
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 |  718 

The Analysis of the Structure for Testing and Evaluating Multiagent 

Systems with Autonomous Intelligent Agents 

1Dr. Mukul Bhatt, 2Vaishali Singh, 3Sanjay Bhatnagar, 4Haripriya V., 5Zahid Ahmed 

 

Submitted: 10/01/2024    Revised: 16/02/2024     Accepted: 24/02/2024 

Abstract: Test and evaluation (T&E) ensure that created systems function as intended in anticipated and unforeseen circumstances. We 

look at the difficulties in developing a unified framework for testing and evaluating massive cyborg-like physical systems integrated 

artificial intelligence (AI). We provide a system incorporating testing and analysis into all development and operation phases to help the 

system learn and adapt in a loud, dynamic, and contested surroundings. The structure conserves testing time and resources when evaluating 

heterogeneous systems at various hierarchical composition sizes. For a general use case, the framework suggests potential research 

directions. Statistical modeling, Index systems engineering, AI, experimental design, software engineering (SE), and combinatorial 

interaction testing. This research proposes a deep learning system for CMF detection that uses CNN and CLAHE to classify photos as 

genuine or fake. Since some of the hidden elements of the picture are difficult to see using CMF, the CLAHE algorithm brings them to 

light. 

Keywords: systems engineering, statistical models, SE, artificial intelligence, design of experiments, combinatorial interaction testing.

1. Introduction 

Multiagent systems (MAS) are used in robotics, AI, social 

networks, and distributed computing. These systems use 

intelligent, autonomous agents to accomplish objectives. 

Because of their complexity and significance, these systems 

need thorough testing and evaluation to guarantee their 

dependability, efficacy, and performance. This document's 

structure seeks to fill this requirement by offering a 

comprehensive framework for testing and assessing MAS 

[1]. The structural analysis starts with a general 

comprehension of the multiagent system's layout. The many 

agents, their functions, and the nature of their interactions 

with one another and their surroundings must be 

determined. The architecture includes the agents' decision-

making procedures, coordination mechanisms, and 

communication protocols. This framework helps 

researchers and developers to acquire useful insights into 

the strengths and weaknesses of the system by methodically 

evaluating the behavior and performance of individual 

agents as well as their collective interactions [2].  

In MAS, each "agent" acts and thinks independently. The 

agent's capabilities, including perception, reasoning, 

learning, and decision-making, are the primary emphasis of 

the study. Assessing agent behavior entails looking at how 

well it fits the system's goals and adjusts to new 

circumstances. The complexity of agent behaviors and 

interactions makes testing and evaluating MAS particularly 

difficult [3].   

MAS are autonomous, adaptable, and capable of learning 

from their mistakes, unlike typical software systems. This 

calls for a unique strategy that exceeds standard testing 

methods. The framework evaluates MAS theoretically and 

practically [4]. It encompasses agent behaviors, 

communication protocols, coordination, decision-making, 

and system performance. These criteria are used to assess 

the system's capabilities and applicability comprehensively. 

MAS are tested in real-world simulations and scenarios. It 

acknowledges that such methods perform best in dynamic, 

unpredictable environments [5]. As a result, the framework 

suggests using test beds and simulation platforms that 

accurately represent the challenges and complexity of the 

target area. 

2. Related work 

The research [6] provided deals with the social level as an 

organizational model and considered a particular method for 

evaluating a dimension. Any MAS has three basic 

dimensions at a minimum: the individual and social classes 

and communication interfaces. The Organization-based 

Multiagent Software Engineering (O-MaSE) methodology 

framework, which incorporates numerous useful 

technologies to encourage industry adoption, is suggested in 

the article [7]. O-MaSE is an extensible agent-oriented 
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approach built on dependable, well-defined ideas supported 

by agent tool plug-ins. The research [8] proposed two 

various multiagent architectures for adaptive intelligent 

signal management that have been applied to a simulated 

complicated urban traffic network in Singapore explored. 

The results show that the multiagent signal controller 

performs better than pre-timed and signal control 

techniques. The article [9] determined an assessment 

framework and systematic procedure for evaluating already-

defined or newly-defined domain-specific modeling 

languages (DSML) for MASs. Both the language and the 

related tools are considered specifically for MAS DSMLs. 

The research [10] presented a computational design method 

for conceptual building design. Several environmental 

performance indicators are used in a multiagent system 

design toolkit to create design ideas and assess them. The 

research [11] examined Analytical Hierarchy Process 

(AHP) based comparative MAS DSML assessment 

technique. MAS DSML multi-criteria decision-making 

criteria are categorized. The method lets developers 

prioritize these factors according to their modeling language 

requirements and evaluate DSML alternatives. Automatic 

significance distribution computation determines the best 

DSML. 

The article [12] proposed how PADE-based network service 

agents were developed and used. A project's GitHub URL 

was also provided. Algorithms for deep learning and 

machine learning are evaluated in the implementation. 

Many sophisticated algorithm research may be conducted in 

this context. Tools and libraries for developing and testing 

MAS are available via the Java-based Multiagent 

Development Kit (MADKIT) framework. In addition to 

simulation, monitoring, and debugging tools, it provides 

various features for creating and implementing intelligent 

agents [13]. The Java-based MAS framework is Java Agent 

Development Framework (JADE). It provides resources for 

coordination, mobility, and agent communication. To test 

and evaluate agent-based systems, JADE simulates them 

[14]. Agent-based simulation toolkit called Recursive 

Porous Agent Simulation Toolkit (REPAST). REPAST is 

well-liked. 

Design and testing MAS enables researchers to define agent 

behavior, interactions, and parameters. Simulations, data 

gathering, and analysis are all possible using REPAST [15]. 

The research [16] presented here suggests a MAS for 

intrusion detection that combines the strengths of MAS with 

the precision of deep learning. As a result, we created 

autonomous, intelligent, and adaptive agents by combining 

the k-nearest neighbor, multilayer perceptron, and 

autoencoder algorithms. To properly recognize and classify 

complicated network attacks, the research [17] offers a deep 

reinforcement learning-based Intrusion Detection System 

(IDS) that uses Deep Q-Network logic in many distributed 

agents and attention approaches. To provide scalable, fault-

tolerant, multi-view architecture-guided security, our 

multiagent IDS is a distributed threat detection platform 

with agents working together. The research [18] provided 

that healthcare is a topic of discussion at international 

conferences, in academic publications, and the real world. 

Five subdomains and three systems were assessed. They are 

utilizing similar parameters to compare these systems. MAS 

for healthcare is suggested. The article [19] adaptable 

multiagent networks for smart cities based on existing 

literature. In the related literature, designing and managing 

adaptive systems is classed. These procedures outline, keep 

track of, organize, and evaluate the operation of autonomous 

MAS. The article [20] provided the mature and strong 

commercial product Jack Audio Connection Kit (JACK) 

agent platform. JACK addresses industrial adoption needs, 

including familiarity, scalability, and integrability. They 

also discuss JACK's structural capabilities and JACK's 

hierarchical teamwork. 

3. Descriptive use case 

Our model is based on the typical example of a satellite 

network's usage with a variety of autonomous intelligent 

agents (AIA) working independently and reporting to a 

central controller. Every satellite has sensors, actuators, and 

software at the local hierarchical scale, combining 

predictive management and artificial intelligence 

anticipated to adapt following installation owing to shifting 

surroundings and knowledge accumulation (shown in fig.1). 

The components of each subsystem may be divided into 

hardware and software functions. The kinds, numbers, and 

locations of each satellite and other status data, like whether 

the satellite has been harmed or its software corrupted, may 

all be used to characterize a system at the global hierarchical 

level. Observing aims, enemy powers, and visibility are 

possible operational environmental elements. 

 

Fig.1. Multi-agent satellites system use scenario 

illustration 

4. Video Transmission Protocol Model 

T&E must be included during the system's development and 

life cycle. Given that it is a well-known systems engineering 
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model, the "Vee" model of systems engineering provides a 

strong base for building a unified framework. The 

hierarchy's system levels are connected to several groups of 

validation and verification, by the "Vee" paradigm. 

Instead of waiting until the full system is finished, 

specifications and test schedules are generated early in 

development. For instance, tests that check system 

performance are created at the beginning of the project when 

needs for the complete system are determined, yet they are 

not conducted until close to the finish. As a result, Moving 

along the left side of the "Vee," the system is planned from 

the top down as tests are simultaneously being generated for 

that slice. Although the subsystems are constructed, and the 

system is linked, test execution is done "bottom up," moving 

along the first row on the "Vee." Testing multiagent AIA 

systems fails due to the "Vee" model's hierarchical 

decomposition assumptions. Most systems development life 

cycles involve concept research, technological 

development, conceptual design, detailed design, 

manufacturing, packaging, testing, launch, operations and 

sustainment, and closeout. Similar to the SE Waterfall 

Model, identification of requirements, design, 

implementation, testing, and maintenance are all parts of the 

development process. These methods assume that all 

assessment criteria might be provided during a requirements 

phase and decomposed into separate either parts or 

subsystems. Maintaining a thing enables "fixing" it. Before 

deployment but ignores changes in agent behavior after 

distribution. AIA systems with several agents defy these 

presumptions. It could be hard to decide how the system 

should adapt since the environment changes. The threat 

capabilities of advanced foes could be unpredictable. 

Combinations of subsystems satisfy needs. Satellite 

ensembles can complete a task because of their varied 

positions and qualifications. Following the satellite after the 

program is deployed, it perhaps altered by earth station 

software pushes or by the embedded AI interacting and 

learning from other satellites in the constellation. Systems 

that are difficult to recall do not lend themselves to 

incremental or iterative techniques. Even though 

subsystems like satellite parts or software are planned, 

developed, and extensively tested in real-world scenarios, 

the system is only deployed when the satellite is launched. 

As a result, a crucial element of our technique up to 

deployment is the system engineer "Vee" model, with some 

iteration. We provide a "T" phase to test for events during 

operation. The running of all relevant tests from the last step 

and additional tests to accommodate the code changes may 

be necessary to achieve an objective mission amendment. 

Testing is required to ensure that embedded AI software 

picks up the "right" behaviors. Regular testing is essential 

for fault discovery and mitigation when debris and hardware 

degradation happen. The last possible assault is on 

communication systems, necessitating new intrusion 

detection method signatures. Analyze embedded AI's 

resilience to unknown vulnerabilities or development issues 

like data drift. Feedback ought to come next. They are 

learning from existing systems loops to deployment at the 

"P" stage. This loop's extension may serve as a development 

roadmap. The framework's VTP model is seen in Fig.2.  

 

 

 

Fig.2. The VTP framework extends the “Vee” model to 

include testing throughout system deployment and a 

feedback loop 

5. Specialization of Study 

Cyber-physical systems incorporating AI are known as 

AIAs. The testing and evaluation of the integrated system 

should use techniques of testing that are scientifically valid 

for each component and consider the testing needs of its 

mechanical, deterministic, AI, and electrical components. 

T&E should be used to assess algorithmic flaws for 

embedded AI. When using neural networks for learning, an 

assessment technique is required to gauge performance 

sensitivity to input changes or noise. This is crucial to 

detecting data contamination and calculating mission 

success under tense circumstances. Considering sensor 

input and controlling actuators to enable the agent to interact 

with its surroundings and exchange information with other 

agents in the  MAS, other deterministic software supports 

the AI capabilities of the software. Coding may be done 

using white box methods focusing on structural code 

coverage. For COTS or vendor-supplied software, it is 

necessary to utilize equivalence partitioning, state transition 

testing, use case testing, boundary value analysis, decision 

tables, and combinatorial methods. The variation of the 

response variables is assigned to independent variables, or 

factors, through statistical analysis and assesses system 

performance based on factor levels when analyzing physical 

components. Design of experiments (DOE) is an analytical 

framework for evaluating test adequacy. It is a systematic 

process for choosing test cases that span the functional area. 

DOE uses embedded software to evaluate complex systems. 

Tests to learn about the system are the first step toward 
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optimal learning. After learning a Bayesian substitute for the 

goal function, the following tests are selected using a 

heuristic that iterates over the test space with the greatest 

uncertainty and uses regions that maximise the goal-

oriented function. The plans must also look at the autonomy 

of the whole integrated system of systems. Although each 

subsystem may be isolated in its field and use approved 

testing techniques, the hybrid system crosses several fields, 

therefore T&E must take it into account. the whole thing. 

Testing may be necessary depending on how various 

systems interact. For instance, a satellite may need to 

comprehend that altering its position can help it to get 

around sensor visibility restrictions. Coordination 

comprising motors, control software, integrated AI, and 

sensors is required to validate this behavior. The list still 

needs to be completed. AIA usage situations can need 

additional fields. To develop tests that address particular 

difficulties, such as attention problems and how to use the 

human-computer interaction people and computers may 

communicate and grasp collaborative objectives, 

researchers evaluating AIAs with significant human-in-the-

loop elements or with people should consider psychological 

testing literature. Psychological Subject Matter Expert 

(SME) consulting may be able to define criteria for AIA 

learning and ensembled AIA collaborative behaviors even 

in the absence of human involvement. 

6. Chart of test 

Testing is carried out at every stage of development to 

identify and eliminate issues quickly. The smallest testable 

components are subjected to unit testing using simulated 

inputs or digital surroundings. When integrated into 

subsystems, parts should function as planned. However, 

interactions may result in failures or performance problems. 

For instance, COTS control software could not assume the 

input range of a satellite sensor. When combined, the code 

can crash or act strangely. Test suites are available using 

combinatorial interaction testing (CIT) to methodically 

identify issues brought on by combining several interacting 

parts up to a certain interaction size. To create test suites 

using tools like Automated Combinatorial Testing for 

Software, testers must first define the components, levels 

where they should be evaluated, the maximum interaction 

size, and limitations. The tester must be able to discretize 

continuous levels and know the elements or aspects of 

interest in CIT. A system becomes a component in a 

complex system via integration testing. AIA satellites come 

equipped with control software, actuators, sensors, and 

actuator actuators at the local level. System performance is 

ensured via integration verification and validation testing. 

After being deployed into a constellation, each satellite 

transforms into a component of the global system. 

Interaction testing determines if the constellation's sensor 

coverage is enough for a tactical operation or whether 

satellite-ground station communication relays function. 

Global environmental factors, such as sight-impairing 

storms, may compromise the effectiveness of a mission. 

Adversarial attacks could be included in simulations. After 

deployment, interactions between subsystems directly 

below and external variables like storms that impact the 

failures at the global level of the hierarchy may be brought 

on by particular satellites' sensor visibility or ground station 

connectivity. Approaches for CIT fault localization may 

identify the interactions causing the issue. An error may 

move up the hierarchy from a component system lower 

down. It could be necessary to descend through the 

interactions of the order to locate the defective part. 

7. Success of the test plan  

Rigorous testing in a variety of situations ensures system 

performance. The system and relevant ambient elements 

define the test input space and their levels. As a result, the 

multidimensional test input space is covered by test plan 

points. Most tests are costly, time-consuming, and resource-

intensive. An exhaustive investigation of the impact of 

variables and factors at the variable and factor level on 

system performance is possible thanks to a DOE full 

factorial design. Comprehensive testing is not achievable 

for complex systems with many groups and components. In 

fractional factorial designs, certain effects are aliased, and 

variation cannot be entirely allocated. To provide 

appropriate knowing the system with fewer test points, the 

percentage may produce anomalies between impacts of 

more complex interactions that are not anticipated to be 

substantial and big impacts. Reduces uncertainty and 

determining the ideal system performance factor values are 

the goals of optimum learning. With fewer experiments, the 

exploration-exploitation heuristic technique may locate the 

best location for a component. Though it draws, CIT often 

uses a covering array, a multifunctional array in which the 

levels specified for the factor under consideration in that test 

are reflected in each cell's values,  with the columns 

denoting variables and the rows denoting tests. This is a 

combinatorial array that represents factors, tests, and levels. 

Since each possible set of values for interacting 

characteristics up to a specific strength is tested, conclusions 

about performance in the remaining working area from 

fewer tests using physical principles and prior knowledge. 

An encompassing array, a multifunctional array in which the 

numbers in each cell represent the level provided for the 

factor in question in that test, and the rows and columns 

imply factors and challenges, respectively, is a common tool 

CIT uses when designing test suites. Considering that any 

set of values for interacting features to a certain level occurs 

in at least one test to detect failures produced on by 

interactions up to the required strength, a covering array 

may be utilised. One row generates a test if there are more 

variables than there are variables with value. suite 
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containing some of the factorial's tests and covers some 

interactions. Trials expand logarithmically when factors are 

added. Interactions coverage is provided by a covering 

array, which serves as a test suite. However, defect 

discovery is not guaranteed. 

Humans often participate in intricate systems. To avoid 

aliasing with ambient variables and levels, between-subject 

and within-subject experimental design approaches describe 

and separate human contributions to test findings. While 

within-subject designs pair persons with factors and levels 

for comparison, between-subject structures assign 

individuals randomly to certain combinations of variables 

and classes. The advantages of each approach above are 

combined in our framework to integrate data choose the 

appropriate test length at all test slices are different growth 

phases, and cover the input area systematically at both the 

global and local levels. To avoid extensive testing later on 

lower-hierarchy components, find errors early in 

development. At lower levels of the hierarchy, as inside a 

sensor function, the test input area is condensed. Tests may 

be accelerated and automated using scripts or simulated 

inputs, and test psychics can be calculated. Component 

interactions are the main focus of subsystem testing. 

Focusing on the most crucial elements may be necessary 

when the global system is tested for mission 

accomplishment. These data support extensive component 

testing but less rigorous global testing. The finest DOE 

designs for lower-hierarchy components are full factorial or 

fractional factorial designs. Using CIT techniques, 

integration interactions could restrict the exponential 

expansion of test points. Global upon system installation, 

system behaviour could not be known dynamic 

environments with learning AI components. When 

resources permit, optimal learning may estimate system 

limitations and adaptively choose tests. The framework 

strikes a compromise between test point count and system 

integrity, as shown in Fig.3. While testing a fully realized 

system is more difficult and contains fewer test points, the 

results are more accurate. 

 
Fig.3. Reliability replaces test points when system design 

hierarchy rises 

8. Design Framework for Tests 

There are no test lists in the framework. Instead, the 

framework lists important considerations for thorough test 

plan creation. These considerations for the VTP model slice 

will lead to various test designs. Future tests must be 

designed using operational test slice data during the "P" 

phase of the VTP model. To identify adversary compromise, 

a system may use testing for combinations of interactions 

and programmed checks of each agent in its deployed form. 

These tests will guide algorithm changes and prompt 

another round of objective testing to confirm agent 

upgrades. 

 

Fig.4. Framework that governs test planning. 

The framework creates a test plan, as shown in Fig.4. The 

domain of study and test hierarchy is based on the current 

life cycle phase of the system under test (SUT). Testing tiers 

and SUT component identification is determined by the test 

hierarchy. The input space for the test consists of elements, 

levels, and connections. Considering the expense of doing 

every test at the present size and assuming that lower-

hierarchy systems operate as anticipated, test plan efficiency 

dictates the test. The structured approach establishes 

appropriate test methodologies and goals. The SUT research 

topic and test hierarchy determine the test 

objective.[21]Goals and test plan effectiveness determine 

test techniques. All available historical data is used to 

develop the test plan. Three sample situations from the AIAs 

life cycle's MAS are shown in Table.1. 

Table.1. High-level explanation of how each framework idea helps to direct the creation of test plans
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System 

under 

test  

Phase  Field of study  Hierarchy of 

test  

Test plan 

efficiency 

Goal of test  Test methods 

Ground 

station 

operators 

for 

Constellat

ion 

Operation Psychology (AIA 

teaming, HCI) 

Satellites, 

ground 

stations, 

operators, 

environmental 

conditions 

Operational 

system 

Focus on 

mission goals, 

performance 

modifications 

Mission 

success 

Human-factor DOE 

(subject design) 

Al 

algorithm 

Unit 

testing  

AI mission 

knowledge 

Code functions 

are 

components. 

Software 

integration 

Functions 

artificial inputs 

Black box 

testing using 

scripts with 

fictitious 

programme 

inputs 

To highlight 

the variety of 

inputs and 

situations 

conceivable, 

concentrate on 

flaws or poorly 

understood 

needs. 

Analyse the 

biases in AI 

and its 

robustness, 

performance, 

and 

dependability. 

CIT paired with 

ideal learning to 

maximise 

performance and 

minimise uncertain 

performance areas 

Satellite Testing of 

Systems 

Integratio

n  

Above plus: 

• Electronic 

hardware • 

Software • 

Mechanical 

systems 

AI programme, 

sensors, 

motors, and 

control 

software are 

the parts. 

Integration 

takes into 

account how 

parts send and 

receive 

information 

from other 

elements. 

Full system 

integration 

tests in a 

virtual space 

setting 

Pay attention 

to how 

systems 

connect with 

each other to 

find problems 

or drops in 

performance. 

Check the 

system's speed, 

dependability, 

security, and 

ability to work 

with other 

systems. 

DOE mixes well-

known software 

interaction areas 

with factors about 

the surroundings. 

The list of academic disciplines that make up the SUT and 

from which testing methods should be taken needs to be 

completed.  Remember our use case, a satellite network with 

point detection and wide-area search. The satellite network 

intended to monitor The network performs wide-area 

searches to comprehend typical traffic patterns and find 

actions that could point to possible illicit shipping 

operations. After spotting an anomaly, the network has two 

major goals: to keep searching a wide region and to keep 

tabs on the suspicious vessel. We can navigate  with this 

background and suggest logical test design architectures. 

Early testing of AI algorithms is seen in the first row. The 

central controller allocates satellites in our use case to 

provide widespread coverage and  

tracking. We investigate the main controller's performance, 

biases, resilience, and reliability. We can afford a method 

that explores high-uncertainty areas with optimal learning 

and covers all bases with CIT since simulations are 

inexpensive. The CIT architecture may use CIT at a high 
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intensity (surrounding several contacts) to integrate unusual 

activity in the shipping statistics from the past. The nation, 

kind, size, and geographical position of the vessel may all 

be included in the CIT test set. The CIT is augmented by 

optimum learning in industries with significant uncertainty 

or rapidly changing AI algorithm performance. How issues 

are impacted by satellite-scale testing is seen in the second 

row of Table.1. It is now necessary to test algorithm 

performance and system integration. New standards and test 

formats are required. The system-centric test design uses an 

excerpt of the CIT AI testing scenarios. When simulating 

the space deployment, a hardware-in-the-loop test facility 

may mimic the inputs of satellite sensors. Active adversary, 

weather influences on inputs, AI performance scenario, etc. 

Experimental designs look at how the system performs 

while running AI algorithms with simulated inputs. We need 

to comprehend the connected system's mission 

accomplishment after deployment. The need for ground 

control station human integration for mission success. The 

availability of skilled constellation mission controllers 

limits our test size. We assign ground teams utilizing a 

within-subject strategy to deployed system situations. The 

constellation performs control functions while in operation. 

The three scenarios show how to create a test design strategy 

for a complex system-of-systems at various sizes that 

adheres to Utilising the test design framework and the slice 

in the VTP model, the test objective, which is generated 

from the field of research and the hierarchy of tests, with the 

expected test efficiency. Future scope 

Threshold  designing, developing, and deploying the VTP 

model, this framework considers the research field, the 

hierarchy of tests, and the effectiveness of the test plan to 

provide an entire test plan. This method combines T&E 

methodology and applies to many multiagent AIA 

scenarios. In a series of studies, we showed how the 

framework might be used for a group of satellites that 

performs point detection and wide-area search. To 

determine if the framework can be used for complicated 

systems and to determine whether any features are required 

in order to guide the construction of test plans, additional 

use cases must be tested against the framework. Problems 

peculiar to the setting gave rise to two new study areas. It 

may be possible to do "symmetrical" tests that effectively 

repeat the same configuration when integrating a system of 

systems with comparable subsystems. Consider testing the 

integration of two satellites, 𝑆1 and 𝑆2 with relative 

component configurations but at different orbital positions, 

𝑃𝑋 and 𝑃𝑌. They share actuators, control software, 

algorithms, and payload. Without any restrictions, tests 

should be generated that include both combinations of the 

satellites. Fig 5. and Table 2 Shows the impact factors of 

autonomous intelligent agents refer to the criteria or metrics 

used to assess and evaluate the influence, effectiveness, or 

significance of these agents and their actions in achieving 

desired outcomes. Aspects affecting the influence of self-

sufficient intelligent agents refer to the factors that can 

impact the degree of influence these agents have in their 

decision-making processes, task execution, and overall 

impact. 

 

 

Fig.5. Impact factors of autonomous intelligent agents 

Table.2. Aspects affecting the influence of self-sufficient 

intelligent agents 

years Impact factors 

2005 1.95 

2010 2.05 

2015 2.10 

2020 1.76 

 

An autonomous intelligent agent's impact factor is any 

measure or standard by which the agent's influence, 

efficacy, or relevance in producing an intended result may 

be determined and evaluated in fig 6. Quantiles, in the 

context of self-reliant cognitive agents, are statistical 

measures used to divide a distribution of performance or 

capability into equal intervals shows in table3. 

 

Fig.6. Percentile for autonomous intelligent agents 

Table 3. Percentile for autonomous intelligent agents 

years percentiles 

2005 2.8 
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2010 2.7 

2015 2.6 

2020 2.7 

 

 

9. Conclusions 

Both satellites are replaceable for testing purposes early 

before learning or damage. So neither observation is 

required. Just the relevant instances should be observed and 

examined when testing is expensive. So, a tool for creating 

test suites is necessary to prevent symmetrical tests. Using 

constraints to solve this problem and create a test suite may 

be computationally expensive in large constellations. We 

postulate that a partial ordering on certain components could 

result in a sequence covering array-inspired covering arrays 

devoid of symmetrical checks. To assess how much of the 

variation, we suggest analyzing the framework in the 

context of the satellite use case to see how well it captures 

success and failure and whether task-scale testing can be 

used to predict mission success at the top of the hierarchy. 

They limit most system modifications because large-scale 

testing may be costly and only practical after the 

constellation is put into space. 
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