

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 718

The Analysis of the Structure for Testing and Evaluating Multiagent

Systems with Autonomous Intelligent Agents

1Dr. Mukul Bhatt, 2Vaishali Singh, 3Sanjay Bhatnagar, 4Haripriya V., 5Zahid Ahmed

Submitted: 10/01/2024 Revised: 16/02/2024 Accepted: 24/02/2024

Abstract: Test and evaluation (T&E) ensure that created systems function as intended in anticipated and unforeseen circumstances. We

look at the difficulties in developing a unified framework for testing and evaluating massive cyborg-like physical systems integrated

artificial intelligence (AI). We provide a system incorporating testing and analysis into all development and operation phases to help the

system learn and adapt in a loud, dynamic, and contested surroundings. The structure conserves testing time and resources when evaluating

heterogeneous systems at various hierarchical composition sizes. For a general use case, the framework suggests potential research

directions. Statistical modeling, Index systems engineering, AI, experimental design, software engineering (SE), and combinatorial

interaction testing. This research proposes a deep learning system for CMF detection that uses CNN and CLAHE to classify photos as

genuine or fake. Since some of the hidden elements of the picture are difficult to see using CMF, the CLAHE algorithm brings them to

light.

Keywords: systems engineering, statistical models, SE, artificial intelligence, design of experiments, combinatorial interaction testing.

1. Introduction

Multiagent systems (MAS) are used in robotics, AI, social

networks, and distributed computing. These systems use

intelligent, autonomous agents to accomplish objectives.

Because of their complexity and significance, these systems

need thorough testing and evaluation to guarantee their

dependability, efficacy, and performance. This document's

structure seeks to fill this requirement by offering a

comprehensive framework for testing and assessing MAS

[1]. The structural analysis starts with a general

comprehension of the multiagent system's layout. The many

agents, their functions, and the nature of their interactions

with one another and their surroundings must be

determined. The architecture includes the agents' decision-

making procedures, coordination mechanisms, and

communication protocols. This framework helps

researchers and developers to acquire useful insights into

the strengths and weaknesses of the system by methodically

evaluating the behavior and performance of individual

agents as well as their collective interactions [2].

In MAS, each "agent" acts and thinks independently. The

agent's capabilities, including perception, reasoning,

learning, and decision-making, are the primary emphasis of

the study. Assessing agent behavior entails looking at how

well it fits the system's goals and adjusts to new

circumstances. The complexity of agent behaviors and

interactions makes testing and evaluating MAS particularly

difficult [3].

MAS are autonomous, adaptable, and capable of learning

from their mistakes, unlike typical software systems. This

calls for a unique strategy that exceeds standard testing

methods. The framework evaluates MAS theoretically and

practically [4]. It encompasses agent behaviors,

communication protocols, coordination, decision-making,

and system performance. These criteria are used to assess

the system's capabilities and applicability comprehensively.

MAS are tested in real-world simulations and scenarios. It

acknowledges that such methods perform best in dynamic,

unpredictable environments [5]. As a result, the framework

suggests using test beds and simulation platforms that

accurately represent the challenges and complexity of the

target area.

2. Related work

The research [6] provided deals with the social level as an

organizational model and considered a particular method for

evaluating a dimension. Any MAS has three basic

dimensions at a minimum: the individual and social classes

and communication interfaces. The Organization-based

Multiagent Software Engineering (O-MaSE) methodology

framework, which incorporates numerous useful

technologies to encourage industry adoption, is suggested in

the article [7]. O-MaSE is an extensible agent-oriented

1Department of ISME, ATLAS SkillTech University, Mumbai, Maharashtra,

India, Email Id- mukul.bhatt@atlasuniversity.edu.in, Orcid Id- 0000-0002-

5511-7551
2Maharishi University of Information Technology, Lucknow, India, Email

Id- singh.vaishali05@gmail.com, Orcid Id- 0000-0001-8304-8947
3Chitkara University, Rajpura, Punjab, India,

sanjay.bhatnagar.orp@chitkara.edu.in, https://orcid.org/0009-0004-7474-

1511
4Jain (Deemed to be University), Bangalore, Karnataka, India, Email Id-

v.haripriya@jainuniversity.ac.in, Orcid Id- 0000-0003-2035-2452
5Vivekananda Global University, Jaipur zahid.ahmed@vgu.ac.in, Orcid Id-

0009-0002-4020-1002

mailto:sanjay.bhatnagar.orp@chitkara.edu.in
https://orcid.org/0009-0004-7474-1511
https://orcid.org/0009-0004-7474-1511

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 719

approach built on dependable, well-defined ideas supported

by agent tool plug-ins. The research [8] proposed two

various multiagent architectures for adaptive intelligent

signal management that have been applied to a simulated

complicated urban traffic network in Singapore explored.

The results show that the multiagent signal controller

performs better than pre-timed and signal control

techniques. The article [9] determined an assessment

framework and systematic procedure for evaluating already-

defined or newly-defined domain-specific modeling

languages (DSML) for MASs. Both the language and the

related tools are considered specifically for MAS DSMLs.

The research [10] presented a computational design method

for conceptual building design. Several environmental

performance indicators are used in a multiagent system

design toolkit to create design ideas and assess them. The

research [11] examined Analytical Hierarchy Process

(AHP) based comparative MAS DSML assessment

technique. MAS DSML multi-criteria decision-making

criteria are categorized. The method lets developers

prioritize these factors according to their modeling language

requirements and evaluate DSML alternatives. Automatic

significance distribution computation determines the best

DSML.

The article [12] proposed how PADE-based network service

agents were developed and used. A project's GitHub URL

was also provided. Algorithms for deep learning and

machine learning are evaluated in the implementation.

Many sophisticated algorithm research may be conducted in

this context. Tools and libraries for developing and testing

MAS are available via the Java-based Multiagent

Development Kit (MADKIT) framework. In addition to

simulation, monitoring, and debugging tools, it provides

various features for creating and implementing intelligent

agents [13]. The Java-based MAS framework is Java Agent

Development Framework (JADE). It provides resources for

coordination, mobility, and agent communication. To test

and evaluate agent-based systems, JADE simulates them

[14]. Agent-based simulation toolkit called Recursive

Porous Agent Simulation Toolkit (REPAST). REPAST is

well-liked.

Design and testing MAS enables researchers to define agent

behavior, interactions, and parameters. Simulations, data

gathering, and analysis are all possible using REPAST [15].

The research [16] presented here suggests a MAS for

intrusion detection that combines the strengths of MAS with

the precision of deep learning. As a result, we created

autonomous, intelligent, and adaptive agents by combining

the k-nearest neighbor, multilayer perceptron, and

autoencoder algorithms. To properly recognize and classify

complicated network attacks, the research [17] offers a deep

reinforcement learning-based Intrusion Detection System

(IDS) that uses Deep Q-Network logic in many distributed

agents and attention approaches. To provide scalable, fault-

tolerant, multi-view architecture-guided security, our

multiagent IDS is a distributed threat detection platform

with agents working together. The research [18] provided

that healthcare is a topic of discussion at international

conferences, in academic publications, and the real world.

Five subdomains and three systems were assessed. They are

utilizing similar parameters to compare these systems. MAS

for healthcare is suggested. The article [19] adaptable

multiagent networks for smart cities based on existing

literature. In the related literature, designing and managing

adaptive systems is classed. These procedures outline, keep

track of, organize, and evaluate the operation of autonomous

MAS. The article [20] provided the mature and strong

commercial product Jack Audio Connection Kit (JACK)

agent platform. JACK addresses industrial adoption needs,

including familiarity, scalability, and integrability. They

also discuss JACK's structural capabilities and JACK's

hierarchical teamwork.

3. Descriptive use case

Our model is based on the typical example of a satellite

network's usage with a variety of autonomous intelligent

agents (AIA) working independently and reporting to a

central controller. Every satellite has sensors, actuators, and

software at the local hierarchical scale, combining

predictive management and artificial intelligence

anticipated to adapt following installation owing to shifting

surroundings and knowledge accumulation (shown in fig.1).

The components of each subsystem may be divided into

hardware and software functions. The kinds, numbers, and

locations of each satellite and other status data, like whether

the satellite has been harmed or its software corrupted, may

all be used to characterize a system at the global hierarchical

level. Observing aims, enemy powers, and visibility are

possible operational environmental elements.

Fig.1. Multi-agent satellites system use scenario

illustration

4. Video Transmission Protocol Model

T&E must be included during the system's development and

life cycle. Given that it is a well-known systems engineering

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 720

model, the "Vee" model of systems engineering provides a

strong base for building a unified framework. The

hierarchy's system levels are connected to several groups of

validation and verification, by the "Vee" paradigm.

Instead of waiting until the full system is finished,

specifications and test schedules are generated early in

development. For instance, tests that check system

performance are created at the beginning of the project when

needs for the complete system are determined, yet they are

not conducted until close to the finish. As a result, Moving

along the left side of the "Vee," the system is planned from

the top down as tests are simultaneously being generated for

that slice. Although the subsystems are constructed, and the

system is linked, test execution is done "bottom up," moving

along the first row on the "Vee." Testing multiagent AIA

systems fails due to the "Vee" model's hierarchical

decomposition assumptions. Most systems development life

cycles involve concept research, technological

development, conceptual design, detailed design,

manufacturing, packaging, testing, launch, operations and

sustainment, and closeout. Similar to the SE Waterfall

Model, identification of requirements, design,

implementation, testing, and maintenance are all parts of the

development process. These methods assume that all

assessment criteria might be provided during a requirements

phase and decomposed into separate either parts or

subsystems. Maintaining a thing enables "fixing" it. Before

deployment but ignores changes in agent behavior after

distribution. AIA systems with several agents defy these

presumptions. It could be hard to decide how the system

should adapt since the environment changes. The threat

capabilities of advanced foes could be unpredictable.

Combinations of subsystems satisfy needs. Satellite

ensembles can complete a task because of their varied

positions and qualifications. Following the satellite after the

program is deployed, it perhaps altered by earth station

software pushes or by the embedded AI interacting and

learning from other satellites in the constellation. Systems

that are difficult to recall do not lend themselves to

incremental or iterative techniques. Even though

subsystems like satellite parts or software are planned,

developed, and extensively tested in real-world scenarios,

the system is only deployed when the satellite is launched.

As a result, a crucial element of our technique up to

deployment is the system engineer "Vee" model, with some

iteration. We provide a "T" phase to test for events during

operation. The running of all relevant tests from the last step

and additional tests to accommodate the code changes may

be necessary to achieve an objective mission amendment.

Testing is required to ensure that embedded AI software

picks up the "right" behaviors. Regular testing is essential

for fault discovery and mitigation when debris and hardware

degradation happen. The last possible assault is on

communication systems, necessitating new intrusion

detection method signatures. Analyze embedded AI's

resilience to unknown vulnerabilities or development issues

like data drift. Feedback ought to come next. They are

learning from existing systems loops to deployment at the

"P" stage. This loop's extension may serve as a development

roadmap. The framework's VTP model is seen in Fig.2.

Fig.2. The VTP framework extends the “Vee” model to

include testing throughout system deployment and a

feedback loop

5. Specialization of Study

Cyber-physical systems incorporating AI are known as

AIAs. The testing and evaluation of the integrated system

should use techniques of testing that are scientifically valid

for each component and consider the testing needs of its

mechanical, deterministic, AI, and electrical components.

T&E should be used to assess algorithmic flaws for

embedded AI. When using neural networks for learning, an

assessment technique is required to gauge performance

sensitivity to input changes or noise. This is crucial to

detecting data contamination and calculating mission

success under tense circumstances. Considering sensor

input and controlling actuators to enable the agent to interact

with its surroundings and exchange information with other

agents in the MAS, other deterministic software supports

the AI capabilities of the software. Coding may be done

using white box methods focusing on structural code

coverage. For COTS or vendor-supplied software, it is

necessary to utilize equivalence partitioning, state transition

testing, use case testing, boundary value analysis, decision

tables, and combinatorial methods. The variation of the

response variables is assigned to independent variables, or

factors, through statistical analysis and assesses system

performance based on factor levels when analyzing physical

components. Design of experiments (DOE) is an analytical

framework for evaluating test adequacy. It is a systematic

process for choosing test cases that span the functional area.

DOE uses embedded software to evaluate complex systems.

Tests to learn about the system are the first step toward

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 721

optimal learning. After learning a Bayesian substitute for the

goal function, the following tests are selected using a

heuristic that iterates over the test space with the greatest

uncertainty and uses regions that maximise the goal-

oriented function. The plans must also look at the autonomy

of the whole integrated system of systems. Although each

subsystem may be isolated in its field and use approved

testing techniques, the hybrid system crosses several fields,

therefore T&E must take it into account. the whole thing.

Testing may be necessary depending on how various

systems interact. For instance, a satellite may need to

comprehend that altering its position can help it to get

around sensor visibility restrictions. Coordination

comprising motors, control software, integrated AI, and

sensors is required to validate this behavior. The list still

needs to be completed. AIA usage situations can need

additional fields. To develop tests that address particular

difficulties, such as attention problems and how to use the

human-computer interaction people and computers may

communicate and grasp collaborative objectives,

researchers evaluating AIAs with significant human-in-the-

loop elements or with people should consider psychological

testing literature. Psychological Subject Matter Expert

(SME) consulting may be able to define criteria for AIA

learning and ensembled AIA collaborative behaviors even

in the absence of human involvement.

6. Chart of test

Testing is carried out at every stage of development to

identify and eliminate issues quickly. The smallest testable

components are subjected to unit testing using simulated

inputs or digital surroundings. When integrated into

subsystems, parts should function as planned. However,

interactions may result in failures or performance problems.

For instance, COTS control software could not assume the

input range of a satellite sensor. When combined, the code

can crash or act strangely. Test suites are available using

combinatorial interaction testing (CIT) to methodically

identify issues brought on by combining several interacting

parts up to a certain interaction size. To create test suites

using tools like Automated Combinatorial Testing for

Software, testers must first define the components, levels

where they should be evaluated, the maximum interaction

size, and limitations. The tester must be able to discretize

continuous levels and know the elements or aspects of

interest in CIT. A system becomes a component in a

complex system via integration testing. AIA satellites come

equipped with control software, actuators, sensors, and

actuator actuators at the local level. System performance is

ensured via integration verification and validation testing.

After being deployed into a constellation, each satellite

transforms into a component of the global system.

Interaction testing determines if the constellation's sensor

coverage is enough for a tactical operation or whether

satellite-ground station communication relays function.

Global environmental factors, such as sight-impairing

storms, may compromise the effectiveness of a mission.

Adversarial attacks could be included in simulations. After

deployment, interactions between subsystems directly

below and external variables like storms that impact the

failures at the global level of the hierarchy may be brought

on by particular satellites' sensor visibility or ground station

connectivity. Approaches for CIT fault localization may

identify the interactions causing the issue. An error may

move up the hierarchy from a component system lower

down. It could be necessary to descend through the

interactions of the order to locate the defective part.

7. Success of the test plan

Rigorous testing in a variety of situations ensures system

performance. The system and relevant ambient elements

define the test input space and their levels. As a result, the

multidimensional test input space is covered by test plan

points. Most tests are costly, time-consuming, and resource-

intensive. An exhaustive investigation of the impact of

variables and factors at the variable and factor level on

system performance is possible thanks to a DOE full

factorial design. Comprehensive testing is not achievable

for complex systems with many groups and components. In

fractional factorial designs, certain effects are aliased, and

variation cannot be entirely allocated. To provide

appropriate knowing the system with fewer test points, the

percentage may produce anomalies between impacts of

more complex interactions that are not anticipated to be

substantial and big impacts. Reduces uncertainty and

determining the ideal system performance factor values are

the goals of optimum learning. With fewer experiments, the

exploration-exploitation heuristic technique may locate the

best location for a component. Though it draws, CIT often

uses a covering array, a multifunctional array in which the

levels specified for the factor under consideration in that test

are reflected in each cell's values, with the columns

denoting variables and the rows denoting tests. This is a

combinatorial array that represents factors, tests, and levels.

Since each possible set of values for interacting

characteristics up to a specific strength is tested, conclusions

about performance in the remaining working area from

fewer tests using physical principles and prior knowledge.

An encompassing array, a multifunctional array in which the

numbers in each cell represent the level provided for the

factor in question in that test, and the rows and columns

imply factors and challenges, respectively, is a common tool

CIT uses when designing test suites. Considering that any

set of values for interacting features to a certain level occurs

in at least one test to detect failures produced on by

interactions up to the required strength, a covering array

may be utilised. One row generates a test if there are more

variables than there are variables with value. suite

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 722

containing some of the factorial's tests and covers some

interactions. Trials expand logarithmically when factors are

added. Interactions coverage is provided by a covering

array, which serves as a test suite. However, defect

discovery is not guaranteed.

Humans often participate in intricate systems. To avoid

aliasing with ambient variables and levels, between-subject

and within-subject experimental design approaches describe

and separate human contributions to test findings. While

within-subject designs pair persons with factors and levels

for comparison, between-subject structures assign

individuals randomly to certain combinations of variables

and classes. The advantages of each approach above are

combined in our framework to integrate data choose the

appropriate test length at all test slices are different growth

phases, and cover the input area systematically at both the

global and local levels. To avoid extensive testing later on

lower-hierarchy components, find errors early in

development. At lower levels of the hierarchy, as inside a

sensor function, the test input area is condensed. Tests may

be accelerated and automated using scripts or simulated

inputs, and test psychics can be calculated. Component

interactions are the main focus of subsystem testing.

Focusing on the most crucial elements may be necessary

when the global system is tested for mission

accomplishment. These data support extensive component

testing but less rigorous global testing. The finest DOE

designs for lower-hierarchy components are full factorial or

fractional factorial designs. Using CIT techniques,

integration interactions could restrict the exponential

expansion of test points. Global upon system installation,

system behaviour could not be known dynamic

environments with learning AI components. When

resources permit, optimal learning may estimate system

limitations and adaptively choose tests. The framework

strikes a compromise between test point count and system

integrity, as shown in Fig.3. While testing a fully realized

system is more difficult and contains fewer test points, the

results are more accurate.

Fig.3. Reliability replaces test points when system design

hierarchy rises

8. Design Framework for Tests

There are no test lists in the framework. Instead, the

framework lists important considerations for thorough test

plan creation. These considerations for the VTP model slice

will lead to various test designs. Future tests must be

designed using operational test slice data during the "P"

phase of the VTP model. To identify adversary compromise,

a system may use testing for combinations of interactions

and programmed checks of each agent in its deployed form.

These tests will guide algorithm changes and prompt

another round of objective testing to confirm agent

upgrades.

Fig.4. Framework that governs test planning.

The framework creates a test plan, as shown in Fig.4. The

domain of study and test hierarchy is based on the current

life cycle phase of the system under test (SUT). Testing tiers

and SUT component identification is determined by the test

hierarchy. The input space for the test consists of elements,

levels, and connections. Considering the expense of doing

every test at the present size and assuming that lower-

hierarchy systems operate as anticipated, test plan efficiency

dictates the test. The structured approach establishes

appropriate test methodologies and goals. The SUT research

topic and test hierarchy determine the test

objective.[21]Goals and test plan effectiveness determine

test techniques. All available historical data is used to

develop the test plan. Three sample situations from the AIAs

life cycle's MAS are shown in Table.1.

Table.1. High-level explanation of how each framework idea helps to direct the creation of test plans

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 723

System

under

test

Phase Field of study Hierarchy of

test

Test plan

efficiency

Goal of test Test methods

Ground

station

operators

for

Constellat

ion

Operation Psychology (AIA

teaming, HCI)

Satellites,

ground

stations,

operators,

environmental

conditions

Operational

system

Focus on

mission goals,

performance

modifications

Mission

success

Human-factor DOE

(subject design)

Al

algorithm

Unit

testing

AI mission

knowledge

Code functions

are

components.

Software

integration

Functions

artificial inputs

Black box

testing using

scripts with

fictitious

programme

inputs

To highlight

the variety of

inputs and

situations

conceivable,

concentrate on

flaws or poorly

understood

needs.

Analyse the

biases in AI

and its

robustness,

performance,

and

dependability.

CIT paired with

ideal learning to

maximise

performance and

minimise uncertain

performance areas

Satellite Testing of

Systems

Integratio

n

Above plus:

• Electronic

hardware •

Software •

Mechanical

systems

AI programme,

sensors,

motors, and

control

software are

the parts.

Integration

takes into

account how

parts send and

receive

information

from other

elements.

Full system

integration

tests in a

virtual space

setting

Pay attention

to how

systems

connect with

each other to

find problems

or drops in

performance.

Check the

system's speed,

dependability,

security, and

ability to work

with other

systems.

DOE mixes well-

known software

interaction areas

with factors about

the surroundings.

The list of academic disciplines that make up the SUT and

from which testing methods should be taken needs to be

completed. Remember our use case, a satellite network with

point detection and wide-area search. The satellite network

intended to monitor The network performs wide-area

searches to comprehend typical traffic patterns and find

actions that could point to possible illicit shipping

operations. After spotting an anomaly, the network has two

major goals: to keep searching a wide region and to keep

tabs on the suspicious vessel. We can navigate with this

background and suggest logical test design architectures.

Early testing of AI algorithms is seen in the first row. The

central controller allocates satellites in our use case to

provide widespread coverage and

tracking. We investigate the main controller's performance,

biases, resilience, and reliability. We can afford a method

that explores high-uncertainty areas with optimal learning

and covers all bases with CIT since simulations are

inexpensive. The CIT architecture may use CIT at a high

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 724

intensity (surrounding several contacts) to integrate unusual

activity in the shipping statistics from the past. The nation,

kind, size, and geographical position of the vessel may all

be included in the CIT test set. The CIT is augmented by

optimum learning in industries with significant uncertainty

or rapidly changing AI algorithm performance. How issues

are impacted by satellite-scale testing is seen in the second

row of Table.1. It is now necessary to test algorithm

performance and system integration. New standards and test

formats are required. The system-centric test design uses an

excerpt of the CIT AI testing scenarios. When simulating

the space deployment, a hardware-in-the-loop test facility

may mimic the inputs of satellite sensors. Active adversary,

weather influences on inputs, AI performance scenario, etc.

Experimental designs look at how the system performs

while running AI algorithms with simulated inputs. We need

to comprehend the connected system's mission

accomplishment after deployment. The need for ground

control station human integration for mission success. The

availability of skilled constellation mission controllers

limits our test size. We assign ground teams utilizing a

within-subject strategy to deployed system situations. The

constellation performs control functions while in operation.

The three scenarios show how to create a test design strategy

for a complex system-of-systems at various sizes that

adheres to Utilising the test design framework and the slice

in the VTP model, the test objective, which is generated

from the field of research and the hierarchy of tests, with the

expected test efficiency. Future scope

Threshold designing, developing, and deploying the VTP

model, this framework considers the research field, the

hierarchy of tests, and the effectiveness of the test plan to

provide an entire test plan. This method combines T&E

methodology and applies to many multiagent AIA

scenarios. In a series of studies, we showed how the

framework might be used for a group of satellites that

performs point detection and wide-area search. To

determine if the framework can be used for complicated

systems and to determine whether any features are required

in order to guide the construction of test plans, additional

use cases must be tested against the framework. Problems

peculiar to the setting gave rise to two new study areas. It

may be possible to do "symmetrical" tests that effectively

repeat the same configuration when integrating a system of

systems with comparable subsystems. Consider testing the

integration of two satellites, 𝑆1 and 𝑆2 with relative

component configurations but at different orbital positions,

𝑃𝑋 and 𝑃𝑌. They share actuators, control software,

algorithms, and payload. Without any restrictions, tests

should be generated that include both combinations of the

satellites. Fig 5. and Table 2 Shows the impact factors of

autonomous intelligent agents refer to the criteria or metrics

used to assess and evaluate the influence, effectiveness, or

significance of these agents and their actions in achieving

desired outcomes. Aspects affecting the influence of self-

sufficient intelligent agents refer to the factors that can

impact the degree of influence these agents have in their

decision-making processes, task execution, and overall

impact.

Fig.5. Impact factors of autonomous intelligent agents

Table.2. Aspects affecting the influence of self-sufficient

intelligent agents

years Impact factors

2005 1.95

2010 2.05

2015 2.10

2020 1.76

An autonomous intelligent agent's impact factor is any

measure or standard by which the agent's influence,

efficacy, or relevance in producing an intended result may

be determined and evaluated in fig 6. Quantiles, in the

context of self-reliant cognitive agents, are statistical

measures used to divide a distribution of performance or

capability into equal intervals shows in table3.

Fig.6. Percentile for autonomous intelligent agents

Table 3. Percentile for autonomous intelligent agents

years percentiles

2005 2.8

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 725

2010 2.7

2015 2.6

2020 2.7

9. Conclusions

Both satellites are replaceable for testing purposes early

before learning or damage. So neither observation is

required. Just the relevant instances should be observed and

examined when testing is expensive. So, a tool for creating

test suites is necessary to prevent symmetrical tests. Using

constraints to solve this problem and create a test suite may

be computationally expensive in large constellations. We

postulate that a partial ordering on certain components could

result in a sequence covering array-inspired covering arrays

devoid of symmetrical checks. To assess how much of the

variation, we suggest analyzing the framework in the

context of the satellite use case to see how well it captures

success and failure and whether task-scale testing can be

used to predict mission success at the top of the hierarchy.

They limit most system modifications because large-scale

testing may be costly and only practical after the

constellation is put into space.

References

[1] Rocha, J., Boavida-Portugal, I. and Gomes, E., 2017.

Introductory chapter: Multiagent systems. In

Multiagent Systems. IntechOpen.

[2] Alaca, O.F., Tezel, B.T., Challenger, M., Goulão, M.,

Amaral, V. and Kardas, G., 2021. AgentDSM-Eval: A

framework for evaluating domain-specific modeling

languages for multiagent systems. Computer

Standards & Interfaces, 76, p.103513.

[3] Qasem, M.H., Hudaib, A., Obeid, N., Almaiah, M.A.,

Almomani, O. and Al-Khasawneh, A., 2022.

Multiagent systems for distributed data mining

techniques: an overview. Big Data Intelligence for

Smart Applications, pp.57-92.

[4] Calegari, R., Ciatto, G., Mascardi, V. and Omicini, A.,

2021. Logic-based technologies for multiagent

systems: a systematic literature review. Autonomous

Agents and Multiagent Systems, 35(1), p.1.

[5] Esposito, D., Schaumann, D., Camarda, D. and Kalay,

Y.E., 2020. Decision support systems based on

multiagent simulation for spatial design and

management of a built environment: the case study of

hospitals. In Computational Science and Its

Applications–ICCSA 2020: 20th International

Conference, Cagliari, Italy, July 1–4, 2020,

Proceedings, Part III 20 (pp. 340-351). Springer

International Publishing.

[6] Gonçalves, E.M.N., Machado, R.A., Rodrigues, B.C.

and Adamatti, D., 2022. CPN4M: Testing Multiagent

Systems under Organizational Model M oise+ Using

Colored Petri Nets. Applied Sciences, 12(12), p.5857.

[7] DeLoach, S.A. and Garcia-Ojeda, J.C., 2010. O-

MaSE: a customizable approach to designing and

building complex, adaptive multiagent systems.

International Journal of Agent-Oriented Software

Engineering, 4(3), pp.244-280.

[8] Balaji, P.G. and Srinivasan, D., 2010. Multiagent

system in urban traffic signal control. IEEE

Computational Intelligence Magazine, 5(4), pp.43-51.

[9] Challenger, M., Kardas, G. and Tekinerdogan, B.,

2016. A systematic approach to evaluating domain-

specific modeling language environments for

multiagent systems. Software Quality Journal, 24,

pp.755-795.

[10] Pantazis, E. and Gerber, D., 2018. A framework for

generating and evaluating façade designs using a

multi-agent system approach. International Journal of

Architectural Computing, 16(4), pp.248-270.

[11] Asici, T.Z., Tezel, B.T. and Kardas, G., 2021. Using

the analytic hierarchy process in evaluating domain-

specific modeling languages for multiagent systems.

Journal of Computer Languages, 62, p.101020.

[12] Hettige, B., Karunananda, A.S. and Rzevski, G., 2021.

MaSMT4: The AGR Organizational Model-Based

Multiagent System Development Framework for

Machine Translation. In Inventive Computation and

Information Technologies: Proceedings of ICICIT

2020 (pp. 691-702). Springer Singapore.

[13] Antelmi, A., Cordasco, G., D’Ambrosio, G., De

Vinco, D. and Spagnuolo, C., 2022. Experimenting

with Agent-Based Model Simulation Tools. Applied

Sciences, 13(1), p.13.

[14] Bellifemine, F., Poggi, A. and Rimassa, G., 2001.

Developing multiagent systems with JADE. In

Intelligent Agents VII Agent Theories Architectures

and Languages: 7th International Workshop, ATAL

2000 Boston, MA, USA, July 7–9, 2000 Proceedings

7 (pp. 89-103). Springer Berlin Heidelberg.

[15] Simmonds, J., Gómez, J.A. and Ledezma, A., 2020. A

brief review of the role of agent-based modeling and

multiagent systems in flood-based hydrological

problems. Journal of Water and Climate Change,

11(4), pp.1580-1602.

[16] Louati, F. and Ktata, F.B., 2020. A deep learning-

based multiagent system for intrusion detection. SN

Applied Sciences, 2(4), p.675.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(19s), 718–726 | 726

[17] Sethi, K., Madhav, Y.V., Kumar, R. and Bera, P.,

2021. Attention-based multiagent intrusion detection

systems using reinforcement learning. Journal of

Information Security and Applications, 61, p.102923.

[18] Jaleel¹, H.Q., Stephan, J.J. and Naji, SA, 2023, June. 1

Baghdad College of Medical Sciences, Baghdad, Iraq

2 Al-Esraa University College, Baghdad, Iraq 3.

In New Trends in Information and Communications

Technology Applications: 6th International

Conference, NTICT 2022, Baghdad, Iraq, November

16–17, 2022, Proceedings (p. 107). Springer Nature.

[19] Nezamoddini, N. and Gholami, A., 2022. A survey of

adaptive multiagent networks and their applications in

smart cities. Smart Cities, 5(1), pp.318-347.

[20] Graham, J.R., Decker, K.S. and Mersic, M., 2003.

Decaf-a flexible multiagent system architecture.

Autonomous Agents and Multiagent Systems, 7, pp.7-

27.

[21] Dr. Vishnu Rajan., & Dr. Gokula Krishnan, V.

(2022). A study on the use of machine learning and

complex hierarchical structures to visualise text

categorization. Technoarete Transactions on Advances

in Computer Applications (TTACA), 1 (2), 8-16.

