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Abstract: DDoS attacks based on the Internet of Things (IoT) have increased in number as a result of its recent growth. In this paper, a 

method for identifying botnet activity in consumer IoT networks and devices is presented. However, highly unbalanced network traffic 

data in the training set deteriorates the state-of-the-art ML and DL algorithms' classification capabilities, especially in classes with small 

sample sizes. This study developed a deep learning-based botnet assault detection algorithm called DenseNet - Binary Moth Flame 

Optimisation (DenseNet-BMFO).  In the meantime, the overall performance of the proposed DenseNet-BMFO and other commonly used 

algorithms is compared using standard evaluation markers. According to the simulation results, the DenseNet-BMFO approach for 

identifying IoT network intrusion threats is dependable and efficient. The results of the experiments showed that the suggested methodology 

produced a 98.25% accuracy rate. The results of the experiment show that the suggested model performs better in botnet detection 

categorization than the existing methods. 
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1. Introduction 

In order to take advantage of the many advantages offered 

by the Internet of Things (IoT), essential infrastructures 

including electricity generation [1], communications, 

healthcare, manufacturing, transportation, water 

treatment, and agriculture [2] are now interconnected. 

Because of their greater interconnectedness and ICS use, 

smart critical infrastructures are more susceptible to 

cyberattacks by terrorists or "hacktivists." For example, it 

has been demonstrated that ICS and IoT devices are 

readily hackable and may be remotely controlled to create 

IoT-based botnets.. A single weak IoT device can be 

successfully exploited to compromise the security of the 

entire IoT-enabled system and disclose confidential data. 

Because of this, Advanced Persistent Threats (APT) of 

various botnet attacks find them appealing targets, 

particularly when they are implemented in sensitive 

situations. 

Network Intrusion Detection Systems (NIDS) have been 

developed using Machine Learning (ML) approaches to 

protect connected IoT devices against sophisticated botnet 

attacks, such as [2]. These NIDS can be placed in key 

locations across an Internet of things network. In 

particular, Deep Learning (DL), an advanced machine 

learning technique, has a special aptitude for 

automatically extracting features from high-volume, high-

speed network traffic produced by heterogeneous, 

networked Internet of things devices [3]. Due to their high 

processing and memory needs, NIDS approaches 

employed in IoT devices. Enough network traffic data is 

required to ensure effective classification performance in 

the development of a DL approach for Internet of Things 

networks to detect botnets [4]. Nevertheless, the curse of 

dimensionality may result from handling and evaluating 

high-dimensional network traffic data. Hughes 

phenomena can also arise from training deep learning 

models. Processing large amounts of data necessitates a 

great deal of computational power and storage space. IoT 

devices lack the memory capacity needed to store the 

large amounts of network traffic data needed for deep 

learning. Consequently, a complete DL-based botnet 

detection system is required that can both accurately 

detect recent and sophisticated botnet attacks that lessen 

the high dimensionality of huge network traffic features 

by using low-dimensional network traffic information. 

Because it has the following characteristics, the Bot-IoT 

dataset [5] is now the most relevant publically available 

dataset for the detection of botnet assaults in IoT networks 

IoT network traffic samples (a), complete network 

information acquired (b), a range of complex IoT botnet 

assault scenarios (c), accurate ground truth labels (d), and 

a vast amount of labelled data required for effective 

supervised DL. Initial feature dimensionality1 for the Bot-

IoT dataset is 43, and 1.085 GB of memory are required 

to store this network traffic data. Thus far, feature 

dimensionality reduction strategies based on feature 

selection algorithms have only been applied to the Bot-

IoT dataset.  
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Proposed DenseNet - Binary Moth Flame Optimisation 

framework: 

In this study, we present a DenseNet - Binary Moth Flame 

Optimisation framework (DenseNet-BMFO) that 

leverages DenseNet 201 and Binary Moth Flame 

Optimisation for effective IoT network botnet detection. 

The main contributions of this study are as follows: 

(i)  Generating a publicly available, labelled dataset 

with attack vectors, botnet activity, and regular 

traffic. DenseNet-BMFO In order to categorise 

network traffic samples into ten botnet attack 

classes in addition to the regular class, models are 

trained, verified, and tested using the Bot-IoT 

dataset. 

(ii) The suggestion for reducing feature dimensionality 

is Binary Moth Flame Optimisation. This method 

reduces the dimensionality of large-scale IoT 

network traffic data while producing a low-

dimensional latent-space feature representation at 

the hidden layer without compromising important 

intrinsic network information. 

(iii) A DenseNet201 is suggested for the categorization 

of network traffic. This technique scans IoT 

network traffic to separate benign traffic from 

botnet attack traffic; 

(iv) A number of tests are conducted using the Bot-IoT 

dataset to confirm that DenseNet-BMFO works 

well in scenarios involving binary and multi-class 

classification. 

(v) To ensure effective In IoT networks, feature 

dimensionality reduction and botnet attack 

detection the effectiveness of cutting-edge 

optimization techniques was examined and 

contrasted. 

The remaining portions of the paper are separated into the 

following categories: In Section II, we look at pertinent 

state-of-the-art methods for classifying network traffic 

and reducing feature dimensionality. The remaining 

portions of the paper are separated into the following 

categories: In Section II, we look at pertinent state-of-the-

art methods for classifying network traffic and reducing 

feature dimensionality. Section III provides an 

explanation of the suggested botnet detection technique 

for Internet of Things networks, known as DenseNet - 

Binary Moth Flame Optimisation (DenseNet-BMFO). In 

Section IV, numerous tests are conducted to confirm 

DenseNet-BMFO's efficacy. Section V presents and 

discusses the findings of the experiments. Finally, Section 

VI concludes the work. 

 

2. Related Work 

While there are several datasets for network intrusion 

detection, they suffer from a number of issues, such as 

missing ground truth, limited assault [7]. The limited 

amount of benign traffic samples in the DEFCON-8 

dataset limits its application [6]. The labels were not 

supplied, and the network traffic data are provided in 

packet form without any extracted features [8]. Only 

denial-of-service attacks are included in the attack 

scenarios that are available in the UNIBS dataset. The 

CAIDA databases contain no ground truth information 

about the attack samples. The LBNL dataset's network 

traffic samples lacked labelling, and the features included 

in the packet files could not be extracted [8]. UNSW-

NB15 dataset's attack samples were produced in a 

simulated setting [9]. Furthermore, these datasets' ground 

truth is not provided to improve the labelling procedure. 

The botnet scenarios utilised in the majority of datasets 

are not described in great detail. Furthermore, IoT 

network traffic data was absent from relevant databases 

[9].The Bot-IoT dataset is the most relevant publicly 

available dataset for network-based botnet attack 

detection in IoT networks. [10].  

Numerous Internet of Things (IoT) gadgets were included 

in the testbed setup, such as a motion-activated light 

system, smart fridge, weather station, remote-operated 

garage door, and smart thermostat [11]. The four IoT 

botnet scenarios that these attack traffic samples fall under 

are information theft, reconnaissance, DoS, and DDoS. 

The main method for reducing the dimensionality of 

features is to apply a method for transforming a high-

dimensional feature set—linear or non-linear. One 

popular linear transformation technique is principal 

component analysis (PCA) [12, 13], DL approaches, as 

well as spectral methods [14]. At the hidden layer, an 

autoencoder, an unsupervised deep learning method, 

creates a latent-space representation of the input data [15]. 

In order to decrease the feature dimensionality in the 

majority of well-known network intrusion datasets, 

various autoencoder designs have been suggested [16]. 

This research does not include feature dimensionality 

reduction approaches that do not cover all The Bot-IoT 

dataset contains four botnet assault scenarios nor do they 

include benign network traffic traces, in order to ensure a 

fair comparison. For example, the DoS attack scenario 

was not taken into account by Soe et al. [17, 18]. 

Furthermore, the method's efficacy in identifying 

innocuous network data was not disclosed [19]. The 

performance of the suggested strategy was not assessed by 

the authors of a related paper [20, 21]. 

To sum up, the innovative methods used in the 

linked work focused on selecting specific features from 

the network traffic data of the Bot-IoT dataset. However, 
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this approach might affect how efficiently botnet assaults 

are identified in IoT networks because the classifiers 

won't have access to specific relevant network data during 

training, validation, and testing. As a result, the feature 

selection strategy in IoT networks may lead to a high false 

alarm rate and low accuracy in botnet attack detection. But 

while dimensionality of large-scale IoT network traffic 

data is reduced and a low-dimensional latent space feature 

representation is created at the hidden layer, BMF 

maintains significant intrinsic network information. 

3. Proposed Method for Botnet Attack 

Detection in Iot Networks 

 This section outlines the research methods that use deep 

learning and optimisation models to anticipate the 

existence of IoT botnets. This section includes details 

about BMFO, DenseNet201, preprocessing of data as well 

as data on network traffic. Three algorithms from 

DenseNet - Binary Moth Flame Optimisation (DenseNet-

BMFO) were used to identify a botnet that was utilising 

the Internet of Things. The next chapters provide an 

explanation of these models. The model's general 

structure is depicted in Figure.1 

3.1 Dataset 

For an 11-class classification, the Bot-IoT dataset includes 

three label categories and 43 network traffic metrics. Out 

of the 43 features, only 37 were determined to be useful 

in identifying botnet assaults in Internet of Things 

networks. A scenario involving the classification of 11 

classes is analysed in detail to identify botnet assaults. 

Because they had less samples than the majority classes in 

this study, the classes DDU, DDT, DT, SS, OSF, and 

DUDH, DDH, DE, DH Norm, and KE are regarded as 

minority. 

 

Fig 1: Process of the Suggested Model 

3.2 Data Preprocessing 

Examples of data preprocessing include feature 

normalisation, data splitting, label encoding, and 

reshaping.  All of the traffic highlights in the network 

estimations were first normalised to a size of 0 and 1, 

using the min-max normalisation technique described in 

the Condition below. 

𝑥𝑛𝑜𝑟𝑚=

𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

The minimum and minimum values of x are addressed by 

x_min and x_max, respectively, if x is a feature vector of 

network traffic. One more component in the feature 

arrangement deals with a unit time step. This changes the 

aspect of the list of capabilities from X R(Pq) to X R(Pq1), 

where the total number of tests (p) and characteristics (q) 

are represented, correspondingly. The numerals 0 through 

10 were used to address the numerical values of the 11 

classes. To train and evaluate, the whole dataset was 

randomly divided into test sets (20%), training sets (60%) 

and validation sets (20%). 

3.3 Optimal Feature Selection 

The suggested BMFO method is applied on the feature 

attributes of the primary datasets. The total sum of 

features is given by the notation Fk m, where n is a 

positive integer between 1 and M. Optimal feature 

selection is indicated by the notation Fk (m*) opt, where 

k=1,2,...,M and M* is the total sum of optimum feature 

selections 

3.4 Binary Moth-Flame Optimization (BMFO) 

To solve the part decision problem, the nonstop MFO 

method is converted to binary using the S, V, and U-

formed move capabilities. The various trading ability 

classes are fully illustrated in Fragment 4.1, along with 

flowcharts and pseudo-code that explain how to use them 

to determine various B-MFO kinds. 

3.5 BMFO Using S-Shaped Transfer Function 

Common function S2 is the sigmoid (S-shaped) capability 

shown in Condition (1). It was originally designed for the 

(B-MFO) design. 

𝐾𝑓𝑠(𝑗𝑙(𝑓 + 1))  = 1/(1 + 𝑒𝑥𝑝𝑗𝑙)                  (1) 

𝑦𝑖  (𝑓 + 1) = 1/(1 + 𝑒𝑥𝑝𝑗𝑙)                      (2) 

The current and previous positions are used to resolve 

each search specialist's updated positions in accordance 

with condition (2). The speed is used in move capabilities 

in a few parallel metaheuristic algorithms, such as BMOF, 

to calculate the likelihood that the region will change. 

𝐵𝑓𝑦 (𝑦𝑖𝑗(𝑡 + 1) = |𝑡𝑎𝑛ℎ(𝑦𝑖(𝑡))|                (3) 

𝑦𝑖  (𝑓 + 1) = 𝑦𝑖(𝑡)𝐼𝑓 𝑔𝑦𝑓𝑤(𝑦𝑖𝑗(𝑡 + 1)      (4) 
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𝑦𝑖  (𝑓 + 1) = 𝑦𝑖(𝑡)𝐼𝑓 𝑔˃𝑦𝑓𝑤(𝑦𝑖𝑗(𝑡 + 1)            (5) 

In cycle t, the position of the ith search specialist in 

dimension d is assigned by yi (f+1), and the supplement 

of yij (t+1) is displayed by yij (t+1).Furthermore, R 

represents an opportunity number that falls between 0 and 

1. In the event that the speed is high, the pursuit specialists 

alter to supplement. However, the TFv instructs the hunt 

experts to stay in their momentum regions if the speed is 

low. 

3.4 U-Shaped Transfer Function with BMFO 

The two control parameters of this function individually 

govern the basin's width and inclination. 

𝑀𝐹𝑈=(𝑦𝑖𝑗(𝑡 + 1) = 𝛼|(𝑦𝑖𝑗(𝑡)𝛼 = 1                 (6) 

𝑦𝑖𝑗(𝑡 + 1) = {𝑦𝑖(𝑡) 𝑖𝑓 𝑔˂𝑦𝑓𝑤  ((𝑦𝑖𝑗(𝑡 +

1) 𝑦𝑖(𝑡) 𝑖𝑓 𝑔˃𝑦𝑓𝑤(𝑦𝑖𝑗(𝑡 + 1)           

(7) 

3.5 BMFO for Feature Selection Problem Solving 

Finding the best subset of the significant and important 

highlights is the aim of the feature selection issue, which 

aims to produce an extra accurate information model. 

Using an exchange capability is highlighted in the element 

determination problem. 

    The fitness function that is used to express the 

objectives displays the classification error as CE. The 

importance of feature reduction and the quality of the 

classification are seen in (8). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜂. 𝐹𝐸𝛼 +

𝑀𝑆𝑓

𝑁𝑡𝑓                (8) 

3.4 Classification Process 

At the end of the network, in a layer with as many neurons 

as the total number of output classes, they are 

implemented as a classifier. The SoftMax function is used 

to convert the probability that an input belongs to a 

specific class into decimal values in multi-class 

classification problems. The most likely class is 

determined by looking at the target projected group of the 

inputs. The SoftMax activation function for a K-class 

classification issue has the following mathematical 

expression: (9). 

𝜎(𝑍)𝑗 =
𝑒𝑧𝑗

∑𝑙
𝑗 =1𝑒𝑧𝑗                (9) 

(Z) j is the probability that the input is a member of j, zj 

is the output along the jth dimension, and j is a class sum 

from 1 to l. 

3.4.1 Transfer Learning Method 

Even with cutting-edge technology, these models still 

need to be taught. One way to do this is through transfer 

learning, in which a newly constructed and trained model 

serves as the basis for a new assignment. There are two 

common approaches you might follow when it comes to 

transfer learning: Make a method template. Retraining a 

model is the second strategy. The first stage in building a 

model approach is to choose a task that is comparable to 

the current work and includes a large amount of data. 

Selecting a pre-trained model is the first step in the pre-

trained ideal approach.  

Transfer learning is implemented by discarding the 

completely associated layers at the top of the model that 

were in charge of classifying the dataset and using the 

previous levels as feature extractors after the replica's pre-

trained weights have been determined. The model can be 

trained to comprehend the functions from the feature 

extractor to the output classes utilising the fresh dataset by 

incorporating classification layers. Pre-trained CNNs 

using DenseNet201 were employed in this investigation. 

3.3.1 DenseNet201 

Every layer is connected to every other layer by a feed-

forward mechanism established by the Dense 

Convolutional Network (DenseNet) architecture. 

DenseNet has a very thin layer 12 filters per layer, and the 

overall collective information of the network is composed 

of only a small number of feature maps. DenseNet has the 

advantage of having fewer parameters because of its 

adaptability, feature deployment, encouragement of 

feature reuse, and lightness on the gradient problem. 

DenseNet-201 is the name of a convolutional neural 

network that has 201 layers. Using the ImageNet database, 

it loads a pre-trained network that has been trained on over 

a million images. The network will classify images that 

represent 1000 different object categories, including pens, 

mice, keyboards, and various animals. Consequently, 

comprehensive feature representations for various image 

kinds are now included in the network. 224 × 224 

resolution photos are needed for the network. As shown 

in Figure 2, each layer consists of batch normalisation, 

ReLU activation combined with a 3x3 filter convolution. 
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Fig 2. Architecture of DenseNet201 

Each block includes a matrix-based input representing a 

single image pixel to reduce overfitting during training. 

This matrix has advanced to the batch normalisation stage. 

When ReLu activation occurs, if the x value is negative, it 

becomes 0; otherwise, nothing occurs. A matrix image 

undergoes convolutional processing with a 3x3 filter after 

a successful ReLu activation step. A matrix value that has 

already been processed will be the output. 

Algorithm:  Botnet Identification System 

1: data Processing  

2: ← 25% unitToDrop 

3: Parse the data into a preset format. 

4: definition of token 

5: once again 

6: /*Data parsing to format*/ 

7: Rows do for row ← 1. 

8: Text to tokenized integer format conversion 

9: Tokenized text index 

10: Make a tokenized text index dictionary. 

11: Up to 25 max, pad data arrays with 0s 

12: Add further tokenized features to the array. 

13: conclude for 

14: until the dataset is returned 

15: Divide training and testing according to unitToDrop 

16: Train And Validate with test and training data 

17: model ← consecutive () 

18: cell 0 

19: engagement → sigmoid 

20: defeat ← mae 

21: Adam, optimizer 
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22: periods → 100 

23: Make a new unit for BLSTM/LSTM. 

24: Model with an LSTM unit added 

25: Make a fresh Dense Layer 

26: To the model, add a dense layer. 

27: Dense Layer activation should be set. 

28: Build the model with Loss and Optimiser 

29: Once again 

30: *Adjust Model*/ 

31: epochs do for epoch ← 1. 

32: Analyse Loss, Verify Loss 

33: Analyse both the validation and overall accuracy. 

34: conclude for 

35: till every epoch has ended 

36: ValLoss, Return Loss, Acc, and ValAcc 

 

4. Results and Discussion 

Where the union of maps from layers 0 to l-1 is 

represented by the symbol [x 0, x 1... x (l-1)], and x l is 

the layer's input. By dividing the network's nodes into 

dense blocks (DB) and transition nodes (TB), the authors 

were able to modularize their system. Multiple dense 

layers (DL) made up of 11 Conv and 33 Conv layers make 

up a dense block. The 11 Conv layer, the 22 average 

pooling layer, and the batch layer make up the transition 

blocks that lie in between the dense blocks. DenseNet121 

is a variant of the network consisting of four dense blocks, 

each containing six, twelve, twenty-four, or sixteen dense 

layers. 

4.1. Performance metrices 

We have utilised the three commonly-used ROC measures 

to compare the effectiveness of various categorization 

methods. A learning table that can be used to depict how 

a classification model is presented is called a confusion 

matrix. The "True Positive" (T P) test results are the first 

to accurately determine whether a botnet is under attack; 

the "True Negative" (T N) test results are the second to 

accurately determine whether a botnet is not under attack; 

the "False Negative" (F N) test results are the third to 

fourth; and the "False Positive" (FP) test results are the 

fifth to last. In terms of forecasts. Accuracy for a dataset 

of scope n is defined as. The confusion matrix values 

display the proportion of properly and erroneously 

classified samples. The True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) value 

categories make up the confusion matrix. The identified 

lesions are subjected to performance standards for 

sensitivity, specificity, and accuracy. True positive (TP): 

The test would be positive if there was an input of a 

tumour. 

True negative (TN): The test would be negative if the 

input wasn't tumor-related. 

False positive (FP): When an input is not a tumour,The 

outcome is favourable. 

False negative (FN): The outcome would be negative if 

there was a tumour input. 

Sensitivity or Recall: 

The following criteria are used to assess the ability to 

correctly identify MIR lesions: 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (10) 

Specificity: 

Specificity, expressed as, can be used to quantify the 

degree of accuracy with which MIR lesions can be 

rejected. 

Specificity = 
𝑇𝑁

𝑇𝑃+𝐹𝑃
           (11) 

Accuracy: 

The lesion detection performance is calculated using the 

formula 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (12) 

 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 647–656 |  653 

Precision: 

Precision gauges how well a machine learning model 

can predict positive cases. The association between the 

overall number of true positive estimations and the 

false positive estimates that correspond to true positives 

is demonstrated. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (13) 

F1-Score:  

To determine the F1-score, the precision and recall 

harmonic techniques are applied. The following formula 

is used to calculate the F1-Score: 

𝐹1 −  𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  (2 × 𝑃 × 𝑅)/(𝑃 +  𝑅)

 (14) 

 

 

Fig 3: Confusion Matrix 

Figure 3 illustrates how the primary diagonal elements 

show examples of effectively classified data. The number 

of distinct classes in the dataset in a multi-class 

classification issue is equal to the number of rows and 

columns in the confusion matrix. For every class, the TP, 

TN, FP, and FN observations are generated using the 

confusion matrix. In light of the observations, a number 

of performance indicators, including accuracy, precision, 

recall, and F1 score, are assessed. On the first dataset, 

Table 1 displays the estimated model's performance using 

the various approaches. 

 

Table 1: Analysis of Suggested Model on Initial Dataset 

Methods Accuracy (%) Precision (%) Recall F1 

SVM 82.3 83.4 0.8528 0.8234 

Efficient Net 84.5 84.2 0.8624 0.8323 

ResNet 88.9 88.1 0.8859 0.8614 

VGGNet 90.4 87.7 0.8921 0.8742 

AlexNet 92.3 89.6 0.8947 0.8852 

MobileNet 93.2 90.2 0.8992 0.8941 

DenseNet-BMFO 98.2 95.8 0.9511 0.9526 

 

The suggested model scored 98.2% in the accuracy 

analysis, while the current models, including SVM, 

EfficientNet, and ResNet, scored between 82% and 88%, 

and VGGNet, AlexNet, and MobileNet, scored between 

90% and 93%. The existing methods, including SVM, 

EfficientNet, ResNet, VGGNet, AlexNet, and MobileNet, 

achieved roughly 82% to 92% when the models were 

assessed for precision, recall, and F1-score; in contrast, 

the suggested model achieved 95.8% accuracy, 95.11% 

recall, and 95.26% F1-score. Better performance can be 

attributed to the BMFO model's selection of the best 

features. Table 2 shows the projected model's 

performance using the available methods on the second 

dataset. The projected model's graphical analysis is shown 

in Figures 4 and 5. 
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Fig 4: Comparative analysis of the suggested model 

 

Fig 5: Analysis of Projected Model 

Table 2: Analysis of the Proposed Model for the Second Dataset 

Methods Accuracy (%) Precision (%) Recall F1 

SVM 82.2 82.5 79.6 80.7 

Efficient Net 84.6 84.2 80.7 81.3 

ResNet 85.7 86.8 82.0 85.6 

VGGNet 88.1 88.7 82.5 87.4 

AlexNet 89.6 88.9 85.4 88.3 

MobileNet 90.6 89.6 88.4 88.9 

DenseNet-BMFO 96.5 95.4 93.2 93.1 

 

SVM scored 80%, EfficientNet scored 81%, ResNet 

scored 85%, VGGNet scored 87%, AlexNet scored 88%, 

MobileNet scored 88%, and the suggested model scored 

93% in the examination of the F1-score. The suggested 

model attained 96.5% accuracy, 95.4% precision, and 

93.2% recall compared to the other current models' about 

82% to 90% accuracy, precision, and recall. We present 

the graphical analysis in Figures 6 and 7

. 
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Fig 6: Analysis the suggested model on the second dataset  

 

 Fig 7: The Effectiveness of Different Classifiers 

5. Conclusion 

A variety of commercial sectors are using IoTs to enhance 

their services. These apps address many different subjects, 

such as education and health. The gadgets make 

cybersecurity attacks easier and faster, especially when 

botnets are used. Fortunately, botnets go through a 

number of steps before to initiating attacks, which might 

be utilised to identify these attacks in advance. This study 

proposes the DenseNet - Binary Moth Flame Optimisation 

(DenseNet-BMFO) model, which uses the BOT-IOT 

datasets to detect DDoS attacks on botnets. DenseNet-

BMFO is outperforming other algorithms in terms of 

precision, accuracy, recall, and F1 score, according to a 

variety of performance criteria, and this is crucial for 

computer security and related domains. These findings 

demonstrated the DenseNet - Binary Moth Flame 

Optimisation (DenseNet-BMFO) model's resistance to 

both underfitting and overfitting. Furthermore, DenseNet-

BMFO showed improved generalisation ability in 

minority classes. With an accuracy of 98.2%, experiments 

showed that the proposed DenseNet-BMFO technique 

worked better than other well-known metaheuristic 

algorithms. The features, efficacy, and constraints of the 

techniques have also been examined. The class's strong 

potential for identifying botnet assaults in Internet of 

Things applications is demonstrated by the analysis of 

several detection techniques. However, the research also 

identifies other areas in which optimization-based and 

deep learning techniques still require refinement. The 

focus of recent botnets has switched to intelligent gadgets 

like air conditioners and televisions. Therefore, creating 

effective IoT solutions to defend smart appliances from 

botmasters will be a future problem.  
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