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Abstract: Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful tool for analyzing complex chemical mixtures, particularly 

for characterizing chemical compositions. Our paper examines the chemical compositions of Indian Jasminum Sambac, Rosa 

Damascena, and Human Urine using GC-MS analysis. In the realm of Electronic Noses (E-Noses), which mimic the olfactory 

capabilities of living organisms, GC-MS data provide a valuable source of chemical information. However, the raw data generated by 

GC-MS can be complex and unstructured, posing challenges for effective integration with machine learning (ML) algorithms in E-Nose 

applications. This research focuses on crucial aspects of feature extraction, multi-class and multi-label classification, and proposes a 

machine learning algorithm for characterizing chemical compounds and their influence on odor classification. Exploratory Data Analysis 

(EDA) techniques are used to select important variables and explore the potential for discrimination. Linear interpolation enhances the 

integration of  GC-MS data into ML algorithms for E-Nose applications. This research aims to leverage advanced machine learning 

techniques, specifically employing multi-output classifiers with various base classifiers (e.g., Random Forest, Decision Tree), for multi-

level compound classification in Gas Chromatography-Mass Spectrometry (GC-MS) datasets associated with jasmine, rose, and urine 

extracts. This work paves the way for automated and efficient compound recognition in complex aromatic profiles. 
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1. Introduction 

GC-MS stands out as an ideal tool for detecting unknown 

substances or contaminants, including trace elements, in 

samples. It facilitates the identification of chemical 

compounds and the quantitative analysis of floral extracts 

and human urine. GC-MS is particularly effective in 

measuring numerous organic pollutants present in complex 

food and environmental samples. Long-standing challenges 

in end-to-end smell communication include the intricate 

nature of smell, the inherent unpredictability of airflows, 

and the complexities of managing timing and intensity. For 

generations, researchers across diverse disciplines have 

sought a classification system that defines a cognitive space 

and facilitates objective discussions about odors. A 

significant gap exists in the availability of tools that can 

accurately compare and characterize odors while predicting 

their degrees of similarity. This gap, compounded by the 

intricate nature of existing designs and limited accessibility, 

has hindered progress in the field of Digital Smell 

Technology [1]. 

Our previous research explored the top-down approach to 

digital smell technology, aiming to capture, classify, 

transmit, and reproduce smell over the internet [2]. It 

utilized Solid Phase Extraction (SPE) and natural drying 

methods for analyzing samples with GC-MS. The analysis 

determined the molecular mass, parts per million, and peak 

area of the chemical compounds in the flowers. We used a 

SHIMADZU's GCMS-QP2010 SE instrument with a 

capillary column and helium as the carrier gas. The injector 

temperature was set to 200°C, and the oven temperature 

increased from 40°C to 200°C. 

Our current study focuses on using machine learning 

algorithms to identify and classify samples based on 

chromatogram data. The goal is to build a model that 

accurately classifies samples using peak intensity 

information. However, correlations between chromatogram 

peaks can compromise its accuracy, leading to larger gaps 

between known and unknown peaks. Therefore, 

preprocessing the data is usually necessary after creating a 

data table containing peak information for machine learning 

applications with chromatogram data. 

In machine learning, "generalization" refers to an 

algorithm's ability to perform well on diverse inputs. 

Ensuring an algorithm generalizes effectively is crucial 

during model development and performance assessment. 

This study evaluates the suitability of Random Forest (RF), 

Support Vector Machine (SVM), and Decision Tree (DT) 

algorithms for analyzing GC-MS datasets. It aims to 
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classify and evaluate the quality of chemical compositions, 

offering a high-throughput alternative to traditional, time-

consuming methods for compound identification and 

assessment. 

Preprocessing aims to: (1) reduce the number of unknown 

features and (2) address missing values. Additionally, our 

research investigates the impact of chromatogram peak 

correlations, feature selection (narrowing down known 

features), and their impact on model performance. To 

achieve these objectives, this research employs linear 

interpolation techniques to interpolate between discrete data 

points in the GC-MS chromatography profiles, enabling a 

more comprehensive analysis. The raw GC-MS data is 

preprocessed using linear interpolation to transform it into a 

more structured and informative dataset. The interpolated 

data is then fed into machine learning algorithms to 

accurately identify and classify odors and volatile 

compounds. 

The key objectives of this research are: 

1. Streamline the integration of GC-MS data with 

machine learning algorithms for E-Nose applications. 

2. Connect discrete data points in the GC-MS 

chromatography profiles.  

3. Enhance the detection and classification performance 

of E-Noses.  

4. Provide a framework for leveraging GC-MS data in 

real-time or near-real-time odor recognition systems.  

The effectiveness of the proposed method is demonstrated 

through extensive experiments and comparisons with 

existing techniques, highlighting its potential to advance the 

field of E-Nose technology. 

2.  Existing Studies 

Our prior research [1] aimed to use gas chromatography-

mass spectrometry (GC-MS) data, exploratory data analysis 

techniques, and machine learning (ML) to distinguish and 

classify three types of samples: floral extracts, human urine, 

and human breath. By integrating modern classification 

algorithms, this system can categorize future samples by 

recognizing established patterns. Solid Phase Extraction for 

Chemical Characterization, machine learning, and 

evolutionary computational methods [1] are used to 

enhance visualization, reduce dimensionality, and highlight 

the impact of each variable on the final outcome. 

This study [1] highlights a gap in existing research 

regarding the chemical profiles of Indian Jasmine, Rose 

Flowers, and Human Urine, and their parts per million 

(ppm), for odor classification using an analytical approach 

with an E-nose. The authors stress the need for further 

exploration, highlighting the limitations of prior research in 

understanding the chemical composition of these flowers 

and its relevance to odor classification. With further 

refinement and dataset expansion, this approach holds 

promise for sensory laboratories in aroma analysis. 

Kexin Bi et al. [3] present a new method for evaluating 

food flavors using machine learning models and GC-MS 

data analysis. This method involves creating distinctive 

"fingerprint templates" from GC-MS data, generating 

individual sample "fingerprint images," and using machine 

learning, specifically CNN, to predict olfactometry results. 

Their research includes a case study on peanut oil, 

demonstrating a model accuracy of around 93%. The paper 

mentions the potential for structure optimization and dataset 

expansion but doesn't provide specific details or strategies. 

Xiaqiong Fan et al. [4] propose a study that introduces 

DeepResolution2 for GC-MS data analysis. This method 

uses deep neural networks to segment the data profile, 

estimate the number of components in each segment, and 

predict the elution region for each component. These 

models enhance the multivariate curve resolution process. 

The proposed approach still has room for improvement, 

especially when dealing with peak saturation. 

Fawzan Sigma Aurum et al. [5] introduced a method 

focusing on the fragrance of coffee, which is affected by 

volatile compounds (VCs). This method investigates the use 

of untargeted SPME-GC/MS to generate a VC fingerprint 

capable of predicting the origin of Indonesian coffee. 

Multiple machine learning (ML) models were compared to 

establish the most accurate origin prediction. Random 

Forest (RF) and Partial Least Squares Discriminant 

Analysis (PLS-DA) models demonstrated high accuracies, 

reaching 97% and 95.2%, respectively. However, the non-

targeted GC/MS metabolite profiling may not capture all 

metabolites, potentially missing important compounds. The 

study also lacked sensory evaluation or cupping scores to 

correlate the metabolite profiles with coffee quality. 

Nico Borgsmüller et al. [6] presented a machine learning 

approach for classifying data from GC-MS instruments. 

This approach holds promise for refining compound 

identification and characterization, providing insights for 

diverse applications. However, models developed on 

specific datasets might not generalize well to new or unseen 

data, limiting their practical applicability. 

Kristian Pastor et al. [7] introduce a method for 

categorizing gluten and non-gluten cereal flours according 

to their botanical sources. This method generated distinct 

patterns for each flour class. An automated machine 

learning framework was used for classification, with a basic 

logistic classifier emerging as the most recommended 

choice after 10-fold cross-validation. The developed model 

achieved an 85.71% accuracy. The paper doesn't discuss the 

potential impact of variations in flour composition or 

processing methods on the model's accuracy. 
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Sastia Prama Putri et al. [8] analyzed 64 compounds in 16 

green and roasted coffee beans from various Indonesian 

species and regions. Using Principal Component Analysis 

(PCA), the study revealed distinct separations among 

samples based on roasting methods and species. This 

analysis was done using gas chromatography/mass 

spectrometry (GC/MS), which may not capture all 

metabolites. 

Kristian Pastor et al. [9] propose a method using GC/MS 

and chemometric analysis to differentiate flour samples 

from different wheat, hazelnut, and walnut genotypes. They 

apply unsupervised techniques like PCA, heat mapping, 

HCA, and PCoA to identify crucial factors for 

distinguishing flour origins. The SVM classification 

exhibited high performance. However, the study doesn't 

consider the potential impact of other factors like 

environmental conditions. 

Kristian Pastor et al. propose a novel, unified method 

utilizing chemometric analysis of GC-MS data to 

differentiate experimental flour samples based on their 

botanical origins [10]. This approach addresses a previously 

unexplored gap, potentially facilitating the identification 

and tracking of cereal and pseudocereal varieties. The study 

demonstrates the use of pattern recognition tools like 

cluster analysis and principal component analysis to reveal 

patterns and distinctions within the samples. However, the 

potential impact of environmental factors on the results is 

not addressed, despite samples originating from the same 

experimental field. 

3.  Methodology 

3.1. GC-MS Compound Analysis 

In Gas Chromatography-Mass Spectrometry (GC-MS) 

analysis, retention time (R.Time), peak area, peak height, 

and base peak provide valuable information about a 

compound's characteristics. However, these parameters are 

not universal for the same compound across different 

samples, such as Jasmine, Rose, and Human Urine. 

Variations can occur due to changes in column temperature, 

pressure, or other experimental conditions. Consequently, 

the exact R.Time for a compound may differ between 

various GC-MS runs or instruments. 

Peak area and peak height relate to a compound's 

concentration in the sample. These values depend on factors 

such as the compound's concentration itself, detector 

sensitivity, and sample preparation methods. For example, 

our previous research utilized Solid-Phase Extraction and 

Natural Drying (Air-Drying). The same compound in 

different samples or under different experimental conditions 

can exhibit varying peak areas and heights. Additionally, a 

single compound may exhibit different base peaks in 

different samples. 

3.2. Limitations of GC-MS Sample 

It's important to note that the GC-MS report provided is 

specific to our Indian Jasminum Sambac, Rosa Damascena, 

and Human Urine samples (Figures 1, 2, and 3). While 

retention time (R.Time), peak area, peak height, and base 

peak offer valuable insights for compound identification, 

they are not universally consistent for the same compound 

across different samples or GC-MS runs. Each time we run 

samples, even the same sample, through GC-MS, these 

values can vary due to factors like temperature and other 

spectral conditions. This limitation is a key focus of our 

research. We aim to use machine learning algorithms to 

address this inconsistency, ensuring reliable outputs from 

GC-MS data across different runs. By consolidating and 

structuring the data, we hope to improve the accuracy and 

consistency of chemical compound identification. 

3.3. The Actual GC-MS Data and Adopted Methodology 

(Merging Datasets) 

Our initial dataset (Figures 1, 2, and 3) poses challenges for 

applying multi-class and multi-label classification 

algorithms to chemical compound identification. Key 

limitations include: 

• Limited Sample Size: With only 30, 20, and 16 records 

respectively, the dataset is too small for robust machine 

learning.  

• Imbalanced Classes: The non-uniform distribution of 

classes, with some having significantly fewer samples, 

creates bias and hinders accurate classification.  

• Unstructured Nature: The lack of predefined patterns or 

organization further complicates meaningful 

information extraction.  

• Dataset Specificity: Combining datasets from different 

samples without carefully considering the variability in 

compound identification parameters can introduce 

inaccuracies.  

 

 

Fig. 1 – GC-MS Report – Jasmine Extract 
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Fig. 2 – GC-MS Report – Rose Extract 

 

 Fig. 3 – GC-MS Report – Human Urine 

GC-MS data, including retention time, peak area, peak 

height, and base peak values, is intrinsically sample-

specific. These values can vary due to the sample matrix, 

experimental conditions, and instrument settings. This is 

particularly important when dealing with different samples 

like jasmine and rose, where direct concatenation of 

datasets can lead to misleading associations between 

compounds and samples due to inherent variations. Before 

processing any GC-MS data, unstructured data must be 

transformed into a structured format suitable for machine 

learning algorithms. While adding features can be a 

common approach to increase accuracy, it's crucial to 

carefully consider the added features and their relevance to 

the specific problem. For clustering similar features, feature 

engineering might be more appropriate than simply adding 

them all. Additionally, standardization or normalization of 

features should be considered to address potential biases 

arising from variables with larger scales. 

3.4. Exploratory Data Analysis (EDA) 

Our initial exploration of the GC-MS data involved various 

descriptive statistics (Mean, Median, Standard Deviation, 

etc.) to understand the data distribution and variability. 

These statistics revealed minimal deviations, with all values 

within a 10% range. Additionally, we employed data 

visualization techniques such as: 

• Bar charts: To illustrate the distribution of different 

features within the dataset.  

• Histograms: To visually compare the distribution of 

individual features. 

• Density plots: To visualize the probability density of 

features, particularly focusing on symmetry for Peak 

Area, Peak Height, and Base Peak. 

• Box plots: To identify potential outliers in Peak Area, 

Peak Height, and Base Peak during feature 

engineering. Notably, box plots ensured values 

remained within the expected range (9.00 - 30.00 

mins) based on the GC-MS chromatogram peaks.  

Furthermore, correlation analysis provided insights into 

potential relationships between variables. This analysis can 

be helpful in understanding how adding or removing 

features might impact the model's predictive power and 

accuracy. 

3.5. The Rationale for Interpolation and Deviation in 

Datasets 

The EDA in our process provided insights into the data, 

aiding in understanding its structure and the distribution of 

variables. Initially, our raw merged dataset contained 66 

records. Since the dataset is unstructured and skewed, the 

entire dataset has been scaled using linear interpolation for 

multi-class and multi-label classification. When dealing 

with unstructured data, it is not advisable to directly process 

a raw dataset; instead, interpolation should be employed. 

Linear interpolation on three columns (Peak_Area, 

Peak_Height, and Base_Peak) based on the 

'Retention_Time' index. Given two points (x1, y1) and (x2, 

y2), the linearly interpolated value y at a point x between x1 

and x2 is calculated as: 

y = y1+ ((x-x1)*(y2-y1)) / (x2-x1)  (1) 

Here, linear interpolation on specified columns based on the 

'Retention_Time' index, filling in missing values by 

estimating intermediate values through a linear equation 

between adjacent data points. The initial computation of the 

Mean for Peak_Area, Peak_Height, and Base_Peak from a 

raw sample was 4.5, 4.5, and 93.3, respectively. After 

Linear Interpolation, an imbalance emerged in the dataset. 

To address this, we further scaled the dataset values 

between 9.00 Mins to 30 Mins based on Peaks in the GC-

MS chromatogram. This adjustment aimed to handle gaps 
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within the merged interpolated dataset. Expanding the 

original dataset from 66 records to 1458 records through 

interpolation resulted in mean deviations to 4.7, 4.8, 103.9, 

respectively. Despite linear interpolation, the data exhibited 

bias, leading to oversampling (5568 Records) of features to 

eliminate dataset deviations. Label Encoding was 

performed for non-numerical variables before oversampling 

to simplify complexities. 

Visualization of the datasets distribution revealed 

differences in the 'Density_Plot' of Peak_Area, 

Peak_Height, and Base_m/z, indicating a deviation from 

the expected pattern(Figure 4). Similar challenges were 

encountered during Downsampling. With more 

oversampling, values approached those of the raw dataset. 

Although there isn't a fixed rule, the general aim was to 

keep deviations 5% or less. To solve this problem, 2nd and 

3rd oversampling was done until the no deviations of the 

oversample data is observed. Following a third 

oversampling of the interpolated dataset (11136 Records), 

the mean was restored to 4.7, 4.8, 96.4, representing almost 

less than 10% deviation and closely resembling the original 

raw dataset. The density graph also exhibited striking 

similarities, with minimal deviations in the mean among the 

raw, interpolated, and oversampled datasets. 

4. Classification with Machine Learning 

Complex datasets are primarily explored using multi-class 

and multi-label classification techniques like Decision 

Trees(DT), Support Vector Machine(SVM), Random 

Forest(RF), Gradient Boosting, and more. These techniques 

help identify patterns, enabling visualization and 

interpretation of complex multivariate datasets[11]. They 

aim to capture as much variance from the original data as 

possible, facilitating the identification of major patterns and 

potential causal factors. Machine Learning algorithms, 

specifically Random Forests(RF), offer significant 

advantages in analyzing extensive data arrays, particularly 

when the number of variables exceeds the sample count. RF 

functions as a bootstrapping classification tool, creating 

multiple decision trees that each use randomly selected 

input variables for predictions or class allocation. This 

approach effectively combats over fitting and does not 

require scaling before analysis[12]. Due to Random Forest 

superior performance, the algorithm has been applied 

across various domains, ranging from gene selection studies 

for diagnostic purposes[13], monitoring grasslands[14], 

classification of milk based on animal species[15], intra-

regional classification of grape seeds[16], to predict liquid 

chromatographic retention times[17]. 
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Fig. 4 – Visualization of Data, Density Plot after Third 

Oversampling 

4.1.  Testing Phase 

4.1.1.  Multi-Class Classification 

During the testing phase, the Decision Tree Classifier, 

Random Forest, and Support Vector Machine were utilized 

to predict outcomes in a test set. The algorithm was trained 

using features and hyper-parameters were fine-tuned for 

handling individual samples, focusing on parameters like 

Regularization (specifically L2 regularization), Penalty 

type, Cross-validation strategy (using KFold with 

n_splits=5), and Scoring metrics. Notably, when validated 

with Merged Samples, the Decision Tree Classifier, RF, and 

SVM exhibited 100% accuracy[Figure. 5].  

4.1.2.  Multi-Label Classification 

GC-MS reports may exhibit an imbalance in labels, making 

it crucial to address this imbalance to prevent model biases. 

The optimal algorithm for multi-label classification hinges 

on the dataset's specific characteristics and the desired 

trade-off between accuracy and computational efficiency. 

However, some algorithms tend to perform better across a 

broader range of datasets. In multi-label classification, 

unlike multi-class and multi-output classification, we 

predict multiple output labels, assigning as many labels as 

applicable to the input data (e.g., jasmine, rose, and human 

urine). The system can predict anywhere from no 

compounds to the maximum number of available 

compounds. Following data preprocessing, we constructed 

a multi-label classifier using Scikit-Learn. Within Scikit-

Learn, we utilized the MultiOutputClassifier object to train 

the multi-label classifier model. This model's strategy 

involves training one classifier per label, essentially 
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assigning a separate classifier to each label. In this system, 

we employed Random Forest Classifier, and 

MultiOutputClassifier extended it to all labels. We can 

further modify the model and adjust its parameters, which 

are passed into the MultiOutputClassifier, to suit our needs 

for Support Vector Machines and Decision Trees. In a 

multi-label classification task, the anticipated output is a set 

of predicted labels for each testing sample. Evaluation 

metrics for multi-label classification, including Hamming 

Loss, F1-Score, Precision, and Recall, accurately assess the 

model's performance. 

  

 

Fig. 5 – Testing Phase – DT, RF, SVM Algorithms 

The Hamming loss metric evaluates the accuracy of a 

multi-label classifier, particularly in scenarios where each 

sample can belong to multiple classes or have multiple 

labels. It measures the proportion of incorrectly predicted 

labels for a given sample. However, achieving a perfect 

Hamming loss in practical scenarios with complex and 

unstructured datasets can be extremely challenging. In our 

case, Multi-Label Decision Trees, SVM, and Random 

Forests resulted in a Hamming Loss of '0' [Figure 6,7]. This 

indicates perfect performance, where all predicted labels for 

each sample precisely match the true labels. Similarly, the 

Accuracy score, F1, and Recall score results of '1' 

demonstrate that the model predicts the exact label 

combination [Figure 6,7]. 

4.2.  Validation Phase 

Transitioning to the validation phase, the RF model was 

applied to the merged dataset, optimizing it by evaluating 

preprocessed encoded data and determining the number of 

features used in the raw dataset. The model's performance 

was assessed through a cross-validation process using the 

sklearn library. The entire dataset was divided into training 

(70%), testing (20.1%), and validation (9.9%) subsets for 

both A and B, resulting in 3897, 1119, and 552 samples, 

respectively. Differences between raw and processed data 

(Linear Interpolated, Encoded, and Oversampled) were 

examined. Despite the RF parameters remaining at default 

settings, the RF model achieved 100% accuracy in Multi-

Class classifying features as Jasmine, Rose, Human_urine, 

and No_Compound data (Figure 8).  

 

 

Fig. 6 – Testing Phase – Multi-Label Random Forest 

Classifier 

Similar like testing phase, we employed Random Forest, 

and MultiOutputClassifier extended it to all labels. We can 

further modify the model and adjust its parameters, which 

are passed into the MultiOutputClassifier, to suit our needs 

for Support Vector Machine and Decision Trees. The 

evaluation metrics of Hamming Loss, F1-Score, Precision, 

and Recall are instrumental in accurately evaluating the 

performance of the multi-label classification model during 

the validation phase(Fig. 9). 

5.  Results 

One aspect regarding imbalanced datasets is that they don’t 

heavily impact ensemble techniques. Instead, fine-tuning 

hyper-parameters and adjusting class weights to penalize 

misclassifying the minority class can be beneficial. The use 

of appropriate techniques during model training in 

classification algorithms may result in better model 

performance and accuracy. We used samples of Jasmine, 

Rose, and Human Urine for Gas Chromatography testing, 

resulting in a GC-MS Report, which was later transformed 

into a structured dataset. Following this, we conducted data 

preprocessing and exploratory data analysis, achieving 

100% accuracy across all machine learning classifier 

algorithms. Typically, such high accuracy is attained by one 

classifier, but in our case, it was achieved universally across 

all algorithms.  

Despite this success, we opted for the Random Forest 

classifier as our primary choice due to its capability to 

determine feature importance, aiding in understanding the 

features' contributions to predictions. By leveraging feature 

engineering, encoding techniques, and comprehensive 
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exploratory data analysis, we achieved 100% accuracy, 

while the Random Forest's ability to select pertinent 

features and reduce over fitting made it less susceptible to 

noise and outliers. 

 

 

 

 

 

 

 

 

  

Fig. 7 – Testing Phase – Multi-Label Decision Tree 

and  SVM 

 

 

 

Fig. 8 – Validation Phase – Multi-Class Random Forest 

Classifier 

 

  

Fig. 9 – Validation Phase, Multi-Label Random Forest 

Classifier 

6.  Conclusion 

The effectiveness of EDA and other techniques may vary 

depending on the specific characteristics of a dataset. Both 

machine learning and deep learning algorithms rely on 

understanding the underlying data patterns. If these patterns 

vary, the output will also differ. This approach is crucial, 

especially when dealing with datasets containing significant 

bias, as adopting this methodology ensures dataset 

consistency and accurate identification of chemical 

compounds. Additionally, it contributes to a deeper 

understanding of the relationship between chemical data 

and odour perception, advancing the field of E-Nose 

technology and its potential applications in various 

domains. Our research overcomes all the limitations or 

drawbacks mentioned above, having the potential for 

structure optimization and dataset expansion, shows 

promising results for classifying odour samples based on 

their chemical profiles. Further it investigates the potential 

impact of variations in chemical composition, processing 

methods, environmental conditions, and other factors on the 

accuracy of the classification model. Understanding the 

relationship between chemical compounds and perceived 

odour is essential, as it provides insights into the aromatic 

profile of these culturally and economically significant 

flowers. 
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