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Abstract: Accurate prediction of the physical parameters of the ocean, like wave height, wave period, etc., is of paramount importance 

when forewarning the coastal community of imminent threats. The forecast of wave heights is presently being generated using state-of-

the-art numerical wave models like Mike 21SW, Wave Watch III, Swan, etc. The study leverages a pure deep learning architecture (N-

BEATS) to generate more accurate wave height predictions for the multi-model ensemble. For the ensemble process, the observation data 

collected by the coastal open ocean buoys and the forecast generated by various models for one year have been considered. Performance 

investigation using Brier Skill Score (BSS) and Taylor diagrams has indicated that the N-BEATS Ensemble forecast has outperformed not 

only the numerical weather predictions (NWP) but also other neural engines such as temporal convolution networks (TCN), long short-

term memory networks (LSTM), and multi-layer perceptron models. The performance of the N-Beats Ensemble Forecast approach during 

cyclonic events in the Bay of Bengal and the Arabian Sea in 2021 indicated an improved correlation with minimal RMSE 
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1. Introduction 

Ocean General Circulation Models (OGCM) are used to 

make accurate and timely predictions about the physical 

properties of the ocean, such as wave height, wave period, 

etc. Running on a high-performance computer, the models 

require restart files, boundary conditions, and, most 

importantly, ground level winds. Any uncertainty in the 

forcing fields will be propagated to the wave models, 

resulting in deviations from the actual observations. Over 

time, these uncertainties accumulate, and the meticulous 

consideration of potential wave-causing parameters proves 

arduous without ensuring optimal outcomes. Several 

attempts have been made to reduce the uncertainty in 

generating wave forecasts. Various endeavours have been 

undertaken to enhance the precision of wave forecasts, 

involving enhancements in forcing fields and assimilating 

observations ([1, 2]). Although improving the accuracy of 

the modes is a constant endeavour, several attempts are 

being made in this regard. Mike’s forecasts with the 

observations of satellite data and the observatories resulted 

in a good agreement [3]. The forecast generated by the fine-

tuned third-generation Wave Watch III developed by 

NOAA/NCEP suggests that the error rate of wave forecasts 

during the monsoon season is significantly less; a study was 

proposed to improve the accuracy during the non-monsoon 

season ([4]). Global studies have been conducted to analyse 

wave propagation with the help of the Simulation of Waves 

Near Shore model (SWAN), Mike 21 Spectral Wave Model, 

and Wave Watch III ([5]) and have stated that the mesh 

resolutions (near the coast) and wind (offshore) are of 

paramount importance for generating accurate forecasts. 

Identifying gaps, this study emphasizes improvements 

concerning wave models ([6, 7]) and observational 

techniques ([8–10]). Solutions, considering the statistical 

approaches of Bayesian model averaging, multiple linear 

regression, seem promising in the initial phases, as 

suggested by ( [11–13]). Subsequently, quick attention is 

drawn towards deep learning architectures that are capable 

of better learning complex features than traditional machine 

learning or statistical models. studies carried out by [14–17] 

Predicting the weather parameters like winds and waves is 

prone to errors as the seasonality, global weather conditions, 

climatology of the region of interest, extreme weather 

events, etc. play a major role. Training pure deep learning 

architectures can sometimes be cumbersome and 

exceedingly challenging. Considering the fact that there is 

no one perfect forecasting system, the fusion (referred to as 

”ensemble”) of predictions from diverse models is not a 

novel approach. The simplest of ensembles are Ensemble 

Voting Regression ( [18, 19], Model Averaging ([20]), and 

Weighted Model Averages ([21, 22]). Cawood et. al. (2022) 
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[23] have summarized and explored many ensemble models 

and meta-learning strategies, during which he has 

recommended research on stacked ensembles, which is 

primarily our approach. 

Due to the dynamic characteristics of ocean waves, machine 

learning algorithms struggle to achieve precise forecasts for 

extended periods beyond 10 days. Most state-of-the-art 

ensemble methods provide forecasts for a shorter period, 

and the outcomes have yielded notable success. As 

demonstrated by [24, 25] multi-model ensembling has 

potential in a variety of scenarios, including wind 

prediction. [26–28] and others have conducted a survey on 

ensemble learning, delving into the approaches of blending 

and super learner ensembles and offering specific insights. 

Abdelmigid et al. [29] accomplished an impressive 

correlation of 0.998 for ensemble forecasting with a lead 

time of 1 hour. Notably, Gao et al.’s experimentation with 

N-Beats, LSTM, and Extreme Learning Machines (ELM) 

revealed that ensemble forecasting for one, two, and four 

hours ahead led to minimal RMSE values [30]. 

Additionally, a reduction in the correlation coefficient was 

observed as the forecasting horizon increased, as evidenced 

in [31]. Meanwhile, Karan et al. [32] achieved correlations 

of 0.96 and 0.99 in wave height forecasting, particularly in 

scenarios involving sudden changes, by utilizing a range of 

LSTM architectures. In our current study, we achieved a 

correlation of at least 0.9 with minimal RMSE at most buoy 

locations, surpassing the mentioned performance. A 

comprehensive discussion of the proposed system’s 

performance is elaborated upon in the results section. The 

primary focus of this study involves extracting valuable 

insights by correlating the outcomes of physics-based 

numerical weather predictions with observational data. 

Although ensembling is the study’s focus, the concept is to 

combine wave model forecasts with observations. This 

method yields accurate predictions with adjustable forecast 

lengths. Also, our study aims at 

1. Establishing a two level (base learning and meta learning) 

learning framework for enhancing the accuracy of wave 

height predictions, where the base learners are the wave 

models, and the meta learner is a deep-learning ensemble 

technique 

2. Conducting a large-scale inspection of the proposed 

system at various geographical locations where 

observations are available 

3. Enhancement of operational forecast accuracy during 

exceptional events such as cyclones 

Looking at the broader context of issuing alerts to the coastal 

community, Points 2 and 3 are pivotal in instilling 

confidence among officials before disseminating alerts, 

which can save lives in case of imminent threats. 

2. Dataset Description 

The dataset utilized for ensemble prediction is amalgamated 

from the physics-based ocean models and the observation 

data at various locations, which are detailed below.  

2.1. Observation Data 

The primary sources of observational data are the coastal 

wave rider buoy and open ocean-moored buoy 

measurements. These buoys are equipped with sensors that 

calculate wave heights at regular intervals. The sensor data 

is stored locally and transmitted through INSAT 

communication. In this research, we focused on buoys with 

a minimum of six months of continuous operation at sea. 

Validation studies conducted by James et al. (2022) affirm 

the accuracy of sensor-derived wave heights at various 

depths in British waters, enhancing our confidence in the 

data. 

 

 

 

Fig. 1.  (a) Location of Wave Rider Buoys (green) and Moored 

Buoys (red) for observations; (b) Deployed Wave Rider Buoy 

and a brief description of communication channels. 

The performance of the datawell’s directional WRB for the 

Indian region has been verified by T. M. Balakrishnan Nair 

et al. (2013)[1], P. Sirisha et al. (2022)[2] and V. Sanil 

Kumar et al. (2022)[9] to the Arabian Sea. Harikumar et 

al.(2016)[8] have stressed the importance of observational 

data stations along India’s coastline and the effect of 

assimilation into ocean-met forecasting models. 

2.2. Numerical Weather Prediction Models (Base 

Learners) 

A suite of wave models, which run on a High-Performance 

Computing platform (AADITYA & MIHIR HPC) to 

generate 3 hourly forecasts for the coming 5–7 days, as 

mentioned in table 1, were considered for the study. The 

wave forecast is generated by forcing the low-level winds 

from the European Centre for Medium-Range Weather 
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Forecast (ECMWF) or from the National Centre for 

Medium-Range Weather Forecast (NCMRWF) using the 

physical wave equations. The details of the models are 

mentioned in table 1. 

Table 1: Details of operational models with domain and forcing 

fields 

Model Domain Assimilation Forcing 

Mike IO3 NO ECMWF1 

Mike High 

Resolution 

NIO4 NO ECMWF1 

SWAN NIO4 Yes ECMWF1 

SWAN NIO4 NO ECMWF1 

SWAN NIO4 NO NCMRWF2 

WW III NIO4 Yes ECMWF1 

WW III NIO4 NO ECMWF1 

WW III NIO4 NO NCMRWF2 
1Wind forecasts generated by the European Centre for Medium-Range 

Weather Forecasts 
2Wind forecasts generated by the National Centre for Medium Range 

Weather Forecasting 
3Indian Ocean 
4North Indian Ocean 

 

2.2.1. Mike 21 SW 

Mike 21 spectral wave model for modelling wind-generated 

wave swells for 7 days ahead. A high-resolution setup for 

accurate predictions using a smaller grid size was used. 

Studies conducted by Zhipeng Zhou et al. (2021)[33] stated 

that the mike model predictions of waves were reasonable 

and promising along the Ghana coast. Muhammed Naseef T 

et al. (2022)[7] conducted the sensitivity analysis of wave 

hindcasts using the Mike 21 setup and provided crucial 

statistical measures of the performance of the model in the 

Indian Ocean region. 

2.2.2. SWAN 

Delft University of Technology has developed the third 

generation SWAN model to better predict wind-generated 

waves. Zed et al. (2022)[34] for the Mediterranean Sea have 

concluded that the SWAN model has performed on par with 

the competing wave models and provided accurate 

forecasts. 

2.2.3. Wave Watch III 

Developed at the NOAA/NCEP, the multi grid Wave Watch 

III model is an advanced wave modelling system for 

predicting wind waves. The model has been validated for 

the Northern Indian Ocean region by forcing ground-level 

winds from the ECMWF or NCMRWF. The results of the 

studies have been published by Remya et al. (2020)[6] and 

have concluded with the reliable performance of the model. 

3. Proposed Super Learner Ensemble 

The research introduces a novel ensemble strategy that 

amalgamates the predictions from physics-based ocean 

models with observed data, effectively merging the 

advantages of both numerical models and real-world 

observations. This hybrid approach harnesses the power of 

neural network architectures, specifically the innovative N-

BEATS architecture, which introduces a new perspective to 

the methodology. Utilising the available time-series data 

from various locations along the Indian coastline, the 

objective is to determine the optimal ensemble technique. 

The precision of the ensemble prediction is assessed through 

the root mean square error (RMSE) and the Pearson 

correlation coefficient. Model training involves employing 

one year’s worth of forecast and observation data and 

generating an ensemble forecast for the subsequent 128 

timestamps, equivalent to a 16-day forecast period. The 

system’s architecture is illustrated in Figure 2 mentioned 

below. 

Every wave model in a high-performance computing 

environment has initial and boundary conditions, and 

ground-level winds are the driving force. Consequently, the 

forced model generates a spatial wave distribution within 

the specified domain. Wave forecasts are then extracted at 

the buoy locations indicated in Figure 1a. 

 

Fig. 2.  An architectural representation showing how NWP (base learners) and observational data are used in the training process and 
how ensemble predictions are made. 
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Algorithm 1 Super Learner Ensemble 

1: X ⇐ UNION(XMIKE,XSWAN,XWWIII) 

2: Y ⇐ Yobservation 

3: Xtrain,Xtest ⇐ 

X,Ytrain,Ytest ⇐ Y 4: 

while epoch < 

maxEpochs do 

7: update weights and optimize 

8:            If error is minimal then  

9: break 

10: end if 

11: end while 

 

 

For each of the previously mentioned neural architectures, 

the procedure outlined in Algorithm 1 is adhered to, and the 

resulting correlations are recorded to determine the most 

effective architecture. The comprehensive rankings of these 

architectures are elaborated upon in the results section. 

The current proposed meta-learning approach has the 

benefit of acquiring knowledge from the base models 

regarding seasonality, climatological variations, the quality 

of the forcing fields, and global environmental shifts. As an 

illustration, the base learners have the capacity to react to 

exceptional oceanic events such as cyclones and tsunamis. 

Consequently, the meta learner, having observed these 

occurrences previously, can make predictions regarding 

such events more accurately. Like a conventional 

multimodal ensemble approach, the key advantage lies in 

the fact that even if just one model within the ensemble 

demonstrates strong performance, the overall ensemble 

performance is enhanced. Moreover, the ensemble 

prediction is consistently presumed to exhibit superior 

accuracy compared to any individual model’s prediction. 

In the results section, the best super-learner is found, and then its 

performance is compared to observations and established 

benchmarked wave models during two cyclone events: Tauktae on 

India’s west coast and Gulab on India’s east coast. 

3.1. Multi-Layer Perceptron (MLP) 

A fully connected network with multiple layers, or simply 

an MLP, will associate weights and biases for the model 

values in the training samples to fit the observed values. A 

dense layer with relu activation is used along with the adam 

optimizer and mean-squared error as the loss function. The 

combination of the inputs, corresponding weights, and the 

activation function can be represented as 

 

 Where φ is the activation function (relu in our case), wi is 

the vector of weights, xi is the input vector, and b is the bias 

of the forecasting model with respect to the observation. 

3.2. Long Short-Term Memory 

For sequence-sequence problems, recurrent neural 

networks, especially the LSTM, are one of the most 

profound choices as they can learn long-term 

dependencies. Overcoming vanishing gradient and 

exploding gradient problems is one of the major 

advantages of architecture. The input gate, the output 

gate, and the forget gate are the building blocks of 

LSTM. It is widely used when the sequences are very 

long and are like the RNNs. LSTMs learn from input 

sequences, compute what to forget and what to 

remember. The output of one LSTM memory cell is 

fed to the next memory cell along with the computed 

weights. A brief description of one memory cell can be 

seen here. This is like predicting the next word when 

we know all the words so far. 

3.3. Temporal Convolution Networks (TCN) 

Temporal convolution networks have a very different 

approach compared to the earlier architectures, where 

the sequences in the past affect the current value. In a 

way, if y = y1,y2,y3,y4,y5,... is the time series data for 

the observed wave heights, convolution will make the 

y5 get affected by y2,y3,y4 for the drawing 

relationship between y5and y1. In general, 1D 

convolution network is shown below During the 

learning phase, TCN approximates a function that has 

minimal loss between the actual inputs and the 

predicted values. To maintain the same length during 

the process, zero padding is used so that the input 

length and the hidden layer length are the same. 

 

Fig. 3: (a) Stacked Dilated Convolution Layers (b) Details of the 

TCN Residual Block 
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The network can look back up to (k-1)d time steps, where k 

is the kernel size and d is the dilation factor. The number of 

layers depends on the length of the historic data available. 

Finally, the residual block ensures the network can learn 

from a long history of two series of convolution, weight 

normalisation, activation, and dropout. Element wise 

addition is carried out, and the result is transmitted for 

further processing. 

3.4. Neural Basis Expansion Analysis for Interpretable 

Time Series (N-BEATS) 

In the recent past, an architecture for time series forecasting 

was presented by Oreshkin et al. (2019)[35] named Neural 

Basis Expansion Analysis for Interpretable Time Series (N-

BEATS). It is a pure neural engine that has proved its mettle 

against the M3 and M4 datasets, outperforming classical 

approaches to statistical + ML models. Studies conducted 

by Chatigny et al.(2021)[36] for scaling the N-BEATS 

approach, Stevenson et al.(2021)[37] for solar radio flux 

forecasting, etc. have achieved a successful performance 

increase using the N-Beats approach. N-BEATS has a 

forked architecture, which can be represented below. 

 

Fig. 4. overall architecture of the N-BEATS model (from the 

original paper) showing the blocks in double residual stacking 

fashion and the details of each block 

The model relies on the outputs generated by each block, 

which takes inputs xl and outputs of two vectors xˆl (best 

estimate) and yˆl  (block’s forward forecast). The length of 

the input window also needs to be specified, known as the 

horizon H (generally ranging from 2H to 7H). Each block 

internally computes the  (backward and forward 

expansion coefficients) gθ
f , gθ

b (basis layers map the 

expansion coefficients to outputs).   

where hl,4 can be computed recursively from the fully 

connected layers starting from layer 1 and hl,1 = RELU(wl,1 

+ bl,1). Finally, the forecast and backcast output are 

computed using the expansion coefficients. 

The backcast and forecast outputs run through double 

residual stacking, correcting the future blocks the 

approximations much faster and making predictions 

accurate. The N-BEATS model also deals with standard 

seasonality and the trend model internally. Stacks and 

Blocks: The N-BEATS model is organized into stacks, each 

containing multiple fully connected feedforward blocks. 

You need to decide the number of stacks and the number of 

blocks in each stack. For example, you might choose to have 

2 stacks with 4 blocks in each stack. 

To facilitate effective learning, a lookback value of 7 is 

employed, implying that the model considers the past 7 days 

of data to predict the subsequent 7 days’ values. This choice 

enables the model to capture trends and enhance the 

accuracy of predictions effectively. Modifying the lookback 

value adversely impacts the model’s ability to accurately 

capture ascending or descending trends, and it hampers the 

efficiency of minimizing error. 

All the models discussed above have been set up to generate 

ensemble forecasts for wave height prediction. As discussed 

earlier, the data from the model outputs of WWIII, Mike and 

Swan, along with the observations at the East Coast 

(Visakhapatnam, Pondicherry, BD14, BD11) and West 

Coast (Karwar, Ratnagiri, AD07, AD09), were considered 

in this study. The specific locations were chosen for the 

analysis as the data availability is continuous over a period. 

4. Results and Discussion 

For comparative analysis, the Brier Skill Score (BSS) was 

employed, where the Brier Score BSref of the model of 

interest is compared against other forecasting models. 

BSS = 1 − (BS/BSref) 

Once the best ensemble forecast is drawn, this study 

compares the performance of the best neural ensemble 

models against the traditional ocean forecasting models 

using the Pearson Correlation Coefficient (PCC) along with 

Root Mean Square Error and Standard Deviation. For better 

visual comparison, the Taylor diagrams were used. The 

Brier Skill Scores for the employed neural engines is 

presented in Table 2. The skill scores of the NBeats 

ensemble outperform the other machine learning techniques 

by a fair margin in many locations. In a few locations, 

Temporal Convolution Networks performed better at AD09 

and Pondicherry, than NBeats but with marginal 

improvement. In the rest of the locations, the NBeats model 

has outperformed all the other ensemble models. The 

highest skill score (green) and the second highest skill score 

(red) are marked for ease of understanding. 
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Table 2: Brier Skill Scores of the ANN Models 

 N-Beats TCN LSTM MLP 

Visakhapatnam 0.995891 0.994453 0.985016 0.979540 

Pondicherry 0.989432 0.990626 0.971691 0.947339 

BD14 0.977739 0.97297 0.900757 0.968632 

BD11 0.972178 0.913151 0.963948 0.899581 

Karwar 0.989637 0.986288 0.986381 0.974400 

Ratnagiri 0.995578 0.986544 0.873406 0.954033 

AD07 0.941097 0.485050 0.791790 0.649891 

AD09 0.985958 0.989880 0.901655 0.496184 

 

 

Considering the 

above information, N-BEATS is 

the 

best 

candidate for ensemble. In this study, the N-BEATS 

ensemble forecast (NEF) is compared with the traditional 

ocean general circulation models in operational mode and 

during extreme events like cyclones. Along the east coast of 

India, the NBeats Ensemble prediction has not only 

predicted a better correlation but also a lower standard 

deviation. For the said regions, we can draw the conclusion 

that when the ocean general circulation models predict with 

a 0.95 correlation, NBeats Ensemble prediction also 

produces good results (in the case of BD11), but when the 

ocean models perform poorly, NBeats Ensemble prediction 

Fig. 5: Taylor diagrams depicting correlation and standard deviation comparison of the NBeats Ensemble prediction against the ocean 

forecasting models in the Bay of Bengal (East Coast of India) 

Fig. 6: Taylor diagrams depicting correlation and standard deviation comparison of NBeats Ensemble prediction against the 

ocean forecasting models in the Arabian Sea (West Coast of India) 
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provides the best prediction with greater correlation 

coefficients (in the case of BD14, Vizag, and Pondicherry). 

Since it is known that predictions vary hugely from the Bay 

of Bengal to the Arabian Sea because of various 

environmental conditions, this study focuses on predictions 

in the Arabian Sea as well. 

It can be concluded through this study that NBeats ensemble 

prediction outperforms the traditional ocean forecasting 

models as well as other neural network-based ensembles. 

Since we are dealing with forecasting natural or 

environmental parameters, the implicit question is whether 

the forecasting model performs equally well during extreme 

events. So, in the present work, NBeats Ensemble prediction 

assessment has been carried out during two cyclone events, 

namely Gulab and Tauktae, formed in the Bay of Bengal and 

the Arabian Sea, respectively. Separate models were trained 

for a period of one year to capture the associations between 

the OGCM model outputs and observations in the BOB and 

Arabian Sea. 

 

4.1. Gulab (September 24 to September 27, 2021) 

 On September 25th, Cyclone 

Gulab was named when the 

well-marked low pressure 

formed in the eastern Bay of 

Bengal turned into a cyclone. 

The system moved eastward 

and made its landfall in 

Visakhapatnam. Observation 

stations were available, and reporting along the path, 

especially by Wave Rider Buoy of Visakhapatnam and 

Moored Buoy of BD08, helped record and monitor the 

ocean parameters in real-time. At Visakhapatnam, using 

NBeats, the forecast accuracy has improved with minimal 

RMSE. Without Nbeats, the best available forecast is from 

Wave Watch III, using which all the alerts were issued for 

the region. There is a notable increase in the correlation for 

NBeats in the case of Visakhapatnam, which is greater than 

0.95, while the maximum correlation achieved by the ocean 

forecasting models is around 0.9. For the location BD08, 

there is an increase in the correlation, but with marginal 

RMSE, and most of the ocean forecasting models, along 

with the NBeats, have achieved a correlation of around 0.96. 

Using NBeats as the super learner to generate predictions 

along the cyclone path, it produces more accurate results. 

The correlation and RMSE values tested at Tuticorin are 0.8 

and 0.13, respectively, and at BD08, they are 0.93 and 0.23, 

respectively. 
 

4.2. Tauktae (May 14, 2021 to May 18, 2021) 

The wave characteristics 

differ drastically from the Bay 

of Bengal to the Arabian Sea. 

Statistical measures of the 

NBeats forecast are examined 

even in the Arabian Sea 

region. During May 2021, the 

Arabian Sea experienced the 

Tauktae cyclone, which originated southwest of Kerala and 

travelled along the shoreline. The observed track of the 

cyclone from the IMD can be seen in figure. There were 

many observation stations located along the coast. For this 

study, we have considered the data from buoys off Ratnagiri 

and Karwar since the locations are close to the cyclone 

travelled path. Wind-wave characteristics during the 

Fig. 7: (a) Comparison of NBeats at Visakhapatnam against other 

ocean forecasting models and time series comparison against 

observation (b) Comparison of NBeats at BD08 against other ocean 

forecasting models and time series comparison against observations 

Fig. 8: (a) Comparison of NBeats at Karwar against other ocean 

forecasting models and time series comparison against observation. (b) 

Comparison of NBeats at Ratnagiri against other ocean forecasting 

models and time series comparison against observations 
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cyclone were studied by Shanas, P. R et al.(2021)[10] 

specifying the impact and intensity. 

 All the ocean forecasting models have performed well at 

the Karwar location, along with NBeats. Almost all the 

models recorded more than 0.95 correlation and minimal 

RMSE. In such cases, any model output can be considered 

for issuing alerts accordingly. The forecast generated by 

NBeats compared with the observation can be seen in Figure 

9 (b) below the Taylor plot. But on observing the forecast at 

Ratnagiri, Beats has improved the ocean forecasting model 

outputs with a correlation of 0.95, while the maximum 

achieved correlation with ocean forecasting models is 0.91. 

The model has also been tested at other locations, namely 

AD07 (correlation: 0.909 and RMSE: 0.24) and AD09 

(correlation: 0.905 and RMSE: 0.11). At AD07, 

interestingly, temporal convolutional networks 

demonstrated an increased correlation factor of 0.926 

compared to NBeats, which is 0.909. The data availability 

problem persisted even for the buoys on the west coast, 

which was resolved by considering the chip data. Since real 

time data availability is a major concern for the system and 

there were many data gaps because of communication 

failure, this study considered the chip data for training the 

model. The chip data will be stored persistently in the buoys, 

irrespective of the communication channel. This ensures 

data availability over large time intervals. 

5. Conclusion 

Using the statistical measures of correlation coefficient and 

root mean square error, it can be concluded that the NBeats 

ensemble demonstrated better results compared to any 

individual ocean forecasting model, even during extreme 

conditions like cyclones. Even though the temporal 

convolution networks also generated good results and 

outperformed NBeats in a few locations, there was marginal 

improvement. To begin, while the N-BEATS ensemble has 

demonstrated its impressive superiority over individual 

forecasting models, there is a captivating prospect to delve 

deeper into the realm of hybrid methodologies. This 

involves synergizing the strengths of both NBEATS and 

TCN, potentially yielding predictions of even greater 

robustness. Secondly, the targeted focus on specific 

locations, including Visakhapatnam, Pondicherry, 

Tuticorin, BD08, BD11, and BD14, hints at the possibility 

of localized models for these regions. Such models could 

leverage location-specific data augmentation techniques for 

heightened accuracy. Moreover, the substantial 

improvements noted during cyclonic events underscore the 

need to broaden the scope of this study to encompass a wider 

spectrum of extreme weather conditions. This expanded 

investigation aims to unveil the behaviour and reliability of 

the models across various challenging scenarios. 

Additionally, a crucial consideration involves addressing 

sensor failures and data quality concerns. Future endeavours 

could revolve around the development of methodologies for 

real-time data quality control and imputation, guaranteeing 

a continuous flow of dependable inputs for the models. 

Pursuing these avenues, our research sets the stage for more 

resilient and precise ocean forecasting systems, with 

potential applications spanning from disaster preparedness 

to sustainable coastal management. 
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