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Abstract: The success of machine learning models heavily relies on the quality and diversity of the datasets used for training and 

evaluation. This paper discusses the process of dataset generation and building machine learning models. Support structures are essential 

for accurate 3D printing of complex geometries, preventing sagging and deformation, and ensuring stable, high-quality prints with 

careful adjustment of print settings. In this work, different Machine Learning techniques are used and evaluated based on their 

performance of classifying the need for support during the 3D printing process. The ultimate objective is to classify the model in terms of 

‘need support Y/N’.In pursuing this objective, different Machine Learning techniques are utilized to classify different CAD models. The 

different machine-learning classification techniques applied in this work are Logistic Regression, Support Vector Machine, Random 

Forest, K-Nearest Neighbours, Decision Tree, and Gradient Boosting. The comparative study based on 6 different performance measures 

suggests that the Random Forest algorithm works with an accuracy of 0.97 well for classifying the need for support into categories based 

on the values provided for the process parameters. Finally, SHAP& LIME analysis shows the significance of each feature in the 

prediction of the need for support. This study can be extended for independent variables including curvature/taper in the build direction 

and dependent variables as type of structure and type of build adhesion which may be a powerful tool to predict the mechanical 

properties better.  
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1. Introduction 

1.1 Background 

The increasing complexity of real-world problems 

necessitates advanced machine learning models. However, 

the efficacy of these models is intrinsically tied to the 

quality and representativeness of the datasets they are 

trained on. This paper aims to interpret the significance of 

dataset generation in the context of building robust 

machine learning models. 

Support structures in 3D printing (3Dp) depend on the 

geometry of the object and the printer's capabilities[1]. 

Factors to consider include the overhang angle, geometry 

complexity, material and printer characteristics, layer 

adhesion, print orientation, printing software features, 

material considerations, print speed and temperature, post-

processing considerations, and test prints[2]. Overhangs 

can be handled by most 3D printers, while complex 

geometries may require support to maintain print 

accuracy[3]. Materials and printers have varying 

capabilities, and support structures help maintain layer 

adhesion[4]. Print orientation can also minimize the need 

for supports[1]. Print speed and temperature can also 

influence the need for supports. Post-processing 

considerations involve determining how easy it will be to 

remove support structures after printing[5]. Test prints can 

help identify potential issues and refine settings before 

committing to a full-scale print[6]. 

A labeled dataset of 96CAD models with 5 different 

orientations used to test the binary classification 

approaches of Logistic Regression, Support Vector 

Machine, Random Forest,K-Nearest Neighbours, Decision 

Tree, and Gradient Boosting. Our objective is to construct 

binary classifiers that can distinguish between the printing 

model's need support or not. We evaluate how well these 

methods work to identify support requirements for the 

printing portion. 

2. Dataset Generation 

2.1 Data Collection Techniques 

In 3D printing, various types of datasets are generated, 

depending on the nature of the printing process[7], the 

sensors or monitoring systems in use[8], and the desired 

information[2]. Here are several types of datasets 

commonly associated with 3D printing such as toolpath, 

deposition rate, and cooling time[9] , Temperature 

measurements at different points on the build plate, nozzle, 

or inside the print chamber during the printing process[10], 

Data on the movement speed and acceleration of the 3D 

printer's print head during the printing process[11] , 

Records of any detected defects, errors, or anomalies 

during the printing process [8]and Information about the 
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printed object's geometry, dimensions, and 

accuracy[12][13]. And also the Point cloud data sets[14]. 

Some work done to extract the features by parsing the 

sliced STL file [15]. But none of the dataset can be utilized 

to predict the need of structure and build adhesion in prior. 

In this study the dataset is generated using small alphabets, 

capital alphabets and numbers. The wall-based 

technique[16] used in this study helps in understanding the 

overall structure of the 3D print and provides insights into 

how the geometry is built up layer by layer. This method 

plays a pivotal role in adapting 3Dp settings to varying 

orientations of the alphabet, as illustrated in Fig.1a. It is 

essential to recognize that a block in a specific orientation 

cannot be successfully printed using the same 3Dp settings 

as another orientation. The unique characteristics of each 

orientation necessitate tailored settings for a successful 

3Dp process. Fig.1b & Fig.1c exemplifies how the wall-

based technique captures these distinctions. 

A notable distinction in the wall-based technique lies in the 

number of walls, denoted as Wall 1 Wall 2 etc and its 

printing behavior. This distinction is critical as it directly 

influences the structural integrity and complexity of the 

printed object. The need for support structures and build 

plate adhesion settings further emphasizes the intricate 

adjustments demanded by the different build orientations. 

The input feature vector undergoes substantial changes to 

accommodate the distinctions of different orientations. As 

the build orientation shifts to different degrees, additional 

considerations become pivotal for a successful 3D print. 

The introduction of the following features reflects the 

adaptability of the wall-based technique:  

‘dX’,’dY’,’dZ’,'now','Fwall','nowp','Farea','offset','maxoffs

et_bed','Wanother','maxoffset_anotherW','Wair','Wair_part

ial','max_support' 

1. Bounding box X, bounding box Y, Bounding box Z 

(dX','dY','dZ'):- These parameters define the 

dimensions of the bounding box in the X, Y, and Z 

directions, respectively. They represent the maximum 

space available for 3D printing within the specified 

limits. 

2. Number of walls (‘now’): - This refers to the count of 

walls being printed in the 3D model. Walls are typically 

structures that enclose the printed object 

3. Is the first wall printing on bed? How many walls are 

printing on the bed? ( 'Fwall','nowp') - Indicates 

whether the first wall is in contact with the print bed 

and how many total walls are printing on the bed. The 

"bed" is the surface where the 3D printing process 

starts. 

4. Minimum area of the first layer('Farea'):- This 

represents the smallest surface area of the initial layer 

being printed. It's a critical parameter for ensuring 

proper adhesion to the print bed. 

5. Is there an offset in the first layer and last layer of wall 

printing on the bed? (offset') :- This question is asking 

if there is a positional difference (offset) between the 

first and last layers of the walls printed on the bed. 

6. What is the maximum offset between the first layer and 

the last layer of walls printing on the bed? 

('’maxoffset_bed',):- 

If there is an offset, this specifies the maximum allowed 

distance between the first and last layers of walls 

printed on the bed. 

7. How many walls are printing on another wall? 

('Wanother') 

Refers to the number of walls that are being printed on 

top of or adjacent to other walls. 

8. What is the maximum offset between the first layer and 

the last layer of walls printing on the other wall?         

('maxoffset_anotherW'):-Similar to question 6 but 

specifically for walls printed on other walls. 

9. How many walls are fully printing in the air? ('Wair') :- 

Indicates the number of walls that do not have any 

support from the print bed or other structures during the 

printing process. 

10. How many walls are partially printing in the air? 

(Wair_partial') :-Refers to the number of walls that 

have some support but are not fully connected to the 

print bed or other structures. 

11. What is the maximum unsupported area of the first 

layer of the wall printing in the air?  ('max_support'):-

Specifies the largest area of the first layer of walls that 

is not supported by the print bed or other structures. 

In summary, these parameters are essential for optimizing 

the 3D printing process, ensuring proper adhesion, and 

understanding the required support structural 

characteristics of the printed object. In the context of the 

wall-based technique, the specific characteristics of walls, 

with straight edges but tapering in the z-direction, 

introduce additional complexity. Notably, the sides of the 

start and end layers differ due to this tapering, underscoring 

the need for detailed consideration in the 3Dp settings. As 

the complexity of the printed part increases, the dataset 

adapts by incorporating additional wall features. This 

adaptive nature of the wall-based technique is a testament 

to its versatility in accommodating diverse geometries and 

orientations in 3Dp, providing a robust framework for 

capturing the intricacies of the layer-wise printing process. 
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(a) 

 

(b) 

 

 

(c) 

Fig.1: Wall based technique- (a) Rotation and Flip of the 

3D model (b) No. of walls generated (c) Visualization of 

walls. 

Understanding the variation of dependent and independent 

variables is crucial for feature selection, model building, 

and interpretation of results in machine learning tasks[17], 

[18]. Proper preprocessing, handling of missing values, 

normalization, and encoding categorical variables are some 

of the steps involved in managing the variation of variables 

effectively for model training and evaluation[19]. 

Below Table 1 shows sample dataset generated for the 

digit ‘4’ at 900. 

Table 1: Sample dataset generated for the model at 900 

 

In summary, the variation of dependent and independent 

variables in experiments involves careful manipulation and 

observation of factors to understand their relationship. 

Fig.2 shows the variation of the distribution of dependent 

variable ‘need support’ values provides insights into the 

patterns and characteristics of the outcomes.  

 

(a)  

(b) 

Fig. 2. Shows (a) the variation of the dependent variables 

and the independent variable for the experiments and (b) 

distribution of dependent variables values. 

The describe () method in pandas generates descriptive 

statistics that summarize the numerical attributes 

(columns) of a DataFrame. Table 2 statistics provide 

valuable insights into the distribution, central tendency, 

and spread of the numerical data within each column of the 

dataset generated. 

Table 2. Average values, standard deviation, standard 

error of dependent variables and the independent variable 

for the experiments 

 

2.2 Data Augmentation 

Augmenting datasets through techniques such as rotation, 

and flipping to increase the diversity of the training data 

without collecting new samples. Data augmentation in the 

context of 3Dp involves creating variations of the existing 

dataset to enhance the robustness and diversity of the 

training data for a machine learning model. In the case 

described, where the dataset captures different orientations 
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and characteristics of 3D printed objects, data 

augmentation techniques can be applied to generate 

additional training examples. Here's how data 

augmentation worked for the given case: 

1. Rotation: 

● Original Data: A model with a specific orientation 

(e.g., flat, at an edge). 

● Data Augmentation: Create variations by rotating the 

CAD model at different angles (e.g., 90 degrees, 180 

degrees, etc.). 

● Impact: This helps the model generalize better to 

objects printed at various orientations. 

2. Flipping: 

● Original Data: A model with specific characteristics. 

● Data Augmentation: Generate variations by flipping 

the CAD model horizontally and/or vertically. 

● Impact: Mimics different scenarios where the object 

might be flipped during printing, providing a more 

comprehensive training set. 

2.3 Exploratory Data Analysis: 

It refers to the critical process of performing initial 

investigations on data to discover patterns, to spot 

anomalies, to test hypothesis and to check 

assumptions with the help of summary statistics and 

graphical representations. Analysis done to understand 

the data first and try  to gather as many insights as 

possible from it. 

• Dataset comprises 480 observations and 14 

characteristics. 

• Out of which 13are independent variables and the rest 

1aredependent variable. 

• Data has only float and integer values. 

• No variable column has null/missing values. 

2.4 Explaining Algorithm: 

Feature Selection is the process used to select the 

input variables that are most important to Machine 

Learning task[20]. 

2.4.1 Feature importance 

Feature importance can be extracted directly from 

Decision Trees and Random Forest Classifier[21][22], 

but it's not a standard concept for Naive Bayes and 

KNeighbors Classifier[18],. For Naive Bayes, the 

algorithm assumes that all features are conditionally 

independent, so there isn't a concept of feature 

importance in the same way as in decision tree-based 

models. Fig.3 (a) & (b) shows how feature importance 

extracted from Decision Trees and Random Forest 

Classifier. 

 

(a) 

                                                                                   

 

(b) 

Fig. 3.  Feature importance: (a) Decision Tree   (b) 

Random Forest Classifier 

For KNeighbors Classifier, there is no inherent feature 

importance as it doesn't build a model with coefficients for 

each feature. For KNeighbors Classifier, a common 

approach is to use univariate feature selection methods like 

Select KBest with statistical tests such as chi-squared, 

ANOVA, or mutual information [23]. The plot shown in 

Fig.4(a) is the chi-squared scores for each feature, and 

‘Farea’ can be consider as a feature with higher scores as 

more important. 

 

(a) 

 

                    (b) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 |  75 

                       
(c) 

Fig. 4.  Feature importance: (a) KNeighbors Classifier 

(b) Support Vector Machines   (c) Gaussian Naive 

Bayes 

Feature importance interpretation with Support Vector 

Machines (SVMs) is not as straightforward as with 

some other models like decision trees or random forests. 

SVMs use a hyperplane to separate classes, and feature 

importance is derived from the coefficients of the 

hyperplane or support vectors. In summary, while SVMs 

offer powerful classification capabilities, interpreting 

feature importance requires careful consideration of the 

model's coefficients, support vectors, and feature 

selection techniques, balancing model complexity and 

interpretability. Fig.4 (b) shows “Wanother” feature as 

an important feature in building the model using SVM. 

As mentioned earlier, Naive Bayes classifiers, 

specifically Gaussian Naive Bayes, do not provide a 

direct measure of feature importance like some other 

algorithms. Unlike some other algorithms, the 

GaussianNB class in scikit-learn does not directly 

expose the mean and variance values for each feature in 

each class after training. For Gaussian Naive Bayes, the 

model assumes that the features follow a Gaussian 

(normal) distribution within each class, and it estimates 

mean and variance parameters for each feature in each 

class during training. However, these parameters are not 

directly accessible from the GaussianNB instance in 

scikit-learn [24]. Fig.4(c) shows a descriptive statistic to 

explore the means and variances for each feature in each 

class. By Understanding and leveraging Fig.3 & Fig.4 

statistics can lead to more effective and interpretable 

classification models. Fig.5 shows the means and 

variances of most important features like 

'Farea','now','maxoffset_bed','Wanother','maxoffset_anot

herW','Wair'within each class 

 

Fig. 5: Means and variances of most important features 

(a)Farea (b)now (c)maxoffset_bed   (d)Wanother 

(e)maxoffset_anotherW (f)Wair 

In summary, means and variances of features within 

each class play a pivotal role in various aspects of 

classification tasks, including feature selection, model 

building, interpretation, and ensuring the robustness of 

machine learning models.  

2.4.2 Machine Learning Interpretability (SHAP 

& LIME) 

SHAP (SHapley Additive exPlanations) values, based on 

game theory, provide a consistent and objective 

explanation of how each feature impacts a model's 

prediction[25]. Positive SHAP values enhance prediction, 

while negative values have a negative effect, with 

magnitude indicating the strength of the effect[26]. This 

section will calculate SHAP values, display feature 

importance, dependence, force, and decision plots. The 

model in has shown better performance for “1” label than 

“0” due to an unbalanced dataset. Overall, it is an 

acceptable result with 92% accuracy. 

 

The model explainer will be created using a random forest 

classification model and SHAP value will be calculated 

using a testing set. In Fig.6(a) summary plot display the 

summary_plot using SHAP values and testing set. 
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Fig. 6. SHAP analysis: (a) Summary plot (b) SHAP 

value (c) Effect of maxoffset_anotherW 

The summary plot shows the feature importance of each 

feature in the model. The results show that 

'Wanother','maxoffset_anotherW' and 'now' play major 

roles in determining the results. Y-axis indicates the feature 

names in order of importance from top to bottom. X-axis 

represents the SHAP value, which indicates the degree of 

change in log odds. The color of each point on the graph 

represents the value of the corresponding feature, with red 

indicating high values and blue indicating low values. Each 

point represents a row of data from the original dataset. 

The feature “'Wanother', shows that it is mostly high with a 

negative SHAP value. It means higher 'No. of walls 

printing on another wall' counts tend to negatively affect 

the output. 

shap.dependence_plot ("maxoffset_anotherW", 

shap_values [0],test,interaction_index="max_support") 

A dependence plot is a type of scatter plot that displays 

how a model's predictions are affected by a specific feature 

(maxoffset_anotherW). On average, maxoffset_anotherW 

have a mostly positive effect on the model. 

Force Plot 

Force Plots provide a clear and intuitive visualization of 

how features influence individual predictions, enabling 

better understanding and trust in machine learning models. 

They help identify which features are driving predictions 

and why, which is crucial for model transparency and 

accountability.We will examine the first sample in the 

testing set to determine which features contributed to the 

"0" result. To do this, we will utilize a force plot and 

provide the expected value, SHAP value, and testing 

sample. 

shap.plots.force(explainer.expected_value[0], 

shap_values[0][0,:], X_test.iloc[0, :], matplotlib = True) 

Fig. 7:  Force Plot label “0” 

We can clearly see that 2 no.of walls printing on the bed 

and 1 wall printing on another wall have contributed to 

negative to need of support.Let’s look at need of support 

churn samples with label “1”. 

shap.plots.force(explainer.expected_value[1], 

shap_values[1][6, :], X_test.iloc[6, :],matplotlib = True) 

Fig. 8:  Force Plot label “1” 

Decision Plot 

We will now display the decision_plot. It visually depicts 

the model decisions by mapping the cumulative SHAP 

values for each prediction. 

shap.decision_plot(explainer.expected_value[1], 

shap_values[1], X_test.columns) 

                            
Fig. 9:  Decision Plot 

LIME, or Local Interpretable Model-Agnostic 

Explanations, offers localized insights into individual 

predictions made by complex machine learning models 

like Random Forests[27]. Analyzing the provided feature 

names, LIME elucidates the significance of each feature in 

determining the need for support during 3D printing. By 

highlighting key features such as "offset" and 

"maxoffset_bed", LIME reveals critical factors influencing 

the stability and support requirements of the printing 

process. Its interpretability empowers users to validate 

model predictions, identify areas for model improvement, 

and optimize 3D printing workflows effectively. 

Leveraging LIME's explanations in conjunction with 

domain expertise enables a comprehensive understanding 

of the intricate relationship between input features and the 

necessity for support structures in 3D printing. 
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Fig. 10. : LIME analysis 

3. Building Machine Learning Model 

3.1 Split Dataset for Training and Testing 

Machine learning involves three subsets: training, testing, 

and validation. Training trains the model, testing evaluates 

its performance on unseen data, and validation aids in 

hyper parameter tuning. A balanced distribution of classes 

is crucial to avoid biased training and evaluation. The 

ultimate goal is to develop a model that generalizes well 

to new, unseen data, using distinct train, test, and 

validation sets. In particular, we use Need support and No 

support for our experiments. For both types, we divided 

respective datasets into three splits - 70 percent for 

training, 15 percent for CV and 15 percent for testing 

purposes. We use stratified sampling in creating 

train/CV/test splits. Stratified sampling allows us to 

maintain the same proportion of each class in a split as in 

the original dataset. Details of the splits are mentioned in 

tables 3. 

Table 3: Splitting accuracy 

 

In this paper 6 classification algorithms Logistic 

Regression, Support Vector Machine, Random Forest, K-

Nearest Neighbours, Decision Tree, and Gradient 

Boosting are used. 

Algorithm Description 

Logistic 

Regression 

Linear classification algorithm 

modeling the probability of class 

membership using the logistic 

function. 

Support 

Vector 

Machine 

Constructs an optimal hyperplane to 

separate classes, maximizing the 

margin while penalizing 

misclassifications. 

Random 

Forest 

Ensemble learning method using 

multiple decision trees, reducing 

overfitting and providing feature 

importance. 

K-Nearest 

Neighbors 

Classifies data based on the majority 

class among the K nearest neighbors, 

simple and intuitive. 

Decision 

Tree 

Hierarchical tree structure partitioning 

feature space based on decision rules 

to maximize class purity. 

Gradient 

Boosting 

Ensemble technique adding weak 

learners sequentially, focusing on 

minimizing errors to improve 

predictive power. 

 

The table summarizes the key characteristics and roles of 

each classification algorithm, aiding in understanding their 

differences and applications. In summary, each 

classification algorithm has its strengths and weaknesses, 

making them suitable for different types of datasets and 

problem scenarios. Understanding the underlying 

principles and characteristics of each algorithm is essential 

for choosing the most appropriate one for a given 

classification task. Additionally, ensemble methods like 

Random Forest and Gradient Boosting often provide 

improved predictive performance by combining the 

strengths of multiple base learners. 

3.2 Evaluation metrics 

After making sure the data is good and ready then can 

continue to building our model. In this paper tried to build 

6 different models with different algorithm. First step is to 

create a baseline model for each algorithm using the 

default parameters set by sklearn and after building all 6 of 

models compare them to see which works best for our 

case. The confusion matrix will be used as the base for the 

evaluation of model. An exploration of various evaluation 

metrics, such as accuracy, precision, recall, and F1 score, 

and Cohen Kappa Score. 

 

Where: TP = True Positive; FP = False Positive; TN = 

True Negative; FN = False Negative.  
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Cohen Kappa Score: Cohen’s kappa measures the 

agreement between two raters who each classify N items 

into C mutually exclusive categories.  

 

Where Po is the empirical probability of agreement on the 

label assigned to any sample (the observed agreement 

ratio), and Pe is the expected agreement when both 

annotators assign labels randomly. Pe is estimated using a 

per-annotator empirical prior over the class labels 

Area Under Curve (AUC): indicates how well the 

probabilities from the positive classes are separated from 

the negative classesSince our aim is to anticipate as many 

genuine good outcomes as possible, in this instance, we 

would like to concentrate on our model's recall value. due 

to a model's incorrect classification, which requires support 

in reality. 

4. Results and Discussion 

Building Model  

Utilizing the training dataset build the models using 

Logistic Regression, Support Vector Machine,Random 

Forest,K-Nearest Neighbours, Decision Tree, and Gradient 

Boosting. Calculate evaluation matrix for each of the 

model. 

Real-world examples demonstrating the impact of dataset 

quality on model performance. Evaluation Matrix for 

Logistic Regression, Support Vector Machine, Decision 

Tree, Random Forest, Gradient Boosting, and K-Nearest 

Neighbors 

Table 4: Model performance 

 

Model Comparison  

After building all of 6 model, compared how well each 

model perform. To do this create two chart, first is a 

grouped bar chart to display the value of accuracy, 

precision, recall, f1, and kappa score of our model, and 

second a line chart to show the AUC of all our models. 

 

Fig. 11: Model Comparison 

From the Fig.s above we can see that our Random Forest 

model tops the other models in 6 of the 6 metrics we 

evaluate, except precision. So we can assume that Random 

Forest is the right choice to solve our problem 

Model Optimization  

On the next part, optimizeRandomForest model by tuning 

the hyper parameters available from the scikit-learn 

library. After finding the optimal parameters evaluate new 

model by comparing it against our base line model before. 

Below shows the Overview of input parameter grid. 

Decision Tree - Best Hyperparameters: {'max_depth': 2, 

'min_samples_split': 5} 

RandomForestClassifier - Best Hyperparameters: 

{'max_depth': 20, 'n_estimators': 100} 

KNeighborsClassifier - Best Hyperparameters: 

{'n_neighbors': 1} 

Decision Tree - Test Accuracy: 0.7846153846153846 

RandomForestClassifier - Test Accuracy: 

0.8769230769230769 

KNeighborsClassifier - Test Accuracy: 

0.7230769230769231 

Tuning Hyperparameter with GridSearchCV 

GridSearchCV functionality used from sklearn to find the 

optimal parameter for the model. Baseline model (named 

rf_grids ) provided, scoring method (in this case  recall is 

used as explained before), and also various parameters 

value. The GridSearchCV function will then iterate 

through each parameters combination to find the best 

scoring parameters. 

Additionally, this function enables us to train the model 

using cross-validation, in which each iteration of our data 

is divided into five (the number of folds is customizable 

based on the parameter). The last fold will be used as 

validation data once the models have been trained on 4/5 

of the data. This process will be done 5 times until all of 

the folds have been used. 
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The best_params_ attribute from our grid search object 

allows us to view the combination of parameters that yields 

the best results. The longer the procedure takes, the more 

combinations that are given. In an effort to save running 

time, RandomizedSearchCV can also try to just randomly 

select a predetermined amount of parameters. 

Fitting 5 folds for each of 405 candidates, totalling 2025 

fits 

{'max_depth': 50, 

 'max_features': 2, 

 'min_samples_leaf': 3, 

 'min_samples_split': 8, 

 'n_estimators': 1000} 

Evaluating Optimized Model 

Once the model's optimal parameter has been determined, 

we can save our optimized model into the best_grid 

variable by using the GridSearchCV object's 

best_estimator_ property. And then the helper function is 

used to calculate the six assessment metrics and compare 

them with base model. 

Accuracy: 0.9193548387096774 

Precision: 0.8837209302325582 

Recall: 1.0 

F1 Score: 0.9382716049382717 

Cohens Kappa Score: 0.8232611174458381 

Area Under Curve: 0.9188596491228069 

Model Comparison 

The script has created a plot identical to the previous one, 

but used both the optimized and original Random Forest 

model. Additionally, shown the difference on each 

assessment metric so that we can determine whether our 

optimized model outperforms the original. 

 

Fig. 12: Optimized Model Comparison 

Change in Accuracy: 0.032258064516129004 

Change in Precision: -0.013714967203339312 

Change in Recall: 0.07894736842105265 

Change in F1 Score: 0.029180695847362603 

Change in Cohens Kappa Score: 0.06304012297069994 

Change in Area Under Curve: -0.030701754385965008 

The result show that our optimised performed little bit 

better than the original model. The optimised models show 

an increase in 4 out of the 6 metrics but perform worse in 

the other metrics, especially the Precision with -0.013 

decrease. Because this paper focuses on predicting as many 

actual positive values as possible we should stick with our 

original model for the prediction because it has higher 

recall score. 

Output 

What will happen after our model is ready? Now need to 

explore the capacity to develop a model with significant 

reusability is essential. So at last it is discussed how to 

create a prediction based on new data and how to save (and 

load).To save time and avoid having to repeat the entire 

process,  joblib is used to construct a model and then use it 

in production. 

Making Predictions 

In this step we will predict the expected outcome of all the 

row from ouroriginal dataset using the Random Forest 

model and then save it into a csvfile for easier access in the 

future. 

 

(a) 

 

(b) 

Fig. 13:  (a) Code for prediction (b) New dataset with 

prediction result 

Saving Model We can save our model for further model re-

usability. This model can then be loaded on another 

machine to make new prediction without doing the whole 

training process again. 
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5.  Future Directions 

In the future, this research proposes directions for 

investigation, such as adding more independent variables 

(curvature/taper in the construction direction) and 

dependent variables (structure type and build adhesion). 

The knowledge and optimization of 3D printing processes 

could be advanced by these expansions, which could 

greatly enhance the prediction of mechanical properties. In 

conclusion, the study adds to the expanding corpus of 

research on the subject of machine learning and 3D 

printing, providing insightful analysis and useful 

techniques that can improve the effectiveness and caliber 

of additive manufacturing procedures. 

6. Conclusion 

In summary, this work emphasizes how important diverse 

and high-quality datasets are to machine learning model 

performance, especially when it comes to 3D printing 

support structure categorization. The research attempted to 

categories CAD models according to the requirement for 

assistance during the 3D printing process by utilizing a 

variety of machine learning approaches, including Logistic 

Regression, assistance Vector Machine, Random Forest, 

K-Nearest Neighbours, Decision Tree, and Gradient 

Boosting. 

The study's conclusions highlight the efficacy of the 

Random Forest algorithm, which classified the requirement 

for help with an accuracy of 0.97 based on given process 

characteristics. Additionally, the model's interpretability is 

improved by applying SHAP & LIME analysis, which 

provides insights into the importance of specific variables 

in forecasting the need for support. 
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