popular Static Analysis Tools.

Tool Programming Languages
Open

Source

Integration with

IDE
GUI Reporting

Community

Support

Fortify C/C++, Java, .NET ✓ ✓ ✓

Coverity C/C++, Java, Python, Ruby, C# ✓ ✓ ✓ ✓

SonarQube
27 languages, including C/C++, Java,

Python, JavaScript
✓ ✓ ✓ ✓ ✓

PVS-Studio C/C++, C# ✓ ✓ ✓ ✓

Klocwork C/C++, Java, C#, JavaScript, Python ✓ ✓ ✓ ✓

Checkmarx C/C++, Java, .NET, JavaScript ✓ ✓ ✓ ✓

ESLint JavaScript ✓ ✓ ✓ ✓ ✓

JSHint JavaScript ✓ ✓ ✓ ✓

Flow JavaScript ✓ ✓ ✓ ✓ ✓

Based on the comparison table in Table 4, we can see that

there are several popular static analysis tools available for

detecting implementation bugs and other vulnerabilities in

software code, including Fortify, Coverity, SonarQube,

PVS- Studio, Klocwork, Checkmarx, ESLint, JSHint, and

Flow. Each tool has its own set of strengths and

weaknesses, with some tools offering better support for

certain programming languages and others offering more

comprehensive vulnera- bility detection capabilities. For

example, Fortify and Cover- ity are known for their

advanced vulnerability detection ca- pabilities and support

for a wide range of programming lan- guages, while

ESLint, JSHint, and Flow are specialized tools for

JavaScript development. When selecting a static analysis

tool for VAPT, it’s important to consider the specific needs

and requirements of your organization, as well as the pro-

gramming languages and technologies used in your

software development projects.

Static analysis tools are not foolproof, however. These

tools are best used in conjunction with other vulnerability

detection tools and techniques to provide a comprehensive

approach to vulnerability detection and mitigation.

Addition- ally, static analysis tools may generate false

positives or miss certain vulnerabilities altogether, making

it essential to use them with other methods of vulnerability

detection.

e. Zero day bugs : Drawbacks of static analysis tools

Zero-day vulnerabilities refer to previously unknown secu-

rity vulnerabilities that attackers can exploit. They are

called "zero-day" because there is zero-day between the

discovery of the vulnerability and the first attack exploiting

it. There- fore, zero-day vulnerabilities pose a significant

threat to sys- tems, and detecting them before attackers is

critical. The de- tection of zero-day vulnerabilities

typically follows a work- flow that involves identifying

and analyzing vulnerabilities, reproducing the attack, and

verifying the fix.

Static analysis tools can help identify code-level vulnera-

bilities during the development phase, reducing the

chances of zero-day vulnerabilities. However, since zero-

day vulner- abilities are unknown, static analysis tools

might not be effective in detecting them. Therefore, VAPT

teams typically use a combination of tools, techniques, and

knowledge to identify zero-day vulnerabilities.

Fig. 1: Workflow diagram of a vulnerability detection and

remedy.

In the first step of the zero-day vulnerability detection

workflow, the VAPT team scans the system for any

potential vulnerabilities. This is where vulnerability

assessment tools such as Nessus, OpenVAS, and Qualys

come in. They help to identify known vulnerabilities in the

system that could be exploited by attackers.

In the second step, the VAPT team analyzes the vulnera-

bilities that have been identified. This step involves

attempt- ing to exploit the vulnerabilities to determine their

impact on the system. This is where penetration testing

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 765–772 | 772

tools such as Metasploit and Burp Suite are used. They

enable the VAPT team to simulate attacks and determine

how vulnerabilities can be exploited.

In the third step, the VAPT team verifies the fix to en- sure

that the vulnerability has been resolved. This step in-

volves retesting the system to ensure that the vulnerability

is no longer present. Once the fix has been verified, the

VAPT team provides recommendations to improve the

security pos- ture of the system.

In conclusion, detecting zero-day vulnerabilities is a chal-

lenging task that requires a combination of tools and exper-

tise. While static analysis tools can help to identify code-

level vulnerabilities, VAPT teams typically use a combina-

tion of vulnerability assessment and penetration testing

tools to identify and analyze zero-day vulnerabilities. The

key to detecting zero-day vulnerabilities is to stay up-to-

date with the latest security trends, techniques, and tools.

5. Future Works and Conclusions

In conclusion, vulnerability assessment tools in

conjunction with static analysis tools are essential for

identifying and ad- dressing security vulnerabilities in

authentication systems. Through our evaluation of several

popular tools, we have found that the current generation of

tools provides reliable and effective detection of

vulnerabilities in web-based authentication systems.

However, it is important to note that most of these tools

have limited support for native desk- top applications and

mobile devices, which are becoming increasingly prevalent

in modern computing environments. Thus, while current

tools are highly useful, there remains a need for continued

research and development to improve their capabilities,

particularly in the area of native applica- tion

authentication assessment. Nevertheless, the tools we

evaluated in this research paper are highly recommended

for organizations seeking to improve the security of their

web- based authentication systems. Perhaps future works

can be based on these findings.

References

[1] M. Tolbert, “Vulnerabilities of multi-factor

authentication in modern computer networks,” Ph.D.

dissertation, Worcester Polytechnic Insti- tute, 2021.

[2] Y. He, W. Wang, Y. Teng, Q. Wang, M. Wang, and

J. Lin, “2022 ieee wireless communications and

networking conference (wcnc),” 2022, pp. 992–997.

[3] PortSwigger. (2022) Oauth 2.0 authentication

vulnerabilities. portswigger.net https : / / portswigger

. net / web-security / oauth (10/07/2022).

[4] Al-Aziz and H. Kim, “Comparative study of

vulnerability detec- tion tools,” International Journal

of Advanced Computer Science and Applications,

vol. 6, no. 7, pp. 214–220, 2015.

[5] Y. Zhang, X. Chen, and D. Chen, “Evaluating

vulnerability detection tools,” Journal of Cyber

Security Technology, vol. 1, no. 3, pp. 164– 178,

2017.

[6] Goyal and Y. Singh, “A comparative study of

commercial and open source vulnerability scanners,”

International Journal of Computer Sci- ence and

Mobile Computing, vol. 8, no. 10, pp. 78–85, 2019.

[7] R. Vaarandi and M. Vilo, “Evaluating web

application vulnerability scanners,” Journal of

Information Security and Applications, vol. 27, pp.

63–73, 2016.

[8] Hars, Y. Liu, and S. Jajodia, “Evaluating the

effectiveness of vulner- ability scanners for industrial

control systems,” Computers & Security, vol. 53, pp.

73–93, 2015.

[9] S. T. P. Ltd. How we helped india’s leading e-

commerce company secure its web application and

mobile app with vapt. [Online]. Available:

https://securelayer7.net/blog/how-we-helped-indias-

leading-e-commerce-company-secure-its-web-

application-and-mobile-app-with-vapt/

[10] C. C. Ltd. How we performed vapt for a multinational

bank in europe and improved its online banking

security. [Online]. Available:

https://cybersecconsulting.com/case-studies/vapt-for-

bank.html

https://portswigger.net/web-security/oauth
https://portswigger.net/web-security/oauth
https://securelayer7.net/blog/how-we-helped-indias-leading-e-commerce-company-secure-its-web-application-and-mobile-app-with-vapt/
https://securelayer7.net/blog/how-we-helped-indias-leading-e-commerce-company-secure-its-web-application-and-mobile-app-with-vapt/
https://securelayer7.net/blog/how-we-helped-indias-leading-e-commerce-company-secure-its-web-application-and-mobile-app-with-vapt/
https://securelayer7.net/blog/how-we-helped-indias-leading-e-commerce-company-secure-its-web-application-and-mobile-app-with-vapt/
https://cybersecconsulting.com/case-studies/vapt-for-bank.html
https://cybersecconsulting.com/case-studies/vapt-for-bank.html

