

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 71

Comparative Analysis of 3D Printing Support Structure Prediction

Using Feature Selection Methods for Classification Algorithms

Sonali Patil1, Yogesh Deshpande2, Dattatraya Parle3

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: The success of machine learning models heavily relies on the quality and diversity of the datasets used for training and

evaluation. This paper discusses the process of dataset generation and building machine learning models. Support structures are essential

for accurate 3D printing of complex geometries, preventing sagging and deformation, and ensuring stable, high-quality prints with

careful adjustment of print settings. In this work, different Machine Learning techniques are used and evaluated based on their

performance of classifying the need for support during the 3D printing process. The ultimate objective is to classify the model in terms of

‘need support Y/N’.In pursuing this objective, different Machine Learning techniques are utilized to classify different CAD models. The

different machine-learning classification techniques applied in this work are Logistic Regression, Support Vector Machine, Random

Forest, K-Nearest Neighbours, Decision Tree, and Gradient Boosting. The comparative study based on 6 different performance measures

suggests that the Random Forest algorithm works with an accuracy of 0.97 well for classifying the need for support into categories based

on the values provided for the process parameters. Finally, SHAP& LIME analysis shows the significance of each feature in the

prediction of the need for support. This study can be extended for independent variables including curvature/taper in the build direction

and dependent variables as type of structure and type of build adhesion which may be a powerful tool to predict the mechanical

properties better.

Keywords: 3D printing, Machine learning algorithm, Classification model, Support structure, Dataset, Prediction

1. Introduction

1.1 Background

The increasing complexity of real-world problems

necessitates advanced machine learning models. However,

the efficacy of these models is intrinsically tied to the

quality and representativeness of the datasets they are

trained on. This paper aims to interpret the significance of

dataset generation in the context of building robust

machine learning models.

Support structures in 3D printing (3Dp) depend on the

geometry of the object and the printer's capabilities[1].

Factors to consider include the overhang angle, geometry

complexity, material and printer characteristics, layer

adhesion, print orientation, printing software features,

material considerations, print speed and temperature, post-

processing considerations, and test prints[2]. Overhangs

can be handled by most 3D printers, while complex

geometries may require support to maintain print

accuracy[3]. Materials and printers have varying

capabilities, and support structures help maintain layer

adhesion[4]. Print orientation can also minimize the need

for supports[1]. Print speed and temperature can also

influence the need for supports. Post-processing

considerations involve determining how easy it will be to

remove support structures after printing[5]. Test prints can

help identify potential issues and refine settings before

committing to a full-scale print[6].

A labeled dataset of 96CAD models with 5 different

orientations used to test the binary classification

approaches of Logistic Regression, Support Vector

Machine, Random Forest,K-Nearest Neighbours, Decision

Tree, and Gradient Boosting. Our objective is to construct

binary classifiers that can distinguish between the printing

model's need support or not. We evaluate how well these

methods work to identify support requirements for the

printing portion.

2. Dataset Generation

2.1 Data Collection Techniques

In 3D printing, various types of datasets are generated,

depending on the nature of the printing process[7], the

sensors or monitoring systems in use[8], and the desired

information[2]. Here are several types of datasets

commonly associated with 3D printing such as toolpath,

deposition rate, and cooling time[9] , Temperature

measurements at different points on the build plate, nozzle,

or inside the print chamber during the printing process[10],

Data on the movement speed and acceleration of the 3D

printer's print head during the printing process[11] ,

Records of any detected defects, errors, or anomalies

during the printing process [8]and Information about the

1,2Department of Computer Engineering, Vishwakarma University,Pune,
India;
3Nuclear Advanced Manufacturing Research Centre,

Sheffield, United Kingdom

* Corresponding Author Email: sonali.patil-960@vupune.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 72

printed object's geometry, dimensions, and

accuracy[12][13]. And also the Point cloud data sets[14].

Some work done to extract the features by parsing the

sliced STL file [15]. But none of the dataset can be utilized

to predict the need of structure and build adhesion in prior.

In this study the dataset is generated using small alphabets,

capital alphabets and numbers. The wall-based

technique[16] used in this study helps in understanding the

overall structure of the 3D print and provides insights into

how the geometry is built up layer by layer. This method

plays a pivotal role in adapting 3Dp settings to varying

orientations of the alphabet, as illustrated in Fig.1a. It is

essential to recognize that a block in a specific orientation

cannot be successfully printed using the same 3Dp settings

as another orientation. The unique characteristics of each

orientation necessitate tailored settings for a successful

3Dp process. Fig.1b & Fig.1c exemplifies how the wall-

based technique captures these distinctions.

A notable distinction in the wall-based technique lies in the

number of walls, denoted as Wall 1 Wall 2 etc and its

printing behavior. This distinction is critical as it directly

influences the structural integrity and complexity of the

printed object. The need for support structures and build

plate adhesion settings further emphasizes the intricate

adjustments demanded by the different build orientations.

The input feature vector undergoes substantial changes to

accommodate the distinctions of different orientations. As

the build orientation shifts to different degrees, additional

considerations become pivotal for a successful 3D print.

The introduction of the following features reflects the

adaptability of the wall-based technique:

‘dX’,’dY’,’dZ’,'now','Fwall','nowp','Farea','offset','maxoffs

et_bed','Wanother','maxoffset_anotherW','Wair','Wair_part

ial','max_support'

1. Bounding box X, bounding box Y, Bounding box Z

(dX','dY','dZ'):- These parameters define the

dimensions of the bounding box in the X, Y, and Z

directions, respectively. They represent the maximum

space available for 3D printing within the specified

limits.

2. Number of walls (‘now’): - This refers to the count of

walls being printed in the 3D model. Walls are typically

structures that enclose the printed object

3. Is the first wall printing on bed? How many walls are

printing on the bed? ('Fwall','nowp') - Indicates

whether the first wall is in contact with the print bed

and how many total walls are printing on the bed. The

"bed" is the surface where the 3D printing process

starts.

4. Minimum area of the first layer('Farea'):- This

represents the smallest surface area of the initial layer

being printed. It's a critical parameter for ensuring

proper adhesion to the print bed.

5. Is there an offset in the first layer and last layer of wall

printing on the bed? (offset') :- This question is asking

if there is a positional difference (offset) between the

first and last layers of the walls printed on the bed.

6. What is the maximum offset between the first layer and

the last layer of walls printing on the bed?

('’maxoffset_bed',):-

If there is an offset, this specifies the maximum allowed

distance between the first and last layers of walls

printed on the bed.

7. How many walls are printing on another wall?

('Wanother')

Refers to the number of walls that are being printed on

top of or adjacent to other walls.

8. What is the maximum offset between the first layer and

the last layer of walls printing on the other wall?

('maxoffset_anotherW'):-Similar to question 6 but

specifically for walls printed on other walls.

9. How many walls are fully printing in the air? ('Wair') :-

Indicates the number of walls that do not have any

support from the print bed or other structures during the

printing process.

10. How many walls are partially printing in the air?

(Wair_partial') :-Refers to the number of walls that

have some support but are not fully connected to the

print bed or other structures.

11. What is the maximum unsupported area of the first

layer of the wall printing in the air? ('max_support'):-

Specifies the largest area of the first layer of walls that

is not supported by the print bed or other structures.

In summary, these parameters are essential for optimizing

the 3D printing process, ensuring proper adhesion, and

understanding the required support structural

characteristics of the printed object. In the context of the

wall-based technique, the specific characteristics of walls,

with straight edges but tapering in the z-direction,

introduce additional complexity. Notably, the sides of the

start and end layers differ due to this tapering, underscoring

the need for detailed consideration in the 3Dp settings. As

the complexity of the printed part increases, the dataset

adapts by incorporating additional wall features. This

adaptive nature of the wall-based technique is a testament

to its versatility in accommodating diverse geometries and

orientations in 3Dp, providing a robust framework for

capturing the intricacies of the layer-wise printing process.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 73

(a)

(b)

(c)

Fig.1: Wall based technique- (a) Rotation and Flip of the

3D model (b) No. of walls generated (c) Visualization of

walls.

Understanding the variation of dependent and independent

variables is crucial for feature selection, model building,

and interpretation of results in machine learning tasks[17],

[18]. Proper preprocessing, handling of missing values,

normalization, and encoding categorical variables are some

of the steps involved in managing the variation of variables

effectively for model training and evaluation[19].

Below Table 1 shows sample dataset generated for the

digit ‘4’ at 900.

Table 1: Sample dataset generated for the model at 900

In summary, the variation of dependent and independent

variables in experiments involves careful manipulation and

observation of factors to understand their relationship.

Fig.2 shows the variation of the distribution of dependent

variable ‘need support’ values provides insights into the

patterns and characteristics of the outcomes.

(a)

(b)

Fig. 2. Shows (a) the variation of the dependent variables

and the independent variable for the experiments and (b)

distribution of dependent variables values.

The describe () method in pandas generates descriptive

statistics that summarize the numerical attributes

(columns) of a DataFrame. Table 2 statistics provide

valuable insights into the distribution, central tendency,

and spread of the numerical data within each column of the

dataset generated.

Table 2. Average values, standard deviation, standard

error of dependent variables and the independent variable

for the experiments

2.2 Data Augmentation

Augmenting datasets through techniques such as rotation,

and flipping to increase the diversity of the training data

without collecting new samples. Data augmentation in the

context of 3Dp involves creating variations of the existing

dataset to enhance the robustness and diversity of the

training data for a machine learning model. In the case

described, where the dataset captures different orientations

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 74

and characteristics of 3D printed objects, data

augmentation techniques can be applied to generate

additional training examples. Here's how data

augmentation worked for the given case:

1. Rotation:

● Original Data: A model with a specific orientation

(e.g., flat, at an edge).

● Data Augmentation: Create variations by rotating the

CAD model at different angles (e.g., 90 degrees, 180

degrees, etc.).

● Impact: This helps the model generalize better to

objects printed at various orientations.

2. Flipping:

● Original Data: A model with specific characteristics.

● Data Augmentation: Generate variations by flipping

the CAD model horizontally and/or vertically.

● Impact: Mimics different scenarios where the object

might be flipped during printing, providing a more

comprehensive training set.

2.3 Exploratory Data Analysis:

It refers to the critical process of performing initial

investigations on data to discover patterns, to spot

anomalies, to test hypothesis and to check

assumptions with the help of summary statistics and

graphical representations. Analysis done to understand

the data first and try to gather as many insights as

possible from it.

• Dataset comprises 480 observations and 14

characteristics.

• Out of which 13are independent variables and the rest

1aredependent variable.

• Data has only float and integer values.

• No variable column has null/missing values.

2.4 Explaining Algorithm:

Feature Selection is the process used to select the

input variables that are most important to Machine

Learning task[20].

2.4.1 Feature importance

Feature importance can be extracted directly from

Decision Trees and Random Forest Classifier[21][22],

but it's not a standard concept for Naive Bayes and

KNeighbors Classifier[18],. For Naive Bayes, the

algorithm assumes that all features are conditionally

independent, so there isn't a concept of feature

importance in the same way as in decision tree-based

models. Fig.3 (a) & (b) shows how feature importance

extracted from Decision Trees and Random Forest

Classifier.

(a)

(b)

Fig. 3. Feature importance: (a) Decision Tree (b)

Random Forest Classifier

For KNeighbors Classifier, there is no inherent feature

importance as it doesn't build a model with coefficients for

each feature. For KNeighbors Classifier, a common

approach is to use univariate feature selection methods like

Select KBest with statistical tests such as chi-squared,

ANOVA, or mutual information [23]. The plot shown in

Fig.4(a) is the chi-squared scores for each feature, and

‘Farea’ can be consider as a feature with higher scores as

more important.

(a)

 (b)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 75

(c)

Fig. 4. Feature importance: (a) KNeighbors Classifier

(b) Support Vector Machines (c) Gaussian Naive

Bayes

Feature importance interpretation with Support Vector

Machines (SVMs) is not as straightforward as with

some other models like decision trees or random forests.

SVMs use a hyperplane to separate classes, and feature

importance is derived from the coefficients of the

hyperplane or support vectors. In summary, while SVMs

offer powerful classification capabilities, interpreting

feature importance requires careful consideration of the

model's coefficients, support vectors, and feature

selection techniques, balancing model complexity and

interpretability. Fig.4 (b) shows “Wanother” feature as

an important feature in building the model using SVM.

As mentioned earlier, Naive Bayes classifiers,

specifically Gaussian Naive Bayes, do not provide a

direct measure of feature importance like some other

algorithms. Unlike some other algorithms, the

GaussianNB class in scikit-learn does not directly

expose the mean and variance values for each feature in

each class after training. For Gaussian Naive Bayes, the

model assumes that the features follow a Gaussian

(normal) distribution within each class, and it estimates

mean and variance parameters for each feature in each

class during training. However, these parameters are not

directly accessible from the GaussianNB instance in

scikit-learn [24]. Fig.4(c) shows a descriptive statistic to

explore the means and variances for each feature in each

class. By Understanding and leveraging Fig.3 & Fig.4

statistics can lead to more effective and interpretable

classification models. Fig.5 shows the means and

variances of most important features like

'Farea','now','maxoffset_bed','Wanother','maxoffset_anot

herW','Wair'within each class

Fig. 5: Means and variances of most important features

(a)Farea (b)now (c)maxoffset_bed (d)Wanother

(e)maxoffset_anotherW (f)Wair

In summary, means and variances of features within

each class play a pivotal role in various aspects of

classification tasks, including feature selection, model

building, interpretation, and ensuring the robustness of

machine learning models.

2.4.2 Machine Learning Interpretability (SHAP

& LIME)

SHAP (SHapley Additive exPlanations) values, based on

game theory, provide a consistent and objective

explanation of how each feature impacts a model's

prediction[25]. Positive SHAP values enhance prediction,

while negative values have a negative effect, with

magnitude indicating the strength of the effect[26]. This

section will calculate SHAP values, display feature

importance, dependence, force, and decision plots. The

model in has shown better performance for “1” label than

“0” due to an unbalanced dataset. Overall, it is an

acceptable result with 92% accuracy.

The model explainer will be created using a random forest

classification model and SHAP value will be calculated

using a testing set. In Fig.6(a) summary plot display the

summary_plot using SHAP values and testing set.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 76

Fig. 6. SHAP analysis: (a) Summary plot (b) SHAP

value (c) Effect of maxoffset_anotherW

The summary plot shows the feature importance of each

feature in the model. The results show that

'Wanother','maxoffset_anotherW' and 'now' play major

roles in determining the results. Y-axis indicates the feature

names in order of importance from top to bottom. X-axis

represents the SHAP value, which indicates the degree of

change in log odds. The color of each point on the graph

represents the value of the corresponding feature, with red

indicating high values and blue indicating low values. Each

point represents a row of data from the original dataset.

The feature “'Wanother', shows that it is mostly high with a

negative SHAP value. It means higher 'No. of walls

printing on another wall' counts tend to negatively affect

the output.

shap.dependence_plot ("maxoffset_anotherW",

shap_values [0],test,interaction_index="max_support")

A dependence plot is a type of scatter plot that displays

how a model's predictions are affected by a specific feature

(maxoffset_anotherW). On average, maxoffset_anotherW

have a mostly positive effect on the model.

Force Plot

Force Plots provide a clear and intuitive visualization of

how features influence individual predictions, enabling

better understanding and trust in machine learning models.

They help identify which features are driving predictions

and why, which is crucial for model transparency and

accountability.We will examine the first sample in the

testing set to determine which features contributed to the

"0" result. To do this, we will utilize a force plot and

provide the expected value, SHAP value, and testing

sample.

shap.plots.force(explainer.expected_value[0],

shap_values[0][0,:], X_test.iloc[0, :], matplotlib = True)

Fig. 7: Force Plot label “0”

We can clearly see that 2 no.of walls printing on the bed

and 1 wall printing on another wall have contributed to

negative to need of support.Let’s look at need of support

churn samples with label “1”.

shap.plots.force(explainer.expected_value[1],

shap_values[1][6, :], X_test.iloc[6, :],matplotlib = True)

Fig. 8: Force Plot label “1”

Decision Plot

We will now display the decision_plot. It visually depicts

the model decisions by mapping the cumulative SHAP

values for each prediction.

shap.decision_plot(explainer.expected_value[1],

shap_values[1], X_test.columns)

Fig. 9: Decision Plot

LIME, or Local Interpretable Model-Agnostic

Explanations, offers localized insights into individual

predictions made by complex machine learning models

like Random Forests[27]. Analyzing the provided feature

names, LIME elucidates the significance of each feature in

determining the need for support during 3D printing. By

highlighting key features such as "offset" and

"maxoffset_bed", LIME reveals critical factors influencing

the stability and support requirements of the printing

process. Its interpretability empowers users to validate

model predictions, identify areas for model improvement,

and optimize 3D printing workflows effectively.

Leveraging LIME's explanations in conjunction with

domain expertise enables a comprehensive understanding

of the intricate relationship between input features and the

necessity for support structures in 3D printing.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 77

Fig. 10. : LIME analysis

3. Building Machine Learning Model

3.1 Split Dataset for Training and Testing

Machine learning involves three subsets: training, testing,

and validation. Training trains the model, testing evaluates

its performance on unseen data, and validation aids in

hyper parameter tuning. A balanced distribution of classes

is crucial to avoid biased training and evaluation. The

ultimate goal is to develop a model that generalizes well

to new, unseen data, using distinct train, test, and

validation sets. In particular, we use Need support and No

support for our experiments. For both types, we divided

respective datasets into three splits - 70 percent for

training, 15 percent for CV and 15 percent for testing

purposes. We use stratified sampling in creating

train/CV/test splits. Stratified sampling allows us to

maintain the same proportion of each class in a split as in

the original dataset. Details of the splits are mentioned in

tables 3.

Table 3: Splitting accuracy

In this paper 6 classification algorithms Logistic

Regression, Support Vector Machine, Random Forest, K-

Nearest Neighbours, Decision Tree, and Gradient

Boosting are used.

Algorithm Description

Logistic

Regression

Linear classification algorithm

modeling the probability of class

membership using the logistic

function.

Support

Vector

Machine

Constructs an optimal hyperplane to

separate classes, maximizing the

margin while penalizing

misclassifications.

Random

Forest

Ensemble learning method using

multiple decision trees, reducing

overfitting and providing feature

importance.

K-Nearest

Neighbors

Classifies data based on the majority

class among the K nearest neighbors,

simple and intuitive.

Decision

Tree

Hierarchical tree structure partitioning

feature space based on decision rules

to maximize class purity.

Gradient

Boosting

Ensemble technique adding weak

learners sequentially, focusing on

minimizing errors to improve

predictive power.

The table summarizes the key characteristics and roles of

each classification algorithm, aiding in understanding their

differences and applications. In summary, each

classification algorithm has its strengths and weaknesses,

making them suitable for different types of datasets and

problem scenarios. Understanding the underlying

principles and characteristics of each algorithm is essential

for choosing the most appropriate one for a given

classification task. Additionally, ensemble methods like

Random Forest and Gradient Boosting often provide

improved predictive performance by combining the

strengths of multiple base learners.

3.2 Evaluation metrics

After making sure the data is good and ready then can

continue to building our model. In this paper tried to build

6 different models with different algorithm. First step is to

create a baseline model for each algorithm using the

default parameters set by sklearn and after building all 6 of

models compare them to see which works best for our

case. The confusion matrix will be used as the base for the

evaluation of model. An exploration of various evaluation

metrics, such as accuracy, precision, recall, and F1 score,

and Cohen Kappa Score.

Where: TP = True Positive; FP = False Positive; TN =

True Negative; FN = False Negative.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 78

Cohen Kappa Score: Cohen’s kappa measures the

agreement between two raters who each classify N items

into C mutually exclusive categories.

Where Po is the empirical probability of agreement on the

label assigned to any sample (the observed agreement

ratio), and Pe is the expected agreement when both

annotators assign labels randomly. Pe is estimated using a

per-annotator empirical prior over the class labels

Area Under Curve (AUC): indicates how well the

probabilities from the positive classes are separated from

the negative classesSince our aim is to anticipate as many

genuine good outcomes as possible, in this instance, we

would like to concentrate on our model's recall value. due

to a model's incorrect classification, which requires support

in reality.

4. Results and Discussion

Building Model

Utilizing the training dataset build the models using

Logistic Regression, Support Vector Machine,Random

Forest,K-Nearest Neighbours, Decision Tree, and Gradient

Boosting. Calculate evaluation matrix for each of the

model.

Real-world examples demonstrating the impact of dataset

quality on model performance. Evaluation Matrix for

Logistic Regression, Support Vector Machine, Decision

Tree, Random Forest, Gradient Boosting, and K-Nearest

Neighbors

Table 4: Model performance

Model Comparison

After building all of 6 model, compared how well each

model perform. To do this create two chart, first is a

grouped bar chart to display the value of accuracy,

precision, recall, f1, and kappa score of our model, and

second a line chart to show the AUC of all our models.

Fig. 11: Model Comparison

From the Fig.s above we can see that our Random Forest

model tops the other models in 6 of the 6 metrics we

evaluate, except precision. So we can assume that Random

Forest is the right choice to solve our problem

Model Optimization

On the next part, optimizeRandomForest model by tuning

the hyper parameters available from the scikit-learn

library. After finding the optimal parameters evaluate new

model by comparing it against our base line model before.

Below shows the Overview of input parameter grid.

Decision Tree - Best Hyperparameters: {'max_depth': 2,

'min_samples_split': 5}

RandomForestClassifier - Best Hyperparameters:

{'max_depth': 20, 'n_estimators': 100}

KNeighborsClassifier - Best Hyperparameters:

{'n_neighbors': 1}

Decision Tree - Test Accuracy: 0.7846153846153846

RandomForestClassifier - Test Accuracy:

0.8769230769230769

KNeighborsClassifier - Test Accuracy:

0.7230769230769231

Tuning Hyperparameter with GridSearchCV

GridSearchCV functionality used from sklearn to find the

optimal parameter for the model. Baseline model (named

rf_grids) provided, scoring method (in this case recall is

used as explained before), and also various parameters

value. The GridSearchCV function will then iterate

through each parameters combination to find the best

scoring parameters.

Additionally, this function enables us to train the model

using cross-validation, in which each iteration of our data

is divided into five (the number of folds is customizable

based on the parameter). The last fold will be used as

validation data once the models have been trained on 4/5

of the data. This process will be done 5 times until all of

the folds have been used.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 79

The best_params_ attribute from our grid search object

allows us to view the combination of parameters that yields

the best results. The longer the procedure takes, the more

combinations that are given. In an effort to save running

time, RandomizedSearchCV can also try to just randomly

select a predetermined amount of parameters.

Fitting 5 folds for each of 405 candidates, totalling 2025

fits

{'max_depth': 50,

 'max_features': 2,

 'min_samples_leaf': 3,

 'min_samples_split': 8,

 'n_estimators': 1000}

Evaluating Optimized Model

Once the model's optimal parameter has been determined,

we can save our optimized model into the best_grid

variable by using the GridSearchCV object's

best_estimator_ property. And then the helper function is

used to calculate the six assessment metrics and compare

them with base model.

Accuracy: 0.9193548387096774

Precision: 0.8837209302325582

Recall: 1.0

F1 Score: 0.9382716049382717

Cohens Kappa Score: 0.8232611174458381

Area Under Curve: 0.9188596491228069

Model Comparison

The script has created a plot identical to the previous one,

but used both the optimized and original Random Forest

model. Additionally, shown the difference on each

assessment metric so that we can determine whether our

optimized model outperforms the original.

Fig. 12: Optimized Model Comparison

Change in Accuracy: 0.032258064516129004

Change in Precision: -0.013714967203339312

Change in Recall: 0.07894736842105265

Change in F1 Score: 0.029180695847362603

Change in Cohens Kappa Score: 0.06304012297069994

Change in Area Under Curve: -0.030701754385965008

The result show that our optimised performed little bit

better than the original model. The optimised models show

an increase in 4 out of the 6 metrics but perform worse in

the other metrics, especially the Precision with -0.013

decrease. Because this paper focuses on predicting as many

actual positive values as possible we should stick with our

original model for the prediction because it has higher

recall score.

Output

What will happen after our model is ready? Now need to

explore the capacity to develop a model with significant

reusability is essential. So at last it is discussed how to

create a prediction based on new data and how to save (and

load).To save time and avoid having to repeat the entire

process, joblib is used to construct a model and then use it

in production.

Making Predictions

In this step we will predict the expected outcome of all the

row from ouroriginal dataset using the Random Forest

model and then save it into a csvfile for easier access in the

future.

(a)

(b)

Fig. 13: (a) Code for prediction (b) New dataset with

prediction result

Saving Model We can save our model for further model re-

usability. This model can then be loaded on another

machine to make new prediction without doing the whole

training process again.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 80

5. Future Directions

In the future, this research proposes directions for

investigation, such as adding more independent variables

(curvature/taper in the construction direction) and

dependent variables (structure type and build adhesion).

The knowledge and optimization of 3D printing processes

could be advanced by these expansions, which could

greatly enhance the prediction of mechanical properties. In

conclusion, the study adds to the expanding corpus of

research on the subject of machine learning and 3D

printing, providing insightful analysis and useful

techniques that can improve the effectiveness and caliber

of additive manufacturing procedures.

6. Conclusion

In summary, this work emphasizes how important diverse

and high-quality datasets are to machine learning model

performance, especially when it comes to 3D printing

support structure categorization. The research attempted to

categories CAD models according to the requirement for

assistance during the 3D printing process by utilizing a

variety of machine learning approaches, including Logistic

Regression, assistance Vector Machine, Random Forest,

K-Nearest Neighbours, Decision Tree, and Gradient

Boosting.

The study's conclusions highlight the efficacy of the

Random Forest algorithm, which classified the requirement

for help with an accuracy of 0.97 based on given process

characteristics. Additionally, the model's interpretability is

improved by applying SHAP & LIME analysis, which

provides insights into the importance of specific variables

in forecasting the need for support.

Author contributions

Yogesh Deshpande: Conceptualization, Writing-

Reviewing and Editing. Sonali Patil: Data curation,

Writing-Original draft preparation, Software, Validation.,

Field study Dattatraya Parle : Methodology

,Visualization, Investigation, Writing-Reviewing and

Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] A. Dey and N. Yodo, “A systematic survey of FDM

process parameter optimization and their influence on

part characteristics,” J. Manuf. Mater. Process., vol.

3, no. 3, 2019, doi: 10.3390/jmmp3030064.

[2] W. Sobieski and W. Kiński, “Geometry extraction

from GCODE files destined for 3D printers,” Tech.

Sci., no. 2019/2020, 2020, doi: 10.31648/ts.5644.

[3] S. Chowdhury, K. Mhapsekar, and S. Anand, “Part

Build Orientation Optimization and Neural Network-

Based Geometry Compensation for Additive

Manufacturing Process,” J. Manuf. Sci. Eng. Trans.

ASME, vol. 140, no. 3, 2018, doi: 10.1115/1.4038293.

[4] V. Kadam, S. Kumar, A. Bongale, S. Wazarkar, P.

Kamat, and S. Patil, “Enhancing surface fault

detection using machine learning for 3d printed

products,” Appl. Syst. Innov., vol. 4, no. 2, 2021, doi:

10.3390/asi4020034.

[5] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q.

Nguyen, and D. Hui, “Additive manufacturing (3D

printing): A review of materials, methods,

applications and challenges,” Compos. Part B Eng.,

vol. 143, pp. 172–196, 2018, doi:

10.1016/j.compositesb.2018.02.012.

[6] H. Gonabadi, A. Yadav, and S. J. Bull, “The effect of

processing parameters on the mechanical

characteristics of PLA produced by a 3D FFF

printer,” Int. J. Adv. Manuf. Technol., vol. 111, no. 3–

4, pp. 695–709, 2020, doi: 10.1007/s00170-020-

06138-4.

[7] S. A. Langeland, “Automatic Error Detection in 3D

Pritning using Computer Vision,” no. January, 2020.

[8] Q. Huang, Y. Wang, M. Lyu, and W. Lin, “Shape

Deviation Generator-A Convolution Framework for

Learning and Predicting 3-D Printing Shape

Accuracy,” IEEE Trans. Autom. Sci. Eng., vol. 17,

no. 3, pp. 1486–1500, 2020, doi:

10.1109/TASE.2019.2959211.

[9] M. Khanzadeh, P. Rao, R. Jafari-Marandi, B. K.

Smith, M. A. Tschopp, and L. Bian, “Quantifying

Geometric Accuracy with Unsupervised Machine

Learning: Using Self-Organizing Map on Fused

Filament Fabrication Additive Manufacturing Parts,”

J. Manuf. Sci. Eng. Trans. ASME, vol. 140, no. 3,

2018, doi: 10.1115/1.4038598.

[10] N. Cappetti, A. Naddeo, and G. Salerno, “Influence

of control parameters on consumer FDM 3D

printing,” Adv. Transdiscipl. Eng., vol. 7, no. April

2019, pp. 165–177, 2018, doi: 10.3233/978-1-61499-

898-3-165.

[11] A. Omairi and Z. H. Ismail, “Towards machine

learning for error compensation in additive

manufacturing,” Appl. Sci., vol. 11, no. 5, pp. 1–27,

2021, doi: 10.3390/app11052375.

[12] N. Decker and Q. Huang, “Geometric accuracy

prediction for additive manufacturing through

machine learning of triangular mesh data,” ASME

2019 14th Int. Manuf. Sci. Eng. Conf. MSEC 2019,

vol. 1, no. June, 2019, doi: 10.1115/MSEC2019-

3050.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 71–81 | 81

[13] U. Delli and S. Chang, “Automated Process

Monitoring in 3D Printing Using Supervised Machine

Learning,” Procedia Manuf., vol. 26, pp. 865–870,

2018, doi: 10.1016/j.promfg.2018.07.111.

[14] H. S. Kokab and R. J. Urbanic, “Extracting of Cross

Section Profiles from Complex Point Cloud Data

Sets,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 346–

351, 2019, doi: 10.1016/j.ifacol.2019.10.055.

[15] S. Patil, Y. Deshpande, and D. Parle, “Extracting

Slicer Parameters from STL file in 3D Printing,” Int.

J. Intell. Syst. Appl. Eng., vol. 12, no. 14s, pp. 192–

204, 2024.

[16] S. Patil, Y. Deshpande, and D. Parle, “Dataset

Generation Using a Wall-Based Technique for FDM

3D Printing,” Proc. 3rd Int. Conf. Adv. Comput.

Technol. Appl. ICACTA 2023, 2023, doi:

10.1109/ICACTA58201.2023.10392620.

[17] H. Mamdouh Farghaly and T. Abd El-Hafeez, “A

high-quality feature selection method based on

frequent and correlated items for text classification,”

Soft Comput., vol. 27, no. 16, pp. 11259–11274,

2023, doi: 10.1007/s00500-023-08587-x.

[18] N. Pudjihartono, T. Fadason, A. W. Kempa-Liehr,

and J. M. O’Sullivan, “A Review of Feature Selection

Methods for Machine Learning-Based Disease Risk

Prediction,” Front. Bioinforma., vol. 2, no. June, pp.

1–17, 2022, doi: 10.3389/fbinf.2022.927312.

[19] I. H. Sarker, “Machine Learning: Algorithms, Real-

World Applications and Research Directions,” SN

Comput. Sci., vol. 2, no. 3, pp. 1–21, 2021, doi:

10.1007/s42979-021-00592-x.

[20] B. Remeseiro and V. Bolon-Canedo, “A review of

feature selection methods in medical applications,”

Comput. Biol. Med., vol. 112, no. February, p.

103375, 2019, doi:

10.1016/j.compbiomed.2019.103375.

[21] R. C. Chen, C. Dewi, S. W. Huang, and R. E. Caraka,

“Selecting critical features for data classification

based on machine learning methods,” J. Big Data,

vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00327-

4.

[22] M. S. Joshi, A. Flood, T. Sparks, and F. W. Liou,

“Applications of supervised machine learning

algorithms in additive manufacturing: A review,”

Solid Free. Fabr. 2019 Proc. 30th Annu. Int. Solid

Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF

2019, pp. 213–224, 2019.

[23] M. S. Zulfiker, N. Kabir, A. A. Biswas, T. Nazneen,

and M. S. Uddin, “An in-depth analysis of machine

learning approaches to predict depression,” Curr.

Res. Behav. Sci., vol. 2, no. February, p. 100044,

2021, doi: 10.1016/j.crbeha.2021.100044.

[24] K. Dissanayake and M. G. M. Johar, “Comparative

study on heart disease prediction using feature

selection techniques on classification algorithms,”

Appl. Comput. Intell. Soft Comput., vol. 2021, 2021,

doi: 10.1155/2021/5581806.

[25] K. Aas, M. Jullum, and A. Løland, “Explaining

individual predictions when features are dependent:

More accurate approximations to Shapley values,”

Artif. Intell., vol. 298, p. 103502, 2021, doi:

10.1016/j.artint.2021.103502.

[26] Y. Lu, X. Fan, Y. Zhang, Y. Wang, and X. Jiang,

“Machine Learning Models Using SHapley Additive

exPlanation for Fire Risk Assessment Mode and

Effects Analysis of Stadiums,” Sensors, vol. 23, no.

4, 2023, doi: 10.3390/s23042151.

[27] P. Linardatos, V. Papastefanopoulos, and S.

Kotsiantis, “Explainable ai: A review of machine

learning interpretability methods,” Entropy, vol. 23,

no. 1, pp. 1–45, 2021, doi: 10.3390/e23010018.

