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Abstract: The potential implementation of extensive data sharing in dispersed network systems is likely to give rise to concerns 

surrounding privacy, secrecy, and authentication inside the realm of cyberspace. The main objective of this work is to safeguard the privacy 

and confidentiality of data inside an unsecured environment during the exchange of audiovisual content between two Internet of Things 

(IoT) nodes. To effectively counteract an adversary and guarantee the confidentiality of data, we suggest the implementation of a resilient 

multi-level security strategy that relies on the principles of information hiding and chaos theory. While certain block-based resilient data 

concealing strategies based on the transform domain have demonstrated favorable outcomes, their suboptimal block and coefficient 

selection processes lead to inadequate performance against prevalent cyber-attacks. Therefore, we propose a Robust Framework for 

Ensuring Data Confidentiality and Security in EHR-based networks using federated-learning with homomorphic-encryption. A differential-

privacy technique is used here to increase privacy, which entails adding noise to the aggregated model update. The suggested model 

outperforms the most recent techniques for data security and secrecy in networks based on electronic health records. 
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1. Introduction 

The current surge in internet and multimedia technologies is 

yielding a wide range of advantages across various domains. 

The utilization of advanced processors and sensors in 

several sectors of existence is demonstrating advantages 

owing to their multifaceted capabilities in executing diverse 

tasks. The widespread use of digital platforms for sharing 

digital information in various areas, such as healthcare, 

social networking, media, defense, satellite communication, 

security, and law enforcement, has resulted in a significant 

shift in the prevailing paradigm [1]. The integration of smart 

devices and cloud platforms has given rise to a 

comprehensive and manageable digital landscape known as 

the Internet of Things (IoT) [2]. This paradigm is anticipated 

to bring about a technological revolution in contemporary 

civilization. The IoT refers to a resilient network including 

interconnected physical things, which collectively establish 

a Smart Cyberspace [3]. The primary objective of this 

network is to facilitate extensive connectivity, optimize 

computational processes, and enable real-time data analysis. 

A comprehensively designed IoT system presents several 

application benefits, including reduced energy usage [4], 

heightened security measures [5], automated monitoring 

capabilities [6-8], and user-friendly services [9]. The 

aforementioned benefits have sparked significant attention 

within the corporate and scientific communities in recent 

years. Consequently, numerous prototypes and models have 

been offered  

at both the industrial and government levels. In the field of 

e-healthcare, the potential for significant advancements in 

the efficiency of service delivery is anticipated through the 

utilization of IoT technology in conjunction with cloud-

based services [10]. 

The data transmitted within a distributed IoT system 

encompasses a range of sensitive information, such as 

medical records, financial data, and confidential papers 

[11]. These data are typically in the form of photographs, 

text files, and videos, which are gathered by diverse sensors 

and cameras and subsequently processed and stored by the 

system. It is imperative that the technologies used exhibit 

reliability, security, and computational efficiency to achieve 

a more advanced and efficient system that comprehensively 

encompasses control and intelligence inside an application. 

The computerized nature of controlling these systems gives 

rise to various dangers arising from the flow of information 

over insecure channels.  

The process of digitizing healthcare data has been found to 

enhance operational efficiency within the healthcare sector 

[12]. However, this advancement also raises significant 

concerns regarding the protection of patient privacy and the 

confidentiality of their personal information [13]. The 

conventional methods for collaborative model training 

sometimes entail the consolidation of data, which presents 

potential vulnerabilities in terms of unwanted access and 

data breaches. Deep learning effectively extracts 
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meaningful information from intricate and multi-

dimensional data, such as medical pictures, electronic health 

records, and genomic sequences [14]. Applying deep 

learning to healthcare data presents substantial obstacles in 

safeguarding the privacy and security of sensitive personal 

information. In this research, we present a framework to 

guarantee the protection of privacy in deep learning inside 

contemporary healthcare networks. This framework allows 

many parties to collectively train and assess deep learning 

models without jeopardizing the confidentiality of their 

data. The system we employ utilizes advanced techniques, 

includes homomorphic-encryption, secured multi-party 

computation, differential-privacy, and federated-learning to 

facilitate efficient and secure computation on encrypted 

data. The study offers a comprehensive examination of the 

trade-offs between privacy, accuracy, and efficiency within 

our framework, utilizing both theoretical and empirical 

analysis.  Federated-learning presents a decentralized 

solution that, when integrated with homomorphic-

encryption, gives an augmented level of security to protect 

patient’s privacy. 

2. Healthcare Data Privacy and Deep Learning 

2.1. Healthcare Data Privacy 

Healthcare data is intrinsically sensitive, encompassing a 

plethora of personal information such as medical records, 

diagnostic imaging, and treatment strategies. The process of 

transforming the health information into digital format and 

incorporating IoT devices into healthcare networks has 

increased the demand for strong privacy protection 

measures. Conventional methods for protecting data privacy 

are frequently inadequate when dealing with the complex 

algorithms employed in deep learning. This calls for 

creative solutions to ensure the confidentiality of patient 

information. These networks are increasingly utilizing data-

driven technology to enhance the quality and efficiency of 

their services.  

However, this also presents substantial obstacles to data 

privacy, as confidential health information of patients and 

providers may be disclosed to unauthorized entities. Data 

privacy is not solely a legal and ethical responsibility but 

also a pivotal element in establishing trust and confidence 

among stakeholders. As a result, healthcare networks must 

include suitable methods to safeguard the data they gather, 

retain, handle, and distribute. These protections may include 

encryption, anonymization, access control, and audit 

mechanisms.  

In addition, they must comply with relevant laws and 

regulations that set forth the legal rights and obligations of 

individuals and organizations with regard to data. 

Healthcare networks may enhance their image, reduce 

liability risks, and foster a culture of accountability and 

respect by putting strong data privacy safeguards in place. 

 

Fig 1. The flow of clinical data through EHR systems and 

their confidential vulnerability due to potential security 

breaches. 

Still, this data is susceptible to misuse, theft, or exposure by 

malevolent entities, such as hacker groups, counterfeiters, or 

unapproved people. Healthcare data privacy has numerous 

obstacles in the digital era. Some of them are discussed here.  

• These data are frequently stored and transmitted using 

electronic means, rendering them susceptible to 

cyberattacks. Hackers have the ability to take 

advantage of weaknesses in the systems or networks 

responsible for managing healthcare data. They can 

then get unauthorized access to the data and make 

changes to it.  

• Healthcare data is frequently shared among various 

groups, including medical professionals, scientists, 

insurance companies, authorities, and third-party 

vendors. Data sharing can enhance patient outcomes 

and societal well-being by facilitating improved care 

coordination, fostering innovation, and promoting 

public health initiatives.  Data exchange, if not properly 

protected or consented to, can jeopardize patient 

privacy.  

• Healthcare data is governed by a multitude of laws and 

regulations designed to safeguard the confidentiality 

and liberties of both patients and 

providers. Nevertheless, these rules and regulations can 

vary among different governments and may lack 

uniformity or compatibility. This can provide 

difficulties in ensuring that EHR data systems and 

processes adhere to regulations and can work together 

effectively. 

• Healthcare data privacy in the digital age encounters 

several significant challenges. In order to tackle these 

difficulties, it is necessary to adopt a comprehensive 

and cooperative approach that engages several 

stakeholders, including legislators, regulators, 

providers, researchers, patients, and technology 

developers. Furthermore, additional research and 

innovation are required to provide efficient and morally 

sound solutions that can effectively manage the 

advantages and drawbacks of healthcare data, all the 

while upholding the privacy and rights of patients. 
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   2.2.EHR and IIoT 

The Industrial Internet of Things (IIoT) system typically 

consists of numerous IoT devices that are distributed 

throughout the whole industrial system. The concept 

encompasses the interconnectivity of medical devices and 

sensors, which facilitates the generation of real-time data to 

optimize patient monitoring and treatment. The sector 

encompasses numerous applications, including but not 

limited to remote surveillance, telemedicine, intelligent 

watches, and implanted technologies. The objective of 

incorporating these technologies is to establish a cohesive 

and all-encompassing healthcare system, thereby enhancing 

the accuracy of diagnoses, the efficacy of treatments, and 

the overall well-being of patients. These devices have the 

capability to produce and send substantial quantities of 

sensitive health information, which can be incorporated into 

EHR to deliver a more comprehensive and individualized 

form of healthcare. Nevertheless, the integration of EHR 

into healthcare systems also brings up novel dangers and 

weaknesses pertaining to the security of these records. An 

instance of unauthorized individuals might exploit 

vulnerabilities in equipment or communication channels to 

gain unauthorized access, manipulate, or remove health 

data. In addition, they possess the capability to initiate 

denial-of-service assaults, causing disruption to the 

accessibility and operational effectiveness of the devices or 

EHR systems. Furthermore, individuals have the potential 

to utilize the data for illicit activities such as identity theft, 

fraudulent schemes, blackmail, or other malevolent 

intentions. 

 

Fig 2: EHR and IIoT: Potential of Security and Privacy 

Threats. 

2.3. Deep Learning in the EHR Field 

Electronic health record (EHR) systems were originally 

designed to handle hospital basic administrative functions, 

allowing for the use of controlled terminology and labelling 

conventions [15–17]. These labeling systems lead to the 

creation of standardized datasets for different domains. The 

quantity of EHR data is progressively growing over time 

due to advancements in the EHR system. Consequently, 

there has been a proliferation of research studies exploring 

the potential secondary utilization of these data. 

Nevertheless, EHRs have notable security vulnerabilities 

due to their inclusion of confidential personal and financial 

information, which can be illicitly accessed, pilfered, or 

tampered with by unauthorized entities. Hence, 

safeguarding the security of EHR data and guaranteeing its 

private nature, credibility, and accessibility is of utmost 

importance [18-20]. 

In order to guarantee the security of healthcare systems, 

deep learning is crucial [21]. EHRs comprising both 

structured and unstructured data, including prescriptions, 

lab test results, diagnosis information, and clinical notes, 

can be evaluated by deep learning algorithms [22]. These 

models are able to do this analysis at remarkably fast speeds 

without sacrificing accuracy. Deep learning networks are 

transforming healthcare delivery and are essential to the 

integration of health systems in clinical settings. 

Researchers have looked into how EHRs could automate the 

prescription process, giving doctors more information to 

consider when choosing and writing prescriptions. 

EHRs provide a full overview of patients’ medical histories, 

encompassing many elements such as prior prescriptions, 

assessments, tests conducted by laboratories, medication 

regimens, and diagnostic imaging scans [23]. These entities 

serve as the primary conduits for individualized medical 

research data [24]. Furthermore, the recent advancements in 

the quality of EHRs have garnered the attention of 

researchers, primarily due to their prospective uses in the 

fields of medical diagnosis and recommendation [25]. 

 

Fig 3: Application of Deep Learning in the EHR Field. 

These algorithms can be employed to detect fraudulent 

insurance claims and forecast forthcoming risks 

[26].  Thanks to the emergence of telemedicine, wearables, 

and remote patient monitoring, the models can now be 

utilized for real-time patient monitoring and risk prediction 

[27]. Furthermore, the models can be utilized to identify and 

proactively mitigate cyber assaults on healthcare systems 

[28]. They possess the ability to discern recurring 

behavioural patterns that suggest a possible danger and 

promptly notify security personnel to respond accordingly 

[29] 

3. Literature Review 

Deep learning has the ability to drastically change the 

medical and healthcare sectors.   Unfortunately, a number of 

inference attack models have demonstrated that deep 

learning may jeopardise critical patient data. The deep 

neural networks' large capacity is the main reason behind 

the loss of privacy. To be more precise, a deep network may 

unintentionally memorise patient data that is included in the 

training set. Comparing health data transportation and 

storage to traditional public blockchain solutions reveals a 
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distinct set of difficulties. Healthcare data has unique 

privacy and security requirements compared to other forms 

of data [30]. Zhang et al. introduced an approach for 

safeguarding privacy when training deep neural networks. 

This method incorporates the use of declining Gaussian 

noise applied to the gradients [31]. Alzubi et al. proposed a 

novel strategy to protect the privacy of electronic health 

records that blends deep learning and blockchain 

technologies.   The system is able to identify and remove 

anomalous individuals from the database and guarantees 

restricted access to health records by combining blockchain 

technology with an encryption-based federated-learning 

module [32]. The Collective Learning protocol was created 

by Paul et al. to safely exchange classified time-series data 

across entities for the purpose of partially training a binary 

classifier network's variables [33]. Using differential-

privacy, Beaulieu-Jones et al. have created a unique 

distributed training technique with cycle weight transfer to  

meet the need for formal privacy assurances [34]PriMIA is 

a complementary and easily-accessible software framework 

developed by Kaissis et al. to perform encryption-based and 

differentially private, securely integrated federated-learning 

inference on clinical imaging datasets [35]. An intriguing 

first step in resolving privacy concerns with EHR data is to 

rely on synthetic data. Yoon et al. proposed EHR-Safe, a 

generative modelling technique to generate realistically 

synthetic EHR data while maintaining patient privacy. 

Sequential encoder-decoder networks and generative 

adversarial networks form the core of this paradigm. 

4. Methodology 

4.1. Basic Architecture 

In the first stage, every healthcare facility conducts training 

for its local model using its own EHR data. Next, the local 

model undergoes encoding through the utilization of 

homomorphic-encryption. The approach is predicated on 

the premise of a synchronous federated-learning framework, 

in which a central server has the responsibility of 

orchestrating the entire procedure. The incorporation of the 

differential-privacy noise term is intended to provide 

protection against potential attempts to reconstruct the 

individual’s identity. The utilization of suitable encrypted 

protocols, including encrypted communication channels and 

cryptography libraries, is of utmost importance to guarantee 

a seamless implementation. 

4.2. Federated-learning   

Federated-learning refers to a machine learning approach 

that eliminates the requirement for data exchange between 

multiple distributed workstations or servers that each own 

local data specimens and allows the training of a model on 

each one. Each contributing machine uses its local data for 

carrying out model changes in a typical Federated-learning 

instance. Subsequently, these modifications are 

consolidated to enhance the global model. If w is the global-

model here, then   is the local model update from the device 

i. Equation 1 represents the global-model update obtained 

through the aggregation of local changes.  

              global ii
w w=                    (1) 

The method operates under the assumption of a synchronous 

federated-learning  framework, wherein a central-server is 

accountable to coordinate the entire process. Properly 

setting the learning rate η and other hyperparameters is 

necessary for convergence. The technique serves as the 

fundamental framework of federated-learning , wherein 

multiple devices work together to enhance a global-model 

with no need to exchange the raw data. 

 

Fig 4: Basic Framework of the Federated-learning Model. 

An increased client count can enhance the diversity of 

datasets, hence potentially enhancing the resilience and 

generalizability of the global model. As the client count 

grows, the communication overhead proportionally 

increases. Every individual client is required to transmit its 

model updates to the central server, and the server is 

responsible for consolidating these updates. It is necessary 

to make trade-off a balance which minimizes the expenses 

associated with communication while maximizing the 

advantages of having a wide range of data. The computing 

capacities of each client are a determining factor in the 

number of clients.   Insufficient computational resources 

across clients can result in longer training times or higher 

latency during the federated-learning  process when there 

are numerous clients. The number of clients can impact the 

stability of the federated-learning  system. The presence of 

a large number of clients might lead to increased 

unpredictability in model updates, posing a challenge to 

achieving convergence. 

4.3 Homomorphic-encryption with Differential-privacy 

Homomorphic-encryption enables to carrying out of 

computations on the encrypted data without the need for 

decryption. The aforementioned concept holds significant 

implications within the realm of EHR, wherein the 
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safeguarding of sensitive patient data from unauthorized 

access is paramount. However, it is equally imperative to 

ensure that said information may be effectively utilized for 

a multitude of objectives, including but not limited to 

billing, analytics, research, and diagnosis. The utilization of 

Homomorphic-encryption allows for the delegation of data 

processing tasks to external entities in the context of 

EHR systems while maintaining the integrity of privacy and 

security measures. As an illustration, a healthcare facility 

has the capability to employ encryption techniques to secure 

its EHR data. After that, the cloud service provider can 

receive the encrypted data and use it to do any necessary 

actions. The provider is able to do these operations without 

accessing the original unencrypted data, thereby ensuring 

the confidentiality of the plaintext information. 

Subsequently, the institution possesses the capability to 

decipher the obtained data and subsequently employ it for 

its designated objective. 

In order to execute a secure aggregate while preserving the 

confidentiality of each of the model revisions, we make use 

of homomorphic-encryption. Let us take ( )E x is the 

Homomorphic-encryption of input EHR data (x). If p and q 

are plaintext input data, then the encrypted data can be 

represented as follows. 

_ ( ) ( ). ( )Encrypted Information E p q E p E q= + = (2) 

Here ( )iE w  is the Homomorphic-encryption update of a 

local model iw .  

( ) ( )global ii
E w E w= (3) 

Here, ( )globalE w  represents the encrypted global-model 

update. 

This enables the central server to acquire the aggregated 

model update without being granted accessibility to any 

specific variables in the model.  

In order to augment the level of privacy, the implementation 

of differential-privacy is proposed, which involves the 

incorporation of noise into the aggregated model update. 

Differential-privacy is a method employed to safeguard the 

privacy of people inside a dataset through the introduction 

of random-noise to any of the data or the queries. 

Homomorphic-encryption is a cryptographic method that 

enables the execution of calculations on encrypted data 

without the need for decryption. The integration of 

differential-privacy and Homomorphic-encryption can 

facilitate the achievement of safe and confidential data 

analysis in situations where the entities responsible for data 

ownership and data analysis are distinct. As an illustration, 

a medical facility has the capability to employ encryption 

techniques to safeguard the confidential medical records of 

its patients. These encrypted records can then be transmitted 

to an external researcher, who can conduct statistical 

analysis of the encrypted data by utilizing Homomorphic-

encryption methods. The researcher has the option to 

introduce noise into the obtained results in order to 

guarantee differential-privacy, subsequently transmitting 

them back to the hospital. The decryption of the results by 

the hospital enables the acquisition of valuable insights 

while maintaining the confidentiality of both patient and 

researcher data. This noise can be described by 

mathematical equations as below. 

Let ϵ denote the privacy parameter, and let  represent the 

noise term that is randomly selected from a 

Laplace distribution. Reduced values of ϵ are associated 

with heightened levels of privacy assurances. This 

occurrence implies that while having access to the collective 

update, it becomes difficult to determine the individual 

device’s impact due to the introduction of additional noise. 

( ) ( ) ( , )global DP globalE w E w  = +    (4) 

4.4 Multi-party Decryption for Model Update 

While homomorphic-encryption protects data while it is 

being computed, the process of decrypting it presents a risk 

to the system's overall security. The application of multi-

party computation is used to address this problem. This 

protocol is a cryptographic approach that allows many 

parties to cooperatively compute a function while 

maintaining the privacy of each party's input. In the case of 

EHR, this approach is employed to assure the distribution of 

the decryption key among many entities, hence 

necessitating collaborative efforts to acquire the ultimate 

decrypted outcome. If 1 2 3, , ,.... nx x x x  are confidential 

input from distinct device parties, then the function that 

should be decrypted by each party without knowing the 

input data can be presented as follows: 

1 2 3_ ( , , ,.... )nDecryption function f x x x x= (5) 

The approach employed in this study utilizes a secure multi-

party computation protocol, enabling many entities to 

collaboratively decrypt the model parameters while 

maintaining the confidentiality of their respective secret 

keys. The method ensures the preservation of privacy for 

both the encrypted data and the model parameters. When the 

central server receives an encrypted global-model upgrade 

that is differentially confidential, it decrypts the update to 

get the final version.  

( ( ) )final global DPw D E w= (6) 

The aforementioned model update is thereafter employed to 

enhance the overall model without disclosing any particular 

information on individual contributions. Equation 7 

represents the comprehensive mathematical formulation of 
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the privacy-preserving Federated-learning  update, 

incorporating the utilization of Homomorphic-encryption 

and differential-privacy techniques. 

( ( ) ( , ))final ii
w D E w  = +       (7) 

The privacy of individual EHR readings of a case is 

preserved by computing the average on the encrypted 

numbers. The decryption procedure, which entails acquiring 

the average of the plaintext, necessitates cooperation among 

the participants engaged in the multi-party computation, 

thereby ensuring that no individual entity can gain entire 

access to the decrypted outcome. 

 

Fig 5: The Full Algorithm Overview Flow Diagram 

4.5 Overall Algorithm 

The overall algorithm is discussed here. Initially, each 

healthcare institution trains its local model  iw  on its EHR 

data. Then, the local model is encoded using homomorphic-

encryption. The method operates under the assumption of a 

synchronous federated-learning  framework, wherein a 

central server is responsible for coordinating the overall 

process. The inclusion of the differential-privacy noise term 

N(ϵ, Δϵ) serves the purpose of safeguarding against 

potentially recovering its identity attempts. It is imperative 

to utilize appropriate encrypted protocols, such as encrypted 

channels of communication and cryptography libraries, in 

order to ensure an uninterrupted deployment. 

The Federated-learning with Homomorphic-encryption 

Algorithm: 

1: Initiate model: 

Select n clients (healthcare institution). 

Each healthcare institution initializes a local model 

iw  and encrypts it: ( )iE w . 

2: Iterative Federated-learning :  

Each healthcare institution trains its local model 

iw  on its EHR data. 

3:  Homomorphic-encryption of Local Model Update: 

( )iE w  

4:  Transmit ( )iE w to the central server in a secure 

way. 

5:  At the central server, aggregate the encrypted local 

updates: ( ) ( )global i

i

E w E w =   

6:  Add differential-privacy noise: 

( ) ( ) N( , )global DP globalE w E w   =  +   

7: Decrypt the Global Model: 

 Deciphering the differentially confidential, 

aggregated model update- 

 ( ( ) )global global DPw D E w =   

8: Update Global Model: global global globalw w w= +   

9: This process (Steps 2-8) should be repeated numerous 

times till the overall model converges. 

10: Prediction 

 Deploy the final global-model ( globalw ) to 

healthcare institutions securely. 

11: If necessary, aggregate predictions from multiple 

institutions without exposing individual 

predictions. 

12:  Secure Model Prediction. 

5. Results and Discussion 

5.1 Dataset 

The Premier Healthcare database, widely recognised as one 

of the biggest clinical databases in the US, provided the 

EHR data used in this investigation. It is a 12-month project 

that includes data from millions of patients. 415 institutions 

from across the United States provided the data [36]. 

According to some, these facilities represent the general 

experience of hospitals in the US [36]. Discharge files, 

which are official records of all chargeable items such as 

medicine, laboratory usage, and therapeutic and diagnostic 

services, are provided by each hospital listed in the database. 

Each of these things has a connection to a particular patient's 

admittance [36]. The EHR data of 1,271,733 hospital 

admissions are initially present in the database we used for 

our analysis without any pre-processing. Because of the 

wide variety of drugs that might be prescribed, every patient 

has a total of 24,428 features. 

Experimental setup 

The architecture of our model is a fully connected neural 

network consisting of an input layer, 20 hidden layers, with 

each having 512-dimensions, as well as scalar output-layer. 

For binary classification, At the output layer, we make use 
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of the logistic function and log loss. The model is optimised 

with a mini-batch size of 128 instances using the Adam 

optimizer. The default value of 0.001 was utilised as the 

learning rate. The weights of the model were periodically 

taken at 200 mini-batch iterations, and the final model was 

selected retrospectively from the snapshot with the best 

performance on the validation test. No clear regularisation 

was thought to be required. A comprehensive investigation 

of hyperparameters, such as various network depths (from 2 

to 32) and the 'ReLU' activation function, was used to select 

the network configuration.  The Python programming 

language was utilized in the development of the software.. 

The testing were carried out on an Ubuntu 18.04 LTS server 

equipped with two 16GB NVIDIA P5000 GPU cards, an 

Intel(R) CPU running at 2.21GHz, 190GB of RAM, and 

190GB of RAM. To run our models and tests, we use 

NumPy version 1.14.1 and Keras version 2.2.1 with a 

TensorFlow backend version 1.12.0. To make it easier to 

replicate our findings, we run our code within a Docker 

container using Python 3.6.2. 

5.2 Results 

The value of 𝜂 was adjusted from 0.01 to 0.08 for every 

scheme, with an increment of 0.01. A batch was selected 

from all the batches in this study, where a client’s data size 

can be different from others. Within the federated schemes, 

an extra parameter exists known as the number of global 

rounds, denoted as 𝑇CL. The federated design selects 

clinical facilities from a range of options, specifically 

[1,2,3,4,5]. We must select a size that is sufficiently large to 

avoid impeding the rate of convergence while also being 

small enough to prevent compromising privacy by 

increasing the likelihood of sampling.  

We used balanced accuracy, precision, and area under the 

curve as metrics in this study. Balanced accuracy serves as 

a suitable statistic for evaluating the performance of a model 

in binary classification.   The metric in question is the 

average of sensitivity and specificity. It is particularly useful 

when working with imbalanced data, where one of the target 

classes is significantly more prevalent than the other. 

_
2

sensitivity specificity
Balanced accuracy

+
=   (8) 

Sensitivity, also known as the true positive rate or recall, 

quantifies the percentage of actual positive instances that are 

accurately predicted out of all the positive predictions that 

the model can make. Specificity is a statistical measure that 

quantifies the accuracy of identifying negative outcomes by 

a model. It is calculated by dividing the number of 

successfully detected negatives by the total number of 

negative predictions that might be made. 

A single federated run consists of 200 cycles, and the 

highest and lowest scores of every performance parameter 

among the ten federated runs are recorded. During each 

round, a random selection is made to aggregate three 

medical institutions. The outcomes of this study are 

presented in Table 1.  

Algorithm 

Trials 

Privacy AUC Balanced 

Accuracy 

Precision 

Trial 1 ɛ=0 0.731 0.72 0.76 

Trial 2 ɛ=1 0.854 0.86 0.82 

Trial 3 ɛ=2 0.872 0.87 0.85 

Trial 4 ɛ=3 0.885 0.85 0.86 

Trial 5 ɛ=4 0.892 0.88 0.85 

Table 1. Outcomes of Federated-learning  Model in 

Different Trials. 

When compared to local training, Federated-learning 

experiences a decrease in performance because of the need 

for network communications. This decrease is further 

amplified by the inclusion of Homomorphic-encryption and 

Multi-party decryption, resulting in a threefold rise in the 

timeframe required for training.   Training large neural 

network topologies takes more time due to the need for 

network transfer. We have executed four distinct trials for 

this study depending on the degree of privacy. We used the 

Premier Healthcare database for this study investigation. It 

was observed that trial 1, with almost no privacy layer 

employed, reached a balanced accuracy of 72%, with a 

precision score of 0.76. When we started increasing the 

privacy score criteria, the performance of the model started 

to improve. When the value of ɛ increased to 2, the balanced 

accuracy reached a score of 87%. In the end, it was observed 

that when the privacy parameter reaches a score of 5, the 

model performance is far better. The balanced accuracy 

achieves a score of 88%. The value of the area under the 

precision-recall curve was 0.892 at that time. 

 

Fig 6. Model Performances at Various Conditions. 

Consider conducting a more in-depth analysis of the AUC 

and the receiver operating characteristic (ROC) curves that 
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were produced for the various methods and for the round 

that yields the most favorable outcomes in terms of AUC for 

the various trials. During trial 5, it was noted that 

the AUC reached its highest value of 0.892. This suggests 

that the trial requires a shorter amount of time to compute 

compared to the other situations. 

 

Fig 7. ROC curve for Each trial in this study. 

6. Conclusions 

The possible integration of widespread data sharing in 

distributed network systems is expected to generate 

difficulties regarding privacy, confidentiality, and 

authentication within the domain of cyberspace. The main 

goal of this study is to protect the privacy and confidentiality 

of data inside an insecure environment while exchanging 

audiovisual content between two IoT nodes. In order to 

successfully combat an opponent and ensure the secrecy of 

information, we propose the adoption of a robust security 

approach that utilizes a multi-tiered system based on the 

concepts of concealing information and chaos theory.   

Although certain block-based resilient data hiding schemes 

that rely on the transform domain have shown promising 

results, their inefficient block and coefficient selection 

methods result in insufficient performance against common 

cyber-attacks. Hence, we provide a Resilient Framework for 

Guaranteeing Data Confidentiality and Security in EHR-

based networks by employing federated-learning  with 

homomorphic-encryption.   In this case, a differential-

privacy strategy is employed to enhance privacy by 

introducing random perturbations to the aggregated model 

update. The suggested model exhibits superior performance 

compared to the most advanced methods now available for 

ensuring data confidentiality and security in networks based 

on EHR. Our system incorporates sophisticated methods 

such as homomorphic-encryption, safe multi-party 

computation, differential-privacy, and federated-learning  to 

enable efficient and secure computation on encrypted data.   

The article provides a thorough investigation of the 

compromises between privacy, accuracy, and efficiency 

within our framework, including both theoretical and 

empirical analysis.    Federated-learning  is a decentralized 

approach that, when combined with homomorphic-

encryption, provides an enhanced level of security to 

safeguard the privacy of patients. Upon observation, it was 

noted that the model’s performance significantly improves 

when the privacy parameter achieves a value of 5.   The 

balanced accuracy score is 88%. The precise recall curve 

had an area of 0.892 at that specific time. 

There can be several limits in the implementation of this 

model. When dealing with uneven data, the use of 

differential-privacy might result in the model becoming 

overly focused on the majority class, which can have 

negative effects on both fairness and effectiveness.Ensuring 

compliance with privacy rules, such as HIPAA, during the 

implementation of privacy-preserving measures 

necessitates meticulous deliberation. Achieving a 

harmonious equilibrium between safeguarding privacy and 

adhering to regulatory requirements might prove to be a 

formidable task. Federated-learning  (FL) is an 

advantageous method that allows for cooperative learning 

from decentralized data sources, eliminating the need for 

data centralization.   Nevertheless, FL still discloses certain 

information regarding the local data through the exchanged 

model parameters or gradients. In the proposed model, 

Homomorphic-encryption enables the encryption of data 

while allowing computations to be performed on the 

encrypted data, hence maintaining data confidentiality. 

Privacy.   DP introduces random perturbations into the 

model updates to safeguard against inference assaults 

relying on statistical analysis.MPD facilitates the secure 

combination of encrypted model updates while keeping the 

individual contributions undisclosed. We assess the 

performance of our system using a standardized dataset of 

EHRs and demonstrate that it attains exceptional levels of 

accuracy and privacy while also diminishing the expenses 

associated with communication and computing in 

comparison to current approaches. 
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