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Abstract: With the growing prevalence of Alzheimer's disease globally, early and accurate diagnosis becomes imperative for effective 

intervention. Our study leverages a dataset comprising diverse biomarkers and cognitive features, employing advanced machine learning 

algorithms, particularly machine learning methods. The procedure starts with the extraction of features using ResNet, giving preference 

to skip connectors to minimize residual errors. ResNet50 is chosen for its exceptional capabilities in image analysis and classification. 

Parameters of the model are fine-tuned by adjusting them based on the discrepancy between expected and actual class scores. In the 

concluding layer, the SVM model undergoes tuning, specifically in the context of Alzheimer's detection for binary and multiclass 

assignments. Bayesian optimization with Hyperopt systematically explores the hyperparameter space, optimizing variables like kernel 

selection and regularization to enhance the model's effectiveness on the validation set. The proposed model demonstrates promising 

results in discriminating between Alzheimer's disease and normal cognitive aging, showcasing high sensitivity and specificity. The 

integration of multimodal data enhances the robustness of the model, providing a comprehensive and reliable tool for early detection. 

This research contributes to the ongoing efforts to develop precise and accessible diagnostic tools for Alzheimer's disease, with potential 

implications for timely clinical intervention and improved patient outcomes. 

Keywords: Hyperopt, regularization, tuning, convolution block, Activation function, bottleneck, normalization, transition block, Tree-

structured Parzen Estimators, hyperplane, CNN. 

1. Introduction 

MRI can help differentiate Alzheimer's disease from 

other types of dementia or neurological disorders. By 

capturing detailed images of the brain, MRI allows 

healthcare professionals to monitor the progression of 

Alzheimer's disease over time. ResNet-50 introduces 

residual connections, allowing information to skip one or 

more layers during forward and backward passes. 

Residual connections assist in maintaining the flow of 

gradients throughout the network. This addresses the 

challenges associated with vanishing gradients problem. 

The residual architecture enables the efficient learning of 

representations. By allowing the network to focus on 

learning residuals (differences between the input and the 

output), it becomes easier for the model to capture and 

learn complex patterns. Pre-trained models may not have 

learned disease-specific features relevant to Alzheimer's 

disease. If the source domain did not include a diverse 

range of Alzheimer's disease cases, the transferred 

knowledge may not capture the full spectrum of disease-

related patterns. 

CNN-integrated ML is needed to identify Alzheimer's 

early on. Early detection allows for early intervention 

and treatment, which may delay Alzheimer's 

development and improve quality of life. CNNs excel in 

visual data processing, making them ideal for brain scan 

analysis. The method uses These algorithms to extract 

complicated patterns and data from medical pictures, 

improving AD. These integrations allow automated 

screening techniques. These techniques can analyse 

neuroimaging data like MRIs and PET scans to help 

doctors diagnose Alzheimer's early. Automation 

streamlines and scales screening. Traditional AD may 

include subjective evaluations or medical imaging. 

Consistency and a more objective reduction in human 

error are guaranteed by CNN-integrated ML.  They can 

develop models that identify trends and characteristics 

unique to each patient. With this individualised 

approach, physicians may optimise medicines by 

tailoring treatment plans to the unique symptoms and 

progression of Alzheimer's disease in each patient. 

Combining allows large datasets to yield insights. This 

method may be used by researchers studying Alzheimer's 

disease to identify underlying factors, biomarkers, and 

subtle patterns. These discoveries advance our 

understanding, treatment, and prevention of diseases. 
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1.1. Limitations of Feature Extraction using 

Traditional Approaches: 

1.2. Some restrictions affect the efficacy of 

diagnostic models when using image processing 

techniques for the identification of Alzheimer's disease. 

The intrinsic diversity of illness development across 

people is one of  

the main constraints. Alzheimer's disease can present 

itself in a variety of ways, and depending solely on static 

imaging data could not adequately reflect the condition's 

dynamic character over time. Furthermore, irregularities 

and noise can be introduced into the data by the 

heterogeneity of image capture devices and the absence 

of standardised imaging techniques, which may impair 

the detection algorithms' performance. An further 

constraint is the difficulty of attaining specificity in the 

diagnosis of Alzheimer's disease. Techniques for 

processing images may pick up characteristics shared by 

a number of neurodegenerative illnesses, which might 

result in incorrect diagnoses and decreased diagnostic 

specificity. Since the use of medical imaging data 

requires careful management and adherence to privacy 

legislation, ethical considerations around privacy and 

data security also play a role. Furthermore, it is still 

difficult to understand characteristics produced from 

images, which makes it challenging to connect patterns 

found to the molecular mechanisms driving Alzheimer's 

disease. Improving the accuracy and practical 

applicability of image processing techniques for 

Alzheimer's disease diagnosis requires addressing these 

drawbacks. 

There are several restrictions on the use of convolutional 

neural networks (CNNs) for feature extraction in the 

identification of Alzheimer's disease. A notable obstacle 

is the need for extensive and varied datasets. Since 

CNNs are data-hungry models, it can be difficult to find 

a sufficiently large dataset that adequately reflects the 

variability of Alzheimer's disease across different stages 

and patient demographics. Moreover, there is still 

uncertainty regarding the interpretability of the 

characteristics that CNNs extract. Because CNN designs 

are hierarchical and complicated, they might produce 

characteristics that are challenging to understand in the 

context of neurobiology, which hinders our capacity to 

understand the underlying causes of illness. Furthermore, 

CNNs are susceptible to changes in picture quality, and 

the accuracy of feature extraction in medical images may 

be impacted by noise or artefacts. Finally, there may be 

issues with model interpretability and processing 

resources due to the high-dimensionality of CNN-

generated features. Notwithstanding the encouraging 

potential of CNNs, these constraints highlight how 

crucial it is to take into account the unique attributes of 

Alzheimer's disease datasets as well as the 

interpretability of features that are retrieved in order to 

develop precise and clinically relevant detection models. 

1.2. Optimization Techniques & their working for 

Classification: optimization techniques are essential for 

training CNNs effectively, ensuring convergence, 

avoiding common issues like vanishing gradients, and 

enabling the models to generalize well to new data. 

Hyperparameter tuning, especially when performed 

using rigorous optimization techniques, adds a level of 

credibility to the model-building process. It demonstrates 

a systematic and principled approach to finding the best 

model configuration. The categorization of optimization 

techniques is shown in figure 1.  

 

Fig 1: Optimization Categorization 

Grid Search: 

In machine learning, grid search is a hyperparameter 

optimisation method. To determine a model's ideal 

configuration, a predetermined set of hyperparameter 

combinations must be methodically evaluated. The 

model's performance is evaluated for every combination 

of the hyperparameter values, frequently through the use 

of cross-validation. Grid search is a thorough search 

technique that offers a thorough examination of the 

hyperparameter space. By choosing the optimal 

hyperparameter values, it enhances model performance 

despite being computationally demanding. 

• Random Search: 

Unlike grid search, which searches exhaustively, random 

search is a hyperparameter tuning strategy used in 

machine learning that chooses hyperparameter values at 

random from predetermined ranges. Because it 

investigates configurations more haphazardly and could 

identify optimal settings with fewer trials, this strategy is 

computationally efficient. It works well for models that 

have large hyperparameter spaces since it makes it easier 

to explore and find the best possible settings. Cross-

validation is frequently used in conjunction with random 

search to assess model performance over a range of 

hyperparameter combinations. 

• Sequential model: 

In machine learning, a sequential model is a linear stack 

of layers, each of which performs a particular function. 

The architecture for creating and refining neural 

networks is simple and linear. Information moves from 

the input layer across the hidden levels and out to the 
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output layer in a sequential model. This methodology 

works well with more straightforward architectures in 

which the layers of a neural network structure are added 

one after the other. 

• Genetic Algorithms: 

Genetic techniques (GAs) are genetic and natural 

selection-inspired optimization techniques. They involve 

a population of chromosomes, which are possible 

solutions. The algorithm finds optimum or almost ideal 

solutions by evolving and refining the population over 

generations through a process of selection, crossover, 

and mutation. GAs are applied to optimisation issues in a 

variety of domains where the search space is poorly 

understood or convoluted. 

Hyperparameter tweaking, essential to machine learning 

model optimisation, is done via grid search.  A grid 

containing hyperparameter values in each dimension and 

various spots within each dimension to test. The method 

trains and assesses the ML model for each grid 

hyperparameter combination. A comprehensive search of 

the hyperparameter grid's combinations. This extensive 

approach explores the hyperparameter space by 

excluding no configuration. Model performance is 

recorded using the evaluation measure. Grid search 

records the optimal hyperparameter combination.  Grid 

search is comprehensive but computationally costly, 

particularly for large hyperparameter spaces. So, 

practitioners combine grid granularity with computing 

resources and temporal restrictions to strike a balance 

between exploration & efficiency. 

Algorithm for Grid Search: 

Input: Dataset (DS); Algorithm (Algo); θ (hyper 

parameter Space), GS (Grid Search) 

Output: Optimized Parameters 

Result ← {}; 

for i to M do 

θ  select hyperparameter (GS, Algo, θ) 

            Model  train (Algo, θ, DS_train) 

            Result  eval(Model, DS_test) 

end 

θ   Adjust (θ, evaluate (Result)) 

 Hyperopt and grid search are two distinct 

optimization algorithms used in machine learning for 

hyperparameter tuning, each with its own approach and 

characteristics. Grid search is a straightforward and 

exhaustive method that systematically explores 

predefined hyperparameter values across a grid, 

evaluating each combination independently. Although 

straightforward to apply, grid search can be 

computationally demanding, particularly in 

hyperparameter spaces with high dimensions, due to its 

lack of adaptability throughout the optimization process. 

However, Hyperopt uses a more advanced method, the 

Tree of Parzen Estimators (TPE) algorithm, to sample 

hyperparameters dynamically based on performance 

observations and probabilistically model the search 

space. In contrast to grid search, Hyperopt effectively 

explores the hyperparameter space by concentrating on 

promising regions while it iteratively adjusts its search 

method. Because of its versatility, Hyperopt is especially 

useful in handling high-dimensional, complicated search 

spaces, since it has a tendency to converge to optimum 

hyperparameter configurations more quickly than grid 

search. In summary, Hyperopt offers a more flexible and 

effective method for hyperparameter optimisation than 

grid search, which is simple yet thorough. 

2. Literature Survey 

Taher M. Ghazal et al [1] established an ADDTLA 

approach for the early identification of Alzheimer's 

disease. MRI pictures of Alzheimer's disease phases 

from Kaggle were used for training. The ADDTLA 

system model detects and classifies illnesses early using 

MRI images. It has two layers: preparation and 

application. MRI data is changed into a standard file in 

the first one, and a tweaked AlexNet is used for transfer 

learning in the second one. ImageNet-trained AlexNet is 

medically applicable. Alzheimer's disease classification-

specific convolutional, pooling, and fully connected 

layers are used. The updated network is trained on AD 

multi-class labels with output classification at the final 

three layers, fully linked, and softmax. TL improves 

target domain performance by using source domain 

knowledge. Cloud-stored training models are validated. 

The trained model classifies MRI data into Alzheimer's 

disease stages throughout this phase. By using a part of 

the original sample as test data, we can be sure that the 

proposed model is accurate and stable.  Transfer learning 

using a modified AlexNet helps the ADDTLA system 

identify and categorise Alzheimer's disease stages. Large 

datasets and knowledge transfer improve AD detection. 

Janani Venugopalan et al [2] has implemented an 

autoencoder and 3D-CNN methodologies for the 

identification of AD. A number of steps are taken before 

the MRI image data is used. These include filtering out 

noise, head stripping, tissue segmentation, normalisation, 

and co-registration to MNI space. From ADNI1, ADNI2, 

& ADNI GO, 1680 clinical characteristics are derived. 

The numeric data is normalised, and the category data is 

turned into binary using one-hot encoding. This is then 

changed into binary values of 1 or 2 so that they are all 

shown in the same way. Multiple filtering & feature 

selection stages are performed on the raw VCF file with 

3 million SNPs per participant. Select 500 SNP features 
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using mRMR while keeping SNPs on known AD-

associated genes. DL generates intermediate features 

after modality-specific feature extraction. Auto-encoders 

are utilised for EHR & SNP data, 3D CNNs for imaging. 

There is not enough annotated training data for end-to-

end training, hence DL models are used for feature 

representation learning. Using shared weights across 

modules, a 3D CNN is fed regions of interest.  An 

integrated multi-modality DL model uses modality-

generated features. EHR and SNP data are represented 

high-level using stacked denoising auto-encoders. After 

fine-tuning the auto-encoder layers, the softmax layer is 

removed to get intermediate features. The suggests data 

integration at raw, intermediate, and decision levels. 

Hadeer A. Helaly et al [3] has introduced a VGG-19 

technology for the identification of AD. The six phases 

of the framework are as follows: data collection, pre-

processing, augmentation, classification, assessment, and 

application of medical images. To achieve the objective 

of early detection and categorization, each step is 

essential. The ADNI dataset is the source of the 2D T1w 

MRI data. Resampling is used to correct unbalanced 

classes. The dataset undergoes processing, 

standardisation, denoising, scaling, and format 

conversion. To minimise picture noise, denoising is 

accomplished by the use of a non-local methods 

technique. Conventional approaches to data 

augmentation, such rotation & reflection, are used to deal 

with the lack of medical datasets. The AD spectrum is 

divided into four phases, and binary classifications are 

done for each pair. There are two ways to do this: 

building simple CNN systems (2D and 3D) from scratch 

or utilising the VGG 19 model for transfer learning. 

Fully connected, pooling, and convolutional layers are 

components of CNN designs. 

Ahmad Waleed Salehi et al [4] has proposed a CNN 

technology for the identification of AD. Deep learning, a 

form of machine learning, may improve AD detection in 

medical picture analysis. Deep learning algorithms may 

adapt to diverse architectures and hyperparameters.  

Includes input, hidden, & output layers. Performs 

regression and classification on unstructured and levelled 

data. Specialised in audio and picture categorization. 

Works with two-dimensional data using convolutional, 

fully connected, pooling, and normalisation layers. & 

voice recognition utilise it. Learns sequences using step 

and neuron weights. Combines CNN power with quick 

extreme learning machine training. Trains quickly 

without repetitions. Generated graphical models with 

hidden layer unidirectional connections. Layered input, 

hidden, and decoding unsupervised machine learning 

algorithm. Extracts features and reduces dimensions.To 

learn unattended and supervised.  AD diagnosis using 

deep learning algorithms on medical imaging data is 

promising. 

P C Muhammed et al [5] has focused to detecting AD 

from SVM, and DNN methodologies.  Training & testing 

datasets, pre-processing, & extraction of features for 

classification and prediction comprise the common 

model. The new method uses deep learning techniques to 

minimise computing complexity and improve 

performance without pre-processing. AI algorithms learn 

categorization using pictures, text, and audio in deep 

learning. Uses deep neural network architecture with 

several layers. Deep learning is great in computer vision, 

facial recognition, NLP, voice recognition, & 

bioinformatics. Uses ADNI-labeled functional MRI. 

GPU with CUDA-MATLAB support. Transfer learning 

using pre-trained AlexNet, VGG-16, VGG-19, and 

GoogleNet. AD, MCI, and NC MR pictures are in the 

dataset. The proposed deep learning method reduces time 

complexity and improves accuracy over existing models. 

Ahila A et al [6] has introduced a CNN technology for 

the identification of AD. ADNI neuroimaging data was 

used in the research. Traditional 18FDG-PET picture 

capturing includes co-registration, averaging, alignment, 

normalisation, and smoothing. SPM12 programme 

normalises images to 160 x 160 x 96 for analysis using 

an affine model with 12 parameters. Classification 

algorithms include RF, SVM, & ANN, although the 

paper employs a 2D CNN. 3D FDG-PET pictures are 

converted into numerous 2D images using a 2D CNN to 

distinguish AD from NC. Input, three convolutional, two 

subsampling/pooling (P1), dropout, fully connected, and 

softmax classification layers make up the CNN. Max 

pooling reduces feature dimensions at each layer. Non-

linearity is introduced via ReLU activation. 

Hyperparameters are tried and corrected after several 

trials. A maximum iteration of 500 minimises cross 

entropy loss during training. A dropout layer improves 

generalisation and prevents overfitting. Convolutional 

layers extract picture low, mid, and high-level 

characteristics. A feature vector is concatenated and 

given to the fully connected layer and softmax layer for 

classification. 

Sheng Liu et al [7] has implemented DL methodologies 

for the identification of AD. Imaging and diagnostic data 

from ADNI and NACC. Bias correction and spatial 

normalisation to the MNI template were done using 

Unified Segmentation. A 3D CNN was created to 

categorise instances of moderate cognitive impairment, 

Alzheimer's disease, and normal cognition. 

Convolutional layers, instance normalisation, ReLUs, 

and max-pooling were used. Instance normalisation, 

compact kernel & stride in the first layer, and larger 

network architecture were unique design decisions. Data 

enhancement includes Gaussian blurring & random 

cropping. A GB classifier predicted Alzheimer's disease 
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using 138 MRI volume & thickness characteristics. Two-

stage ROI quality control included Gaussian distribution 

fitting for outlier identification and visual inspection. t-

SNE visualised high-dimensional data. Saliency maps 

were created to analyse the deep learning model's 

characteristics and reveal areas that affect its output. 

Santos Bringas et al [8] has developed a CNN 

methodology for the identification of AD. At the AFAC 

creche in Santander, Spain, 35 Alzheimer's patients were 

followed for a week. Participants had Alzheimer's and 

were categorised by GDS stage. Accelerometer data 

sequences recorded three-axis acceleration variations. 

Pre-processing was necessary since the sequences were 

irregularly distributed throughout time and needed to be 

segmented into shorter, uniform-length chunks. For time-

series analysis, core layers use 1-dimensional 

convolutions. Extracts input data properties as feature 

maps. The ReLU added non-linearity. Batch 

normalisation for each mini-batch speeds learning and 

generalisation. Reduced data dimensionality between 

layers while maintaining input mean values. Final 

prediction by feedforward network using convolutional 

layer features. Softmax activation for multi-class 

categorization. Convolutional layers, batch 

normalisation, ReLU activation, pooling, and dropout 

were used. Based on retrieved attributes, fully linked 

layer predicted. Adam optimisation and categorical 

cross-entropy loss function. 10-fold cross-validation with 

80-20 training-testing to minimise overfitting. Goal was 

accelerometer-based Alzheimer's disease prediction. The 

seven-stage GDS was used to label the phases. Adam 

optimisation and categorical cross-entropy loss function. 

Table 1 presents different deep learning approaches and 

integrated approaches for disease detection. 

Table 1: Analysis on Deep Learning & Integrated Approaches Analysis 

Author Algor

ithm 

Merits Demerits Accu

racy 

Taher M. 

Ghazal et 

al 

ADD

TLA 

The 

processing 

stages are 

very less. 

The error rate 

is high. 

91.7

% 

Janani 

Venugop

alan et al 

Auto

Enco

ders, 

3D-

CNN 

The 

images are 

detected 

from all 

possible 

ways. 

Based on the 

quality of the 

image the 

prediction 

time changes 

89% 

Hadeer 

A. 

Helaly et 

al 

VGG

-19 

The model 

can 

classify 

multiple 

classes. 

The data 

augmentation 

techniques 

was not 

appropriate. 

97% 

Ahmad 

Waleed 

Salehi et 

al  

CNN Couple of 

dataset are 

examined 

where the 

performan

ces are 

great. 

Time 

consuming 

was high. 

97% 

P C 

Muham

med 

Raees et 

al 

SVM, 

DNN 

This can 

be 

implement

ed to any 

application

. 

Based on the 

datasets the 

performance is 

being variated. 

80% 

Ahila A 

et al  

CNN This model 

can solve 

several 

The dataset 

was not 

related to 

96% 
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issues at a 

time. 

humans. 

Sheng 

Liu et al 

DL Images can 

be 

automatica

lly 

detected. 

Both analysis 

and 

performances 

has to be 

improved. 

83% 

Santos 

Bringas 

et al 

CNN The 

patterns 

are 

identified 

for every 

stage. 

The dataset 

was little. 

90% 

 

3. Proposed Methodology 

The process starts with feature extraction from ResNet. 

The main advantage of skip connectors in residual blocks 

is their ability to learn the residuals with minimum error 

rate.  Feature extraction using ResNet50 offers several 

advantages in the context of image analysis and 

classification tasks. ResNet50 has gained acclaim for its 

exceptional performance in tasks related to images, 

thanks to its advanced deep convolutional neural 

network architecture. Its depth is a major benefit as it 

enables the network to extract complex, hierarchical 

characteristics from input pictures. ResNet50 solves the 

vanishing gradient problem by including skip 

connections, which facilitates the training of deeper 

networks without sacrificing convergence stability. The 

accessibility of pre-trained weights on big datasets, like 

ImageNet, is another noteworthy advantage. With the 

help of these pre-trained weights, transfer learning is 

made possible, enabling ResNet50 to use the information 

gleaned from a variety of picture data to enhance 

generalisation and accelerate convergence on certain 

tasks with a small amount of labelled data. The network's 

advanced design minimises the requirement for human 

feature engineering by allowing it to instinctively acquire 

and extract pertinent information. ResNet50 is a widely 

used and successful picture classification technique 

because of its depth, skip connections, and transfer 

learning capabilities, which together provide a potent 

tool for feature extraction. The operation of the ResNet 

blocks is covered in the section below. 

1. Convolution Block:  The working of 

Convolution block is shown in figure 2 

 

Fig 2: Layers of Convolution Block 

a. 64-filter convolutional layer measuring 7 by 7: This 

layer performs a convolution procedure using 64 7x7 

filters to extract data from the input pictures. Every filter 

generates 64 distinct feature maps by scanning the input 

and identifying patterns and geographical information. 

The computation of the convolution is shown in equation 

(1) 

𝑁𝑒𝑤_𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑋, 𝑌) =

∑ ∑ ∑ (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑋 + 𝑖, 𝑌 + 𝑗, 𝑃) ∗𝑐
𝑘=1

𝑛𝑓
𝑗=1

𝑛𝑓
𝑖=1

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖, 𝑗, 𝑃)) – (1) 

Where 

nf represents number of features 

c represents number of channels  

Batch normalization: In medical imaging tasks, finding 

suitable initial weights for deep neural networks can be 

crucial. Batch Normalization reduces sensitivity to 

weight initialization, making it easier to experiment with 

different network architectures and training 

configurations. Batch normalisation is used to normalise 

the activations after convolution, which lessens internal 

covariate shift. By keeping each feature's size and mean 

constant throughout the mini-batch, this improves 

training stability and quickens convergence. The 

computation is shown in equation (2) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑋𝑖 , 𝑌𝑖) = 𝛾 ∗

∑
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑋𝑖,𝑌𝑖)−𝜇

√𝜎2
2

+∈

𝐾
𝑖=1  - (2) 

Where 

γ is a learnable scale parameter 

µ is mean of the corresponding kernel 

k is the kernel size or filter size 

σ^2 is standard deviation of the corresponding kernel 

∈ is avoidance parameter to handle run exception c.  

ReLU activation: ReLU induces sparsity in the network, 
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meaning that only a subset of neurons is activated for a 

given input. ReLU allows ResNet-50v2 to model more 

complex relationships in the data, enhancing its 

representational power. The ability to capture non-

linearities is important for the model to learn and discern 

the subtle patterns indicative of Alzheimer's disease in 

medical images. By substituting zero for every negative 

value in the feature maps, it encourages the discovery of 

subtle patterns and enhances the network's capacity to 

represent complex connections in the data. 

d. Max pooling:  In Alzheimer's disease detection, 

medical images, such as MRI scans, often contain 

hierarchical patterns and features at different scales. Max 

pooling allows the network to focus on the most relevant 

features while reducing the spatial resolution. Max 

pooling is used to reduce the computational complexity 

and improve translation invariance by down-sampling 

the spatial dimensions of the map of features. By 

choosing the greatest value, this process helps with 

abstraction & feature preservation by preserving the 

most significant data from each local area. Max pooling 

acts as a form of regularization by discarding less 

informative details 

2. Residual Block: It is otherwise called to be 

“Bottleneck”, which contains 3 important components. 

The main component of the residual block is “identity”, 

which directly pass the gradients to the main deep layers 

directly ignoring the intermediate layers. Figure 3 

represents the working of the residual block. 

 

Fig 3: Working of Residual Block 

The incorporation of a detour or skip connection, which 

permits the input to circumvent one or more layers, is a 

crucial element. The residual block models the 

discrepancy between the intended output and input. By 

using the fast link to add identity mapping, the network 

is pushed to learn only the residue rather than the whole 

change. Batch normalisation normalises activations and 

reduces internal covariate shift in each residual block. 

ResNet50v2 stacks residual blocks. The network learns 

hierarchical characteristics of various complexity via 

stacking. Skip connections guarantee smooth gradient 

flow during backpropagation, allowing deep network 

training without deterioration. Residual Blocks promote 

"global residual learning." This method allows direct 

information flow from input to output, making deep 

network training easier without compromising 

performance. 

2. Transition Block: Transition Blocks usually 

comprise layers of pooling and convolution that 

minimise feature map spatial dimensions. Downsampling 

compresses data and highlights key characteristics, 

making higher-level representations easier to extract. 

Stage transitions may affect channel count. Transition 

Blocks use 1x1 convolutions to alter feature map 

channels, maintaining network compatibility. Transition 

blocks often use batch normalisation to stabilise and 

normalise activations, speeding training convergence. 

ReLU activation functions help networks learn 

complicated patterns by introducing non-linearity. 

Transition blocks facilitate network information flow. 

These blocks help solve the disappearing gradient 

problem by changing the size and shape of channels and 

space dimensions. This makes backpropagation and 

learning work well in more complex network designs. 

Transition blocks simplify calculation. Reduced spatial 

dimensions and wise channel size adjustments let these 

blocks maximise resource use during training and 

inference. Transition blocks simplify calculation. 

Reduced spatial dimensions and wise channel size 

adjustments let these blocks maximise resource use 

during training and inference. The block structure of 

transition block is shown in figure 4. 
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Fig 4: Transition Block Architecture 

3. Global Average Pooling: Global Average 

Pooling averages feature map values across spatial 

dimensions. This reduces spatial information to one 

value per feature map. Global Average Pooling cuts 

model parameters more than completely linked layers. 

Reduced overfitting, computational efficiency, and 

model complexity are beneficial in DNN like ResNet50. 

Global Average Pooling is more informative by 

averaging instead of maxing. To preserve spatial 

hierarchies and critical spatial linkages in the final 

feature vector, this is necessary. Global Average Pooling 

improves generalisation. It works like regularisation by 

collecting the most important data from each feature map 

and showing it all in one place. This helps the model 

focus on important trends and become less sensitive to 

specific places. Input picture size compatibility is a 

major benefit of Global Average Pooling. Global 

Average Pooling adjusts to spatial dimensions, making it 

more adaptable and appropriate to a variety of input sizes 

than completely linked layers. The computations in GAP 

layer are shown in figure 5 

 

 

Fig 5: Working of GAP Layer 

4. Dense Block: Typically, layers of convolution 

and pooling produce a three-dimensional tensor. This 

tensor is first turned into a one-dimensional vector by the 

Fully Connected Layer. This procedure deconstructs the 

spatial structure & converts retrieved characteristics into 

classification-ready format. Fully linked Layers have 

neurons linked to all preceding layer activations. Each 

link has a weight, which the layer learns throughout 

training. The layer's neurons weight sum input values 

and apply biases to alter the feature vector. A ReLU or 

softmax activation function is usually used by the FC 

Layer after the weighted sum. This gives the model non-

linearity to capture complicated data linkages and 

patterns. Final class scores or forecasts come from the 

Fully Connected Layer. Each neuron in this layer may 

represent a class in picture classification, and the output 

values reflect the input's class probability or confidence. 

During training, the model learns important Fully 

Connected Layer weights and biases. The model is 

optimised for accurate predictions by adjusting these 

parameters depending on the gap between anticipated 

class scores and real labels. Figure 6 presents the 

working of dense block 
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Fig 6: Working of Dense Block 

Classification using Tuned Transfer Learning: The last 

layer of the model is designed by the tuning the SVM 

model. SVMs can be used for binary and multiclass 

classification tasks. In Alzheimer's detection, the 

problem may involve classifying subjects into categories 

such as normal, mild cognitive impairment (MCI), and 

Alzheimer's disease stages. Bayesian optimization, as 

implemented by Hyperopt, is particularly efficient for 

exploring the hyperparameter space. SVMs have 

hyperparameters, such as the choice of kernel, 

regularization parameter (C), and kernel-specific 

parameters (e.g., gamma for the RBF kernel). 

Hyperparameter tuning helps find the combination of 

hyperparameters that maximizes the model's 

performance on the validation set. 

1 Working of HypOpt: Hyperopt is a Python library 

designed for automating the process of hyperparameter 

optimization, a crucial step in fine-tuning machine 

learning models. The library uses methods such as Tree-

structured Parzen Estimators (TPE) in order to provide a 

Bayesian optimisation strategy. Finding the collection of 

hyperparameters that maximises or minimises a chosen 

objective function—a measure of the model's 

performance—is the primary goal of hyperparameter 

optimisation. In order to work, Hyperopt proposes 

hyperparameter configurations repeatedly, evaluates 

them employing the objective function, and modifies its 

search method in response to observed outcomes. 

Hyperopt can effectively search the hyperparameter 

space and converge to optimum or nearly optimal 

configurations thanks to this iterative approach. In Figure 

7, the operation of Hyperopt is displayed. 

 

 

Fig 7: Hyperopt Work Flow for Tuning Process 
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The user must define the goal function and the 

hyperparameter search space in order to use Hyperopt. 

Every hyperparameter's range or values, whether 

continuous, categorical, or discrete, are specified in the 

search space. The goal function, which takes in a set of 

hyperparameters and outputs a single metric that has to 

be optimised, must also be specified by users. TPE is one 

of the most widely used optimisation methods supported 

by Hyperopt. Based on their unique optimisation 

challenge and available computing power, users choose 

the algorithm. After setup, the optimisation procedure 

entails executing Hyperopt, which recommends 

hyperparameter settings, assessing them via the objective 

function, and modifying its internal model in response to 

the performance data obtained. 

Hyperopt uses an iterative optimisation method, honing 

its search approach in response to the findings of earlier 

analyses. Because it is iterative, it can effectively explore 

the hyperparameter space and adjust to the peculiarities 

of the optimisation issue. Hyperopt can handle large and 

high-dimensional parameter spaces with robustness 

because it balances exploration with exploitation through 

the use of probabilistic modelling and Bayesian 

optimisation. Hyperopt drastically lowers the amount of 

human labour needed for testing by simplifying the 

hyperparameter tuning process. This makes it an 

invaluable tool for practitioners looking for an effective 

and efficient model setup. With its adaptability, 

scalability, and capacity to manage many 

hyperparameters, Hyperopt is a well-liked option among 

machine learning experts for enhancing model 

performance. 

Input: Target score function H(θ), hyper-parameter space 

θ, max no of evaluation nmax 

  Select an initial hyper-parameter configuration 

θ0 Є θ 

Evaluate the initial score y0= H(θ0) 

Set y* = H(θ0) and θ* = θ0 . 

For n=2, ..., nmax do 

Choose an alternative set of hyperparameter values θn Є 

θ using some optimization strategy  

Evaluate H to obtain a new numeric score yn = H(θn) 

If yn < F* 

θ*= θn and y* = yn 

End if 

end for 

Output: θ* and y* 

Working of Tuned SVM: The data points that are nearest 

to the hyperplane and have an impact on its location are 

known as support vectors. These points are crucial in 

defining the margin and determining the optimal 

hyperplane. The main objective of SVM is to find the 

hyperplane that maximizes the margin between classes. 

The objective function can be achieved in two ways One 

versus One and One versus All. The proposed research 

uses one versus one and defines the computation of the 

objective function as shown in equation (3) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑆𝑉𝑀 = min(
1

2
∗

∑ 𝑊𝑖
2 +𝑛

𝑖=1 𝐶. ∑ ∑ ∈𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 )- (3) 

n is the number of classes 

W_i are the weights and bias terms for the ith SVM class 

label 

C is the regularization parameter controlling the trade-off 

between maximizing the margin and minimizing the 

misclassification error 

∈_ij slack variables allowing for misclassifications. 

 

Hyper parameter Description Equation Possible Values 

C 

The regularisation parameter is 

responsible for managing the trade-off 

between obtaining a low testing error and 

a low training error. Reduced 

regularisation is the outcome of higher 

values of C. 

min(
1

2
∗

∑ 𝑊𝑖
2 +𝑛

𝑖=1 𝐶. ∑ ∑ ∈𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 )- (x) 

Any fractional 

value on the scale 

of 10 

Kernel 

The kind of kernel that is used linear, 

polynomial, radial basis function (RBF), 

etc.—is specified by this 

hyperparameter. The particulars of the 

data and the issue being solved will 

determine which kernel is best. 

𝐾 = 𝑒−𝛾∑ 𝐼𝑛𝑝𝑢𝑡𝑖−𝜇𝐼𝑛𝑝𝑢𝑡
𝑛
𝑖=1

2

 

γ is a positive parameter 

[RBF, Linear, 

Sigmoid, 

Polynomial] 

Degree 

This hyperparameter shows the degree of 

the kernel that is polynomial if the kernel 
 𝐷 = 𝛾𝜇𝐼𝑛𝑝𝑢𝑡 ∗ ∑ 𝐼𝑛𝑝𝑢𝑡𝑖

𝑛
𝑖=1 + 𝑟𝑑 

r is a constant term. 

Any positive 

integer 
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is polynomial. d is the degree of the polynomial 

gamma 

The kernel coefficient for polynomial 

and RBF kernels is the gamma 

hyperparameter. Decision boundaries get 

increasingly difficult as values increase. 

  

decision_function_ 

shape 

This hyperparameter determines the 

shape of the decision function. 'ovo' 

stands for one-vs-one, and 'ovr' stands 

for one-vs-the-rest. 

  

Table 2: Parameter Description 

Optimizing the performance of the Support Vector 

Machines (SVM) involves a critical tuning process. The 

*C parameter is a crucial parameter that affects how well 

training points are classified and how well a smooth 

decision boundary is achieved. A lower C number allows 

for a more flexible boundary that accepts certain 

misclassifications, whereas a higher C value places a 

stricter bar for precise categorization. To avoid the 

model being over- or underfitted to the training set, 

tuning C involves striking a balance. Moreover, the 

success of SVM depends on the **kernel function* 

selection; popular options include polynomial, linear, 

and radial basis function (RBF). RBF is often used 

because of its flexibility, depending on the kind of data. 

By adjusting kernel parameters, such as the degree in 

polynomial kernels and the gamma parameter in RBF, 

the model may more accurately represent complicated 

relationships in the data. 

Using the *class weights argument to address class 

imbalances is another crucial component. Giving the 

minority class a larger weight in situations when one 

class outnumbers the other by a substantial margin aids 

the model in prioritising accurate forecasts for both 

groups. Furthermore, the tolerance for mistakes in 

regression tasks is influenced by optimising the 

**epsilon parameter* in the SVM regression model. A 

more sensitive model, which fits the training data 

accurately but may cause overfitting, is produced by a 

lower epsilon. On the other hand, a greater epsilon 

permits greater flexibility and can handle a wider variety 

of data patterns. To fully utilise SVMs for classification 

and regression tasks, careful parameter tweaking that 

takes into account the unique features of the dataset is 

necessary. 

To get the most performance out of the model and 

modify it to fit the unique features of the dataset, Support 

Vector Machines (SVM) must be tuned. The behaviour 

of SVMs is determined by a number of parameters, 

including the kernel type, related kernel parameters, and 

the regularisation parameter (C). Adjusting is necessary 

because varying datasets and workloads need for 

customised setups to achieve the ideal ratio of 

generalisation to model complexity. Inadequate fine 

tuning might cause the SVM to either overfit or underfit 

the training set, producing less than ideal results. SVMs 

may detect intricate patterns and improve predicted 

accuracy when their parameters are appropriately 

modified to take into consideration variables such as 

class imbalances and data characteristics. As a result, 

tuning is essential to optimising SVM performance in a 

variety of applications and guaranteeing solid and 

trustworthy machine learning results. The SVM 

computations are displayed in Figure 8. 

 

Fig 8: Kernel Computations in SVM 
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4. Results & Discussion: 

 

Fig 9: Summary of Neural Network 

Figure 9 represents the summary of the interconnected 

layers in the neural network. The pooling used is the 

global average pooling. There are 9 dense blocks 

involved in each different dimension. Batch 

normalization has been used after every two dense 

layers. This sequence of layers represents the basic 

building blocks. 

 

Fig 10: Epochs Report 

The above figure 10 represents the training phase of the 

model. This shows the number steps per training epoch 

with the losses and accuracies at each epoch during 

training. It can be observed that the accuracy has been 

increasing by the end of the training of epochs. 
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Fig 11: Accuracy & Loss Reports 

Figure 11 represents the accuracy graph per epoch. It 

compares training data to compare the performance at 

every step. Training data is gradually increasing whereas 

loss is decreasing gradually. The accuracy and loss are 

on the y-axis on the respective graphs. The epoch is 

denoted on the X-axis in the both graphs 

 

 

 

Fig 12: Classification Reports 
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There are multiple classes namely, very mild demented, 

moderate demented, non-demented etc. The proposed 

model predicted the class labels as shown in the above 

figure 12. The comparison of actual and predicted class 

labels is performed. The proposed model is efficient to 

recognise the features and identify the disease. 

5. Conclusion 

To sum up, our study on the identification of Alzheimer's 

disease highlights the need of using machine learning 

techniques to provide an early and precise diagnosis. The 

utilization of diverse biomarkers and cognitive features, 

coupled with advanced algorithms, has shown promising 

results in effectively distinguishing individuals with 

Alzheimer's disease from those experiencing normal 

cognitive aging. Using ResNet50 for visual analysis and 

classification, features are extracted, parameters are 

adjusted based on differences between predicted and 

actual class scores, and the SVM model is tuned for 

Alzheimer's detection through the use of Hyperopt and 

Bayesian optimisation. The developed model, 

particularly employing machine learning techniques, 

exhibits high sensitivity and specificity, highlighting its 

potential as a reliable diagnostic tool. The integration of 

multimodal data further enhances the robustness of the 

approach, contributing to the ongoing pursuit of precise 

and accessible diagnostic solutions for Alzheimer's 

disease. As this continue to advance in the realm of 

machine learning and healthcare, the findings of this 

study hold promise for facilitating timely clinical 

interventions and improving the overall management of 

Alzheimer's disease, ultimately leading to enhanced 

patient care and outcomes. 
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