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Abstract: Autonomous system localization is pivotal for determining their position within their environment. While the Global 

Positioning System (GPS) is a widely used method, its limitations, such as imprecise pose estimation, necessitate alternative approaches. 

Visual localization is one such approach that localize the system with images captured by cameras, offers a promising solution. In this 

research, we employ Generative Networks and Deep Learning techniques to calculate Autonomous system positions relative to the 

world. Landmarks are detected using generative networks, and the autonomous system is localized using binarized spiking neural 

networks based on the identified landmarks. The proposed model achieves a mean Intersection over Union (mIoU) score of 0.85, 

showcasing a 6.25% improvement over existing models. The presented framework enhances system localization accuracy, minimizing 

pose errors in both outdoor environments and GPS-denied locations. 
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1. Introduction 

THE CZECH WRITER KAREL CAPEK COINED THE TERM “ROBOT” IN 

1920. An autonomous system is a machine capable of independent 

movement and performing complex tasks without human 

assistance [1]. These robots can be divided into different 

categories, namely pre-programmed robots, autonomous robots, 

remote-controlled robots and assistance robots. While some robots 

can operate independently, others require human interaction to 

carry out their tasks. Autonomous mobile robots (AMRs) find 

applications in various industries such as farming, healthcare, 

logistics, and smart cities [2]. Robotic systems rely on sensing, 

planning, and action to navigate their environment effectively. 

Autonomous mobile robots employ sophisticated algorithms to 

make efficient decisions and evaluate the situation. Through 

sensors, robots can interact with the external world. These sensors 

receive electric signals processed by the robot's controller unit, 

enabling interaction with the physical environment. Proprioceptive 

sensors [3] measure the robot's internal parameters, while 

exteroceptive sensors measure the external world. Commonly used 

exteroceptive sensors in autonomous robots include light sensors 

(lidar) for light detection, proximity sensors for obstacle detection, 

infrared sensors for object motion detection, and touch sensors for 

physical touch detection. Additionally, robots incorporate sensors 

related explicitly to mobility, such as an Inertial Measurement 

Unit (IMU) for orientation and velocity measurement, a Global 

Positioning System (GPS) for latitude and longitude information, 

and vision sensors for image capture and orientation identification. 

The GPS measurement error, which can exceed ten meters due to 

signal reflections, clock inaccuracies, and atmospheric factors, 

poses an impracticality for vehicle navigation, particularly in 

scenarios such as tunnels and densely built urban areas. 

Localization of autonomous systems helps to determine the 

system's current location in its environment [4]. Determining the  

robot's location in a static environment is relatively easy since it 

is the only object in motion [5]. However, in a dynamic 

environment, localization becomes considerably more 

challenging as the presence of other moving objects confuses the 

robot regarding its position. 

To determine its location, the robot relies on its exteroceptive 

sensors, including the laser sensor, vision system, IMU, and 

Lidars, to collect data pertaining to surrounding environment. By 

fusing this sensor data with the robot's odometry, it is able to 

determine its own position. Despite the presence of a GPS, the 

robot cannot directly measure its precise location. [6] Rather, it 

must rely on the data from its sensors to make the most accurate 

estimation of its position. 

 

 

Fig. 1. Road Scenario for Localization 

The above Figure 1 shows a road scenario that demonstrates how 

an autonomous vehicle can be located. The autonomous system 
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uses localization techniques to determine its exact location on the 

road's right and left side borders and any on-road objects. Sensors 

such as LIDAR, Radar, and cameras are the primary means of 

external observation for autonomous vehicles [7]. 

The two primary approaches in Localization are Satellite 

Localization and visual Localization [8]. Precise Localization is 

possible with the Global Navigation Satellite System (GNSS). 

The drawback of satellite-based Localization includes the 

unavailability of signals in tunnels and narrow streets. The 

GNSS-based Localization [9] receives the object's location but 

not the full pose. Visual Localization uses the recorded map of 

the area with feature extraction. 

The primary support for autonomous systems relies on the 

following things: perception, Localization, planning, and control.  

Perception of an autonomous system relies on its ability to collect 

data and gain relevant insights about the environment. The 

Autonomous system makes use of Localization to assist in 

locating itself. Planning is the process of making deliberate 

decisions. Typically, this involves moving the vehicle from its 

starting location to its destination while avoiding obstacles and 

optimizing path-planning algorithms. Control is the higher-level 

process that includes the execution of steps involved in planning 

[10]. 

2. Literature Survey 

Localization techniques were developed to address the "Where 

am I?" These methods empower robots, particularly in GPS-

denied environments, to navigate around obstacles safely, 

avoiding collisions [11]. 

Visual Odometry (VO) is the process of localizing autonomous 

vehicles with the monocular or stereo images collected from the 

camera installed on the autonomous system. Visual odometry 

localizes the Autonomous system by detecting the key points and 

matching between frames, whereas the direct method estimates 

the position by minimizing the photometric error in pixels [12]. 

Feature-based methods [13] with semi-dense alignment are 

computationally less expensive and give accurate pose 

estimation. Another feature-based technique proposed by [14] is 

compatible with stereo and RGB-D sensors. Semantic 

segmentation–aided Visual odometry is also popular in VO 

Pipeline [15]. 

Recently, Deep learning-based approaches have been popular in 

ego-motion estimation [16] by employing CNNs with RNNs. The 

proposed method outperforms state-of-the-art methods with 

reduced translational and rotational errors. Gated recurrent unit-

based implementation minimizes the error in the cornering 

section by taking classical visual odometry as input [17]. 

In 2021, Li, G. et al. [18] introduces a real-time visual 

Simultaneous Localization and Mapping (SLAM) system 

leveraging deep learning, incorporating a multi-task feature 

extraction network and self-supervised feature points. SLAM 

serves as the foundational framework for enabling intelligent 

mobile robots to navigate unfamiliar surroundings. The proposed 

system utilizes a simplified Convolutional Neural Network 

(CNN) to detect feature points and descriptors, replacing the 

conventional feature extractor, thereby improving the accuracy 

and stability of the visual SLAM system. 

In addition to camera images, Visual Inertial odometry (VIO) 

[19] uses IMU measurement to estimate the position of the 

Autonomous System. The authors in [20] introduced SelfVIO 

architecture that employs CNNs and LSTM to handle the data. 

This visual SLAM method is tested on benchmark datasets, 

including KITTI, EuRoC and Cityscapes. The Visual Inertial 

odometry is implemented using the classical Extended Kalman 

filter [21]. 

In reference [22], researchers introduced a deep sensor fusion 

approach that combines data from a 2D laser scanner and an IMU 

(Inertial Measurement Unit) to facilitate mobile robot 

localization. Their method involves the development of an 

architecture based on recurrent convolutional neural networks 

(RCNN) to integrate information from laser scans and inertial 

measurements, enabling accurate pose estimation between 

consecutive scans for robot localization. Chikara et al. [23] 

introduced a novel approach known as Deep Convolutional 

Neural Network optimized with Genetic Algorithms (DCNN-

GA) for the localization of autonomous vehicles. This method 

was designed to enable the autonomous navigation of Unmanned 

Aerial Vehicles (UAVs) within indoor building corridors, 

leveraging deep neural networks to process images. Determining 

the optimal combination of hyperparameters for improved 

prediction accuracy is a complex challenge when working with 

deep neural networks. In this study, the authors handled this 

challenge by employing genetic algorithms to fine-tune the 

hyperparameters of the convolutional neural network. Authors in 

[24] have presented a Domain adaptation for semantic and 

geometric-aware image-based localization (Dasgil) for mobile 

robots. Long-term visual localization in a changing environment 

is a complicated problem in autonomous vehicles and mobile 

robotics due to seasons, light variations, etc.  This paper proposes 

a multitasking architecture to combine geometric and semantic 

information into a multi-scale latent representation for visual 

location recognition. In order to benefit from high-quality ground 

truth without any human effort, an efficient multi-scale feature 

discriminator for adversarial training is proposed to achieve 

domain adaptation from KITTI virtual synthetic dataset to real 

world dataset. 

Chen X et al. [25] leveraged Lidar scan data obtained from 

Autonomous vehicles to tackle the challenge of addressing the 

loop closing problem in Localization. They used a modified 

Siamese network to estimate the correspondence between Lidar 

data points and utilized the overlap method for detecting loop 

closures. Additionally, they integrated Monte Carlo localization 

into their existing approach, yielding enhanced results in 

accurately localizing the system within urban environments. 

Wen, S. et al. [26] Combined the path planning algorithm with 

Simultaneous Localization and mapping. FastSLAM is used for 

localizing the robot and Dueling DQN algorithm is used for path 

planning for a robot.    

3. Landmark Detection Utilizing Generative 

Network 

Localization is the process of determining a vehicle's position and 

orientation within its environment. Landmark detection plays a 

significant role in this process by identifying and tracking key 

reference points or features in the vehicle's surroundings. 

A. Generator Phase 

The generator receives input as a bounding box and, optionally, 

the image area enclosed by that box. Its role is to generate a set of 

landmark points within the specified bounding box. These points 

correspond to the detected landmarks. The generator is 
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conditioned on the input image and bounding box information to 

ensure the generated landmarks are consistent with the context. 

As shown in Fig. 2, the generator stage contains two 

deconvolution layers, an encoding network and a decoding 

network. In this process, cameras capture images from the 

outdoor environment to detect the landmark, initially mapped 

before being provided to the encoding phase. Here, the mapping 

is done with the help of the deconvolution layer of the 

DDcGenNet, and the output of this mapping is known as the 

bounding boxes. Next, the encoding phase receives the mapped 

features. The encoder transforms the input data (e.g., an image 

containing landmarks) into a compact, informative representation 

known as a feature vector or latent space representation. 

 

Fig. 2. Architecture of Generator 

Further, the decoder phase receives these images and comprises 

five convolution layers. The primary role of the decoder is to 

transform the encoded feature representation back into a format 

that closely resembles the original input. The network gradually 

reconstructs the input data while maintaining relevant features by 

applying a series of convolutional layers and activations in the 

decoder. 

B. Discriminator Phase 

The Discriminator phase contains two discriminators. 

Discriminator 1 (D1) assesses the quality of the generator's output 

regarding landmark detection. Discriminator 2 (D2) distinguishes 

between real images with actual landmark annotations and fake 

images generated by the generator. Fig. 3 illustrates the structure 

of the discriminator. 

 

Fig. 3. Architecture of Discriminator 

C. Training Process 

The steps in training of Generator and Discriminator are explained 

in Algorithm 1. The training process begins with a loop that 

iterates for a specified number of epochs. We proposed a Dual 

discriminator (Dr and Df). Real images (r1, r2, ... rn) and fake 

images (f1, f2, ... fn) are sampled. Real images come from the 

dataset, while fake images are generated by the generator using 

random noise (z) and conditional information (c). The parameters 

of the discriminator Df and Dr are updated using the Adam 

optimizer to minimize the loss. 

Training continues as long as the adversarial loss is above a 

certain threshold (Lmax) and a maximum number of training steps 
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(Tmax) has not been reached. This aims to ensure that the 

discriminators become better at their task. After training the 

discriminators, the code proceeds to train the generator. 

This pseudocode represents a training strategy for a Generative 

Network, where the generator aims to produce images that can 

successfully deceive the discriminator(s). 

Algorithm 1 Training Process for Landmark Detection 

 

 

 

 

4. Localization of Autonomous Systems  

A. System Overview 

Detecting robot localization in outdoor environment is a 

challenging task due to its hard environment. Here the 

localization problem of the robot is represented as the robot pose  

𝑅𝑃(𝐹) = [𝑎 𝑏 𝜙]𝑇, where a and b are in meters and ϕ is the 

orientation in degree. Once the landmarks are detected in the 

environment using generative network, the next step is to 

estimate the current pose (position and orientation) of the 

autonomous system. Binarized Spiking Neural Networks can be 

employed for this task. 

Spiking neural networks (SNNs) are a type of artificial neural 

network inspired by the behaviour of biological neurons, and 

binarized SNNs are a variation that uses binary activations. The 

binarized SNN is designed to process the encoded landmark data. 

In SNNs, neurons fire in discrete, spiking patterns over time. 

Binarized SNNs use binary activation values (usually 0 or 1) 

instead of continuous activations. The network's architecture, 

including the number of neurons, layers, and connections, should 

be carefully designed for the localization task. 

 

 

Fig. 4. Structure of SNN 

BSNNs convert the Input Images into Spike Train.Single spike 

Temporal coding Method is used for conversion. 

The combination of Gans for landmark detection and BSNNs for 

localization provides a powerful solution for autonomous 

vehicles. Generative Network help in identifying landmarks and 

features in the environment, while BSNNs efficiently process this 

information to estimate the vehicle's position and orientation, 

enabling it to navigate autonomously.  

5. Results and Discussions 

We implemented the novel landmark detection method with 

stereo images using the TensorFlow deep learning framework in 

Python, and we verified it through the KITTI dataset. 

A. KITTI Dataset 

Researchers compiled the dataset by conducting driving 

experiments in various urban traffic scenarios located in 

Karlsruhe, Germany. The KITTI dataset consists of 22 image 

sequences, with the initial 11 sequences (sequences 00–10) 

offering ground truth data derived from high-precision GPS and 

Input:  Random noise (z) and conditional information 

(c)  Output:  Generated landmark data (G (z, c))  

Parameter Description:  Number of steps to train G, 

Dr, Df ,  TG ,TDr,TDf  

TmaxMaximum steps to train networks                 

Lmax & Lmin Adversial  losses for Generator and 

Discriminator, LGmax-Total loss of Generator  

1 for epoch in range(num_epochs):  

  #Training the Discriminators D r,  Df  

 

 

2 Sample for real Images (r 1  ,r2  , . .rn) and fake 

images (f 1 , f2 , . . . fn)  

3 Obtain the Generated data G(r 1 ,r2  

, . .rn) ,…G(f1 , f2 , . . . fn)  

4  Update discriminator Parameter by 

AdamOptimizer to reduce D f  Loss(I)  

     
5  Update discriminator Parameter by 

AdamOptimizer to reduce Dr  Loss (II)  

 7 While LDr >  Lma x and TDr<Tm ax,  repeat (I)  

8           TDr = TD r+1 

9  End While 

10 While LDf  >Lmax and TDf<Tm a x,  repeat (II)  

11           TDf  = TDf+1 

12 End While 

13  #Training the Generator  

14  Sample for real Images (r 1 , r2  . . .rn), (z,c)  

 15  Update generator Parameter by AdamOptimizer 

to reduce Generator  Loss (III)  

 16  While (LDf  <  Lmin  or LD r <  Lmin) and Tg  <Tmax    

 17 Update generator Parameter by AdamOptimizer 

to minimize adversial loss  

 
18         TG  = TG+1; 

19     End While 

20   While LG  > LGma x and TG <Imax repeat III  

21     End While 

22 End For 
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laser sensors. This dataset presents several noteworthy 

challenges, including the presence of dynamic moving objects 

such as vehicles, cyclists, and pedestrians. 

B. Evaluation Metrics 

a) Mean Intersection over union (MIoU) 

Intersection over Union (IoU) evaluates the overlap between truth 

and predicted regions. 

        IoU = (Intersection Area) / (Union Area) 

Mean Intersection over union is calculated by the below formula 

where N is the Number of classes considered. Fig.5 shows the 

comparison of mean IoU value for Landmark detection. 

𝑚𝐼𝑜𝑈 = (
1

𝑁
) ∗  ∑ 𝐼𝑜𝑈       (Eq 1) 

Eq 1 depicts the mean intersection over union process for 

landmark detection. 

 

  

 

Fig. 5. MIoU Score Comparison 

C) Precision and Recall 

The following equations can be utilized to calculate precision and 

recall: 

Precision=TP/(TP+FP) Recall=TP/(TP+FN) 

TP--Model correctly predicts the positive class i.e., amount of 

accurately matched bounding boxes when comparing detection 

boxes to reference boxes within the dataset. 

FP--Model incorrectly predicts the positive class. i.e., bounding 

boxes that were either missed or incorrectly positioned within the 

detection results. 

FN--Model incorrectly predicts the negative class. i.e., bounding 

boxes that were present in the reference dataset but did not appear 

in the detection results. 

Fig. 6. Shows the improved performance of our proposed method 

having better precision, recall and F1 score values. 

 

 

Fig. 6. Precision, Recall and F1 score comparison with Existing approaches 
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D) Translational Error 

We conducted a performance evaluation of our novel localization 

method using the widely recognized KITTI odometry dataset. We 

considered sub-sequences of lengths ranging from 100 to 800 

meters for estimation. Fig 7 compares the translational errors for 

path lengths up to 800 meters, benchmarking our method against 

state-of-the-art techniques. The translational error is calculated 

using the below formula in Eq 2. 

𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑛𝑠= 

= √(𝑥𝑒𝑠𝑡 − 𝑥𝑔𝑡) 2 + (𝑦𝑒𝑠𝑡 − 𝑦𝑔𝑡) 2 + (𝑧𝑒𝑠𝑡 − 𝑧𝑔𝑡) 2      (𝐸𝑞 2) 

 

 

Fig 7. Translational error vs Sequence length 

6. Conclusion and Future Work 

The proposed work has significantly contributed to landmark 

detection and localization of Autonomous systems. The 

utilization of the Generative model has substantially improved 

the precision of landmark detection, as evidenced by achieving an 

impressive mIoU score of 0.85. This represents a substantial 

6.25% enhancement compared to existing models, underscoring 

the effectiveness of our proposed approach. 

Furthermore, optimizing Binarized Spiking Neural Networks has 

significantly reduced false localization within autonomous 

systems, enhancing their reliability and accuracy. Additionally, 

integrating the Fusion-Enabled OELM Framework has facilitated 

the blending of images and IMU data, leading to a notable 

reduction in translational and rotational errors in localization. 

In the future, real-world scenarios will be considered to enhance 

the system's ability to localize itself accurately, both in outdoor 

environments and in challenging GPS-denied locations. The data 

collected from other exteroceptive sensors will also be considered 

for evaluation. 
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