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Abstract: By integrating detectors, supervision and communication tools into manufacturing processes, the Industrial 

Internet of Things (IoT) raises productivity, lowers costs and improves the value of products. It is difficult to process 

enormous amounts of information, which makes it difficult to swiftly transition conventional sectors to edge computing. 

This paper provides a unique swarm-intelligent technique named boosted beetle swarm optimization (BBSO) for offloading 

jobs from edge gadgets to edge servers with the lowest latency and energy consumption, taking into account the rapidly 

growing number of industrialized edge items and heterogeneous edge servers. The presented multi-objective optimization 

issue considers job performance cost, consumption of energy and latency. The entire cost of assigning each work to a 

separate mobile edge computing (MEC) server is represented by the fitness coefficient. Using experimentation, the 

effectiveness of the suggested BBSO-driven offloading technique is contrasted with alternative techniques.  

Keywords: Industrial Internet of Things (IIoT), Edge Computing, Latency, Energy Consumption, Job Offloading, Boosted 

Beetle Swarm Optimization (BBSO). 

1. Introduction 

The industry is currently buzzing with the talk of 

5G or the fifth-generation mobile communication 

infrastructure and many connections are the 

primary technological obstacles that 5G networks 

must overcome [1]. The 5G era would unavoidably 

add a significant volume of data to the network, 

taxing the fundamental network's centralized 

processing capacity in addition to placing a strain 

on the back [2]. The idea of computing on the edge, 

which is comparable to computer memory and 

cache, has been implemented in the industry as a 

result of 5G's low latency needs. Users' commonly 

used data is placed closer to users on the border of 

the network to minimize latency and lighten the 

strain on the main network's infrastructure [3]. 

When calculation-intensive activities are 

judiciously sent to a server acting as a proxy that 

has the processing power to handle them and the 

computed results are then retrieved from that proxy 

server, this practice is referred as computational 

loading [4]. The workloads related to computation 

are delivered from smart gadgets to the MEC 

server via computing at the edge outsources. By 

providing cloud computing services near to people 

who are roaming at the edge of the internet 

network, edge computing closes the gap created by 

usual cloud technology [5]. It enables fast active 

reaction times as well as provides flexible and 

universal computing services. The main goal of the 

current edge computing problem is to figure out 

how to use intelligent devices to the edge server so 

that it can take advantage of the services provided 

by the perimeter network [6]. Several tracking, 

perceptual capabilities, acquisition, management 

detectors, mobile networking, intelligent analysis 

along with other techniques are integrated 

continuously. This results in considerable 
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improvements in efficiency in production, product 

quality, utilization of resources and cost decreases 

[7]. Some major developments in the IIoT are the 

processing of data as well as quick and dependable 

transmission via the network. It is impractical to 

send all of the data that smart devices in the IoT 

ecosystem must process to the core network for 

processing [8]. The computer vision-based system 

for detecting product quality is implemented. Smart 

gadgets are equipped with cameras to identify 

photos of products [9]. Once the algorithm used is 

machine learning-trained, it is utilized to identify 

product appearance photos. Sent data over 5G 

networks allows for the scheduling of detection 

jobs to edge computers by configuring those [10].  

Industrial internet of things (IIoT) advancement a 

swarm-intelligent-based job offloading in edge 

computing seems to be an improvement on IIoT 

systems by using swarm intelligence to handle task 

offloading in edge computing settings. 

2. Related works 

The study [11] explored the potential uses of the 

IoT in several fields, including connected gadgets, 

farming, building, health care, farming and 

environmental surveillance. The paper 

[12] addressed the applications of the IoT in 

several domains, including the automotive, 

embedded, smart grid, agricultural, building, 

environmental surveillance, and medical care 

businesses. The study [13] described a complete 

system that tackles these issues and includes the 

structure, design, practical implementation and 

assessment. Through flexible and interoperable 

methods, the infrastructure offered a means of 

gathering, organizing and routing data streams 

from heterogeneous cyber-physical manufacturing 

platforms. The study [14] presented PriModChain, 

a system that combines smart contracts, federated 

ML, ethereal block-chain, differential privacy and 

trustworthiness to impose privacy and reliability on 

IIoT data. The study [15] approach was predicated 

on a registration centre upon a node's initial 

network membership that creates public and secret 

information for it. Advanced functions 

approximating mutual authentication, secure key 

exchange and communication were carried out 

autonomously by the participating nodes after 

enrolment, at which point registering with the 

centre becomes unnecessary. The study [16] 

examined a human-centered IIoT-focused efficient 

light-safe authentication scheme. The study [17] 

documented to facilitate the choice of 

communication interfaces by offering a complete 

impression of the OPC's capabilities and 

applicability. The outcomes were examined and 

analyzed, with a focus on the previously described 

novel paradigms. The paper [18] examined a novel 

architecture for the Industrial IoT that leverages 

digital twins (DTs) to enable federated learning by 

capturing industrial device attributes. Realizing that 

DTs might introduce estimation errors from the 

true device state value, federated learning proposed 

a trusted-based aggregation to mitigate the impact 

of such errors. The study [19] attempted to IoT-

enabled smart systems that can be integrated into 

smart home systems. The study [20] elucidated the 

meanings of the terms Industry 4.0, Industrial IoT 

and IoT. It draws attention to the problems facing 

the realization of this paradigm shift as well as the 

opportunities it presented. It pays special attention 

to the difficulties posed by the need for energy 

efficiency, real-time performance, relationships, 

compatibility, safety and anonymity. The study 

[21] highlighted the major opportunities for DL in 

IIoT in the paper. Initially, it provided an 

impression of several DL approaches and 

convolutional neural networks as well as the way 

they were applied in diverse sectors. The study [22] 

examined a safe wireless technique utilizing 

Blockchain software to store extracted procedures 

of each record into many blocks, hence maintaining 

transparency and securing every smart sensing 

action. 

3. Problem definition 

The intelligent manufacturing facility in the 

workplace sets up many devices, including smart 

phones, cameras with sensors and augmented 

reality devices, for the Industrial IoT scenarios in 

the 5G context. This process is known as multi-

user. Multiple MEC systems are required in the 

manufacturing setting to manage the 

responsibilities of smart devices because of the 

volume of data that must be processed a term 

known as multi-MEC. This research aims to 

confirm that the optimal task offloading site can be 

found and the task offloading outcomes can be 

obtained by applying the BBSO offloading 

technique, which can minimise the overall task 

process latency. This study examines the 

IoT context on the assumption that “there are 

currently 𝑀 smart devices and 𝑁 MEC servers in 

use at the moment”. Only non-divisible jobs are 

taken into consideration and each gadget can 
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submit just one job. A single task could be carried 

out locally or transferred to MEC servers. 

Consequently, each assignment can be completed 

at one of 𝑁 +1 potential slot. In other words, 

offloading to 𝑁 MEC servers is feasible for both 

local and implementation. 

4. System model 

The data centre, three MECs, three example 

situations for power-related programs, wireless 

communication, tracking the environment and 

video surveillance comprise the 𝑁 EC smart 

overload model for power-related IoT, as illustrated 

in Fig.1. It is assumed that there exist 𝑀𝑀 EC 

computers and 𝑁𝑀 OB devices. A service (or 

local) has to be given every job to complete it and 

the collection of all tasks can be represented 

as 𝑁 =  {𝑛1, 𝑛2, 𝑛3, . . . 𝑛𝑙}. Here, 𝑀 + 1 𝑣𝑡 = 

{0,1,2, . . . 𝑀 } has potential outcomes for the 

offload; if 𝑣𝑡 =  0, it indicates that the current job 

is being calculated locally; if 𝑢𝑠 =  𝑀, it indicates 

that the current work is being transferred to the 𝑁th 

MEC server. The ultimate discharge choice vector 

𝑈 =  {𝑢1, 𝑢2. . . 𝑢𝑙} represents the optimal 

assignment of a whole set of data. 

 

Fig.1. Power IoT MEC Smart Transfer Model 

5. Time delay model 

The delay between the request side communication, 

the MEC server surface processing and the 

response side receiving the processed result back is 

known as the server's reply lag. The entire task 

calculation latency is determined by adding the task 

transfer, MEC computing and output delays. The 

resultant delay is disregarded in this work as it is 

significantly less than the initial transmission delay. 

As a result, we find that the MEC computation 

delay and the transshipment delay are identical. 

 

Calculation latency: The services demand process 

described above includes two transfer processes. 

These procedures are carried out through either the 

close of a server or a remote server via the 

network's core. The value 𝑍 =  {𝑤𝑖𝑗 = ∶  𝐼 ∈

 𝑀, 𝑗 ∈  𝑀 } is introduced and here 𝑤𝑖𝑗 =  {0, 1}, 

equation (1). 

 

𝑤𝑖𝑗

=  {
0, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑏𝑦 𝑉𝐹𝑗

0, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖 𝑡𝑐𝑎𝑐ℎ𝑒𝑠  𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑏𝑦 𝑉𝐹𝑗
 

    (1) 

𝑍 = {𝑧𝑖𝑗: 𝐼 ∈  𝑀, 𝑗 ∈  𝑀 } is an established vector 

is a term as indicated by the preceding Equation (2) 

consequently, we have: 

 

𝑧𝑖𝑗 =  {
0,        𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑎𝑡 𝑉𝐹𝑗

1, 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑜 𝑀𝐸𝐶 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖
 (2) 

 

The concept of queues allows one to estimate the 

lag that the MEC server's CPU experiences while 

processing its computational operations. 

 

𝐷𝑖
𝑁 =  

𝑧𝑗𝑖𝑑𝑗𝜆𝑗

𝑣𝑖−∑ 𝑧𝑗𝑖𝜆𝑗
𝑁
𝑗=1

   (3) 

      

Here, 𝑧𝑗𝑖𝑑𝑗𝜆𝑗 represents the overall amount of 

requests that are sent to the MEC server for the 

process and 1/(𝑣𝑖 − ∑ 𝑧𝑗𝑖𝜆𝑗
𝑁
𝑗=1 ) represents the mean 

processing delay for these requests. This fulfils the 

needs. 𝑣𝑖 − ∑ 𝑧𝑗𝑖𝜆𝑗
𝑁
𝑗=1 >0. Comparatively 

speaking, consistency for processing on the 

consumer's side could be achieved as equation (4). 

 

𝐷𝑖
𝑉 =  

(1−∑ 𝑧𝑗𝑖𝑖∈𝐴𝑗
)𝑑𝑗𝜆𝑗

𝜃𝑖−(1−∑ 𝑧𝑗𝑖𝑖∈𝐴𝑗
)𝜆𝑗

   (4) 

 

While the total amount of computing jobs that need 

to be handled locally by the user is(1 −

∑ 𝑧𝑗𝑖𝑖∈𝐴𝑗
)𝑑𝑗𝜆𝑗. 

 

Transmission Latency: The transmission of data 

delay is explored and shown in two cases. The first 

considers the MEC server cache and looks at the 

transfer of time between the gadget being used and 

the server's networks following the request. This 

could be expressed as: 
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𝑆𝐽
𝑉𝑁 =  ∑ 𝑓𝑉𝑁𝑖∈𝐴𝑗

 (𝑧𝑗𝑖𝑑𝑗 + 𝑐𝑗)  (5) 

     

The back link's data transmission experiences delay 

when data is sent from a remote data centre over 

the main network. 

 

𝑆𝐽
𝑁𝐷 =  ∑ 𝑓𝑁𝐷𝑖∈𝐴𝑗

(1 − 𝑤𝑗𝑖)𝑐𝑗  (6) 

      

In the first scenario, denoted by 1 - x. = 0, the MEC 

can directly reply with the user's query for content 

requiring a link to its information facility. In 

conclusion, the sum of execution and transfer 

delays equals the overall latency created by the 

users 

 

𝑆 =  ∑ (𝐷𝑖
𝑉𝑁

𝑗=1 + 𝐷𝑗
𝑉 + 𝑆𝑗

𝑉𝑁 + 𝑆𝑗
𝑁𝐷) (7) 

 

6. Energy consumption model 

This part looks at how much energy the mobile 

phones on the smart production line need when a 

lot of industrialized IoT devices communicate 

actions to the edges of the system, which increases 

the use of electricity. 

 

Calculated energy consumption: There is a 

strong relationship between CPU mathematical 

power and microchip layout, meaning that energy 

consumption in CPU design iterations is 

determined. Within the same design, power and 

rate determine how much energy is used and the 

quantity of computations determines the amount 

energy used in individual elements. 

 

𝐹𝑗 =  𝐷𝑗 ∗ 𝐾2 ∗ 𝑒𝑣𝑗 ∗ 𝐴𝑗 ∗ 𝑒𝑗  (8) 

      

Where 𝐴 the processor task’s quantity of data is, 𝐷 

is the effective switching capacitance, which 𝐾 is 

the voltage, applied to 𝐴. 𝑒 is the number of tasks 

transmitted and 𝐹𝑗 is the present MEC server CPU 

rate. 

 

Transmission energy consumption: There is a 

certain power use ratio for every CPU generation 

and there is a strong relationship between processor 

computing power and architecture.  Electrical 

consumption in a single design is contingent upon 

factors such as voltage, frequency and the number 

of computing tasks executed, hence influencing 

overall device energy consumption. 

 

𝐹𝑠,𝑗,𝑖 = 𝑂𝑗
∗(𝑆𝑗

𝑉𝑁 + 𝑆𝑗
𝑁𝐷)   (9)

    

The present job must be transferred to the MEC 

servers for performance if it requires more 

computing power than the local device can 

manage. The amount of energy used is determined 

by equation (10): 

 

𝐹𝑙𝑜𝑐𝑎𝑙 =  𝐷𝑗 ∗ 𝐾2 ∗ 𝑒𝑣𝑗 ∗ 𝐴𝑗 ∗ 𝑒  (10) 

      

Where 𝐹𝑡,𝑗 indicates the calculation of energy 

consumption, 𝐹𝑡,𝑗indicates the transmission of the 

power use of the 𝑗th task that was offloaded to the 

𝑗th MEC server and 𝐹𝑙𝑜𝑐𝑎𝑙  indicates the power usage 

of the local calculation. 

𝐹 =  𝐹𝑙𝑜𝑐𝑎𝑙 + 𝐹𝑠,𝑗,𝑖 + 𝐹𝑡,𝑗  (11) 

7. Algorithm implementation 

7.1. Boosted Beetle Swarm Optimization 

(BBSO) 

Heuristic optimisation techniques like the Beetle 

Antennae Search (BAS) algorithm are known for 

their minimal complexity and high efficiency. It 

travels in a manner similar to that of beetles in the 

wild, making its way gradually towards food 

sources. This strategy is similar to optimisation 

techniques like Genetic Algorithm (GA), Firefly 

Algorithm (FA), and Particle Swarm Optimisation 

(PSO). BAS has gained appeal in several 

optimisation domains by consistently identifying 

global optimal solutions for complicated issues 

through iterative motions. 

The BBSO approach is thoroughly explained after 

the introduction of the BAS strategy. BBSO gets 

around BAS constraints by taking ground risk 

distribution into account. With M insects, the 

artificial beetle swarm guarantees variety with 

adjustable step lengths. For adaptability, each 

beetle's mobility is enhanced with a proportionate 

ratio. Each beetle's behavior is intended to be 

influenced by the lure operator through social 

indicators. 

Adaptive move size for each beetle: The distances 

that the beetles walk in iteration might be 

determined by their step sizes, which would result 

in varying optimization efficiency and accuracy. 

Equation (10), an adaptive variable as the bug 

advances, can be used to compute the step size, 

represented as Step𝑅𝑎𝑛𝑑𝑗
𝑙, for every insect 𝑗 in a 
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swarm in the 𝑘th move. Even though all of the 

beetles are members of the same swarm, the 

constant 𝐷𝑗  would be different for each insect. 𝐷𝑗is 

set to a positive number that is less than one. 

Equation (12) can be used to determine an adaptive 

step size for each insect 𝑖 in each movement 𝑘. 

𝐹𝑙𝑜𝑐𝑎𝑙 =  𝐷𝑗 ∗ 𝐾2 ∗ 𝑒𝑣𝑗 ∗ 𝐴𝑗 ∗ 𝑒  (12) 

Furthermore, the number of iterations and step size 

are closely connected. It is clear from Equation 

(10), which could further facilitate the 

identification of the anticipated optimal solutions, 

that the step size has decreased significantly in the 

final little iteration when compared to the initial 

few repetitions.  

Random proportionality coefficient: Equation 

(13) could be used to compute 𝑄𝑗
𝑙 , a random 

proportionality coefficient, for a beetle 𝑗 in the 𝑙th 

motion. For a beetle 𝑗, the two constants in this 

equation, 𝑓2
𝑗
 and 𝑓1

𝑖, are used to restrict the range of 

the proportionality coefficient Rik throughout each 

move. In general, given a beetle 𝑗, 𝑓1
𝑖 is greater 

than𝑓2
𝑗
. Furthermore, for certain beetles, these two 

factors, 𝑓1
𝑖 and𝑓2

𝑗
, can vary. To provide the 

necessary unpredictability in the ratio coefficient 

𝑅𝑎𝑛𝑑𝑗
𝑙 is employed to produce a random number 

between 0 and 1. 

𝑄𝑗
𝑙 =  𝑓1

𝑖 + 𝑅𝑎𝑛𝑑𝑗
𝑙  × 𝑓2

𝑗
   (13) 

It is possible to discover the connection across the 

step mass 𝑅𝑎𝑛𝑑𝑗
𝑙of beetle 𝑖 in the 𝑙th move and the 

distance 𝑄𝑗
𝑙  between its left and right antenna once 

a random proportionality coefficient 𝑅𝑎𝑛𝑑𝑗
𝑙 has 

been produced. The direct expression of the 

formula is 𝑄𝑗
𝑙  =𝑅𝑎𝑛𝑑𝑗

𝑙.  

Optimum attraction operator: The suggested 

BBSO method uses a swarm of 𝑀 beetles. More 

insects are drawn to the existing worldwide 

excellent answer as the beetle travels. To offset this 

pull, an ideal want operator is constructed that 

creates a force that points all beetles in the search 

space in the direction of the best possible location 

in the world. Equation (14) represents the ideal 

attraction operator (AF) that links the world's best-

positioned global citizen (GC) with other non-

global persons.  

𝑤𝑗
𝑙 =  𝑤𝑗

𝑙−1 + 𝐵𝐸 . (𝐻𝐷 − 𝑤𝑗
𝑙−1) −

𝑆𝑡𝑒𝑝𝑗
𝑙  . �⃗� . 𝑠𝑖𝑔𝑛(𝑒(𝑤𝐾) − 𝑒(𝑤𝑄))  (14) 

The precision and efficacy of the suggested BBSO 

technique are better enhanced than the usual BAS 

algorithm by integrating the beneficial impacts of a 

beetle swarm with the unique impact of a beetle. 

𝑦3 = (
𝑥2−𝑥1

𝑦2−𝑦1
)

2

− 𝑦1 − 𝑦2   (15) 

 

𝑥3 = (
𝑥2−𝑥1

𝑦2−𝑦1
) (𝑦1 − 𝑦3) − 𝑥1    (16)                                                                                            

 

Point Doubling (PD) is defined as 2𝑃1(𝑥1, 𝑦1) =

 𝑃3(𝑥3, 𝑦3), 

 

𝑦3 = (
3𝑦1

2+𝑏

2𝑥1
)

2

− 2𝑦1     (17) 

 

𝑥3 = (
3𝑦1

2+𝑏

2𝑥1
) (𝑦1 − 𝑦3) − 𝑥1  (18) 

 

Algorithm 1:  BBSO Algorithm 

Input: Set up the swarm originally 𝑋𝑗(𝑗 =

1,2, … . , 𝑛), 𝑣, 𝛿, 

𝑅, hurry choice𝑣𝑚𝑖𝑛  𝑎𝑛𝑑 𝑢𝑚𝑎𝑥  

Output:𝑥𝑏𝑒𝑠𝑡 , 𝑒𝑏𝑒𝑠𝑡 

Conclude each one substances competence. 

While 𝑟 <  𝑅) 

Conclude the inaction price 𝜔 base on 

With each explore train 

Calculate𝑒(𝑋𝑞𝑡)𝑎𝑛𝑑𝑒(𝑋𝑙𝑡)base on 

Modify an exploit that is iterative 𝜉 base on  

Make change to the quickening computation 𝑈 

base on 

Adjust the search's present position cause base on 

End for 

Conclude every solo consumer competence  𝑒 (𝑥) 

Note and stay pathway of each explore 

consumer address 

For each search cause 

If𝑓𝑒(𝑥) < 𝑒𝑜𝑏𝑒𝑠𝑡then 

𝑒𝑜𝑏𝑒𝑠𝑡  ← 𝑒(𝑥) 

End if 

If𝑒(𝑥) < 𝑒ℎ𝑏𝑒𝑠𝑡then 

𝑒ℎ𝑏𝑒𝑠𝑡  ← 𝑒(𝑥) 

End if 

End for 
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8. Results 

The experiments took place using a PC workstation 

outfitted with an Intel Core i7-7700HQ CPU @ 

2.80 GHz processor, 6,144 MB Nvidia GeForce 

GTX 1060 graphics card and 16,384 MB of RAM. 

The existing methods such as genetic algorithm 

(GA) [23], particle swarm optimization (PSO) [23] 

and simulated annealing algorithm (SA) [23] were 

used for this study.  

 

The present research assesses three dumping 

techniques: the GA, SA and PSO-based offload 

techniques. It is believed that the MEC server and 

local hardware are capable of handling tasks in the 

simulated study. A comparison of the overall 

system costs of various offload techniques under 

various energy consumption limitations is shown in 

Figure 2. Ten MEC servers (N) and fifty devices 

(M) are configured. It can be shown that the three 

dumping options' overall system costs will drop, as 

power consumption limitations rise. The cost of SA 

is less than that of GA until the energy usage 

requirement hits 600𝐽/𝑚𝑠, as consumption 

constraints grow and the framework becomes less 

susceptible to petrol consumption difficulties. 

BBSO regularly beats PSO, GA and SA in 

conditions with little energy demand. The impacts 

of SA, GA and PSO do not differ much when the 

energy consumption constraint is around 1000𝐽/

𝑚𝑠. Comparing BBSO to the previous system, the 

entire cost is reduced by around 12%. PSO's overall 

cost is 8.9% lesser than GA's total cost and 22.3% 

lower when the energy consumption restriction is 

set at 0𝐽/𝑚𝑠. 

 

 

Fig.2. Comparison of Total Cost 

 

The first 40 cycles see a quicker convergence of 

GA. The global perfect solution may not be found 

using the SA algorithm, which is a subpar method. 

It is possible to configure a limitless amount of 

devices. This study limited the number of devices 

that might be used in our experiment to 250. Figure 

3 displays the comparative findings of the three 

offloading options' total system costs with varying 

device counts. 

 

 

Fig.3.Comparison of average delay 

 

Fig.4. compares the standard delay of three distinct 

offloading systems under various energy 

consumption thresholds. Particularly when the 

limitation is 0𝐽/𝑚𝑠, BBSO consistently shows 

much fewer delays than PSO, GA and SA. The 

average delay for each of the three techniques falls 

as the energy consumption limitation rises. 

Interestingly, SA's delay becomes smaller than 

GA's when the limitation is 850𝐽/𝑚𝑠. All things 

considered, BBSO performs around 10% better in 

terms of average latency at 0 𝐽/𝑚𝑠 than GA and 

SA. 

 

Fig.4. Comparison of Energy Consumption 

Execution latency and delay in transmission are the 

two categories of delay. The performance delays of 

the three unloading options are compared when the 

number connected devices varies in Figure 5. The 

processing delays of BBSO and PSO, GA do not 
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appear to differ when there are 50 devices. The 

amount of latency rises with the amount of devices 

since the total amount of sensors and the volume of 

data that rises has to be handled. When the total 

amount of devices is fewer than 200, the time 

required for delay of the three offloading strategies 

is the same.  When the processing time is 

considered, BBSO is 30.8% faster than SA and 

16.8% faster than GA with 100 devices. 

 

Fig.5.Comparison of Numbers of Devices 

9. Conclusion 

Energy usage and processing time were balanced 

by introducing a penalty system to reduce queue 

delays. In an IoT manufacturing environment, the 

BBSO technique outperforms GA and SA as job 

and equipment numbers increase, meeting low-

latency demands. However, it could be difficult to 

manage BBSO settings successfully; it takes 

experience to maximize results in the face of many 

obstacles. The research does not examine the 

service requirements for high dependability; 

instead, it considers low-latency and low-energy 

use criteria. According to the analysis of the study's 

findings, the BBSO approach performs better than 

the PSO, GA and SA strategies as the number of 

jobs and equipment increases. This allows it to 

satisfy the requirements of minimal latency in task 

processing inside the IoT. Investigate the potential 

of integrating a machine can be included into the 

BBSO framework to support ongoing development 

and adaptive decision-making. This could entail 

self-optimizing features that adapt settings 

continuously for greater efficiency based on past 

experience. 
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