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Abstract: Fraudulent use of credit cards is a major problem across the world, causing enormous financial losses for banks, retailers, and 

customers. Machine learning algorithms are effective in detecting fraudulent transactions, but the imbalanced dataset with the majority of 

transactions being legitimate poses a challenge. The SMOTE technique is used to address the imbalanced dataset caused by the minority 

class (fraudulent transactions) in this study, which assesses the effectiveness of multiple machines learning classifiers, including Logistic 

Regression, Random Forest, Decision Tree, Gradient Boosting, XGBoost, as well as SVM. The Random Forest model is the most effective 

classification algorithm overall, with a recall of 0.8482, precision of 0.8526 and F1 score of 0.8504 in the 60:40 split. It had a recall of 

0.8603, precision of 0.8357 and F1 score of 0.8478 for the 70:30 split. For the 80:20 split, it had a recall of 0.8367, precision of 0.9213 and 

F1 score of 0.8770. The study indicates that the SMOTE approach and various classifiers are effective for detecting credit card fraud, with 

Random Forest being the best-performing classifier. 
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1. Introduction 

Fraudulent use of credit cards is a serious concern for 

financial organizations as it results in substantial financial 

losses and undermines consumer confidence in the banking 

system. Machine learning techniques have shown promise 

in detecting fraudulent transactions by analyzing historical 

data patterns. However, the issue of imbalanced datasets, 

where fraudulent transactions comprise only a small 

proportion of legitimate transactions, makes effective 

detection of fraud challenging. One approach that has been 

proposed to overcome this challenge is the Synthetic 

Minority Oversampling Technique (SMOTE). 

This paper explores the use of SMOTE in the detection of 

credit card fraud to address the issue of imbalanced datasets 

and assesses the effectiveness of various classifiers. The 

study makes use of a Kaggle dataset which comprises data 

from European cards collected over a two-day period in the 

month of September 2013. The study's data is extremely 

skewed, with just 492 instances of fraud out of 2,84,315 

transactions. Only 0.172% of the entire transactions are 

classified as positive (frauds). The dataset solely comprises 

numerical input variables resulting from PCA 

transformation, with variables V1 through V28 serving as 

the principal components. The only variables not modified 

by PCA are the features: 'Time' and 'Amount.' The 'Time' 

feature provides the seconds that elapsed between every 

single transaction and the initial transaction in the dataset, 

while the 'Amount' feature contains the transaction worth. 

The response for the variable, labelled 'Class,' has a value of 

1 in the event of fraud and 0, in the absence of it. 

Prior studies have used various techniques to deal with the 

imbalance in data, including one-class classification, 

random oversampling, and cost-sensitive models [1]. To 

build the classification model for the detection of credit card 

fraud, most studies employed classifiers such as Random 

Forest, Decision Tree, SVM, and KNN ([1]-[6]). Some 

studies have also used deep learning techniques to build 

predictive models ([7], [8], [11], [13]). 

This study proposes using the SMOTE oversampling 

technique to address the issue of imbalanced datasets and fit 

various classifiers to predict fraudulent transactions. Each 

classifier's performance is evaluated using multiple types of 

metrics, including Accuracy, Recall, F1 Score, Precision, 

Area Under Curve Receiver Operating Characteristics Score 

(AUC-ROC Score), as well as Matthews Correlation 

Coefficient (MCC). 
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2. Methodology 

2.1. Data Preparation 

The Kaggle detection of credit card fraud data was imported 

into a Python notebook, and a check for null values was 

performed, revealing no null values in the data. To visualize 

the distribution between fraudulent and non-fraudulent 

transactions, a count plot was created. 

The count plot shown below (Fig. 1.) illustrates a significant 

imbalance in the dataset, with non-fraudulent transactions 

(0) having a count of 2,84,315 greatly outnumbering 

fraudulent transactions (1) having a count of 492. 

Subsequently, a correlation plot was plotted to explore the 

relationship between the "Class" label and the other 

features. 

 

Fig. 1. Count plot depicting the distribution of fraudulent 

transactions vs. non-fraudulent transactions 

2.2. Synthetic Minority Over-sampling Technique 

(SMOTE) 

In classification problems, imbalanced datasets occur when 

the amount of samples in a particular class is much lower 

than the number of samples in the other class, resulting in 

poor performance of the models, particularly for the class 

which is in the minority. To address this issue, SMOTE 

(Synthetic Minority Over-sampling Technique) is used 

which is a prominent data augmentation approach. SMOTE 

generates synthetic minority class samples through 

interpolation. The algorithm selects a sample from the class 

which is in the minority, identifies its k nearest neighbors, 

and creates new synthetic samples by interpolating between 

the chosen sample and its neighbors. This approach 

oversamples the minority population, balancing the amount 

of specimens in each of the classes and improving the 

quality of the minority class samples. In this study, the 

dataset for the detection of credit card fraud exhibits a 

significant class imbalance, with 2,84,315 non-fraudulent 

transactions (majority class) and only 492 fraudulent 

transactions (minority class). Therefore, SMOTE is utilized 

to synthesize new minority class samples and balance the 

class distribution. 

2.3. Train-Test Split of Data 

The efficacy of various machine learning classifiers for 

identifying credit card fraud is investigated in this work 

utilizing three different train-test data splits: 60:40, 70:30, 

and 80:20. The primary goal of using different splits is to 

evaluate the effect of modifying the size of data utilized in 

training and testing upon the performance of classifiers. 

To ensure the reproducibility and comparability of results, a 

fixed random seed of 42 is set when splitting the data. This 

practice guarantees that each execution of the code 

generates the same split of data, facilitating a fair 

comparison of the classifiers' performance. 

To avoid any bias during the training and testing processes, 

feature scaling is performed on the dataset after it has been 

divided into sets for training and testing. Feature scaling 

normalizes the data and ensures that each feature has the 

same scale, making it easier for many machine-learning 

algorithms to function optimally. 

The data in this study is scaled to have a mean of zero and a 

standard deviation of one using standard scaling. This 

technique transforms the data into a more appropriate form 

for the classifiers to learn from and minimizes the impact of 

outliers or extreme values in the data. 

2.4. Algorithms 

2.4.1. Logistic Regression 

A statistical technique employed for modeling the 

relationship between a dependent variable that is categorical 

and independent variables is known as logistic regression. It 

assesses the likelihood of the occurrence of an event by 

using a logistic function, although significant biases might 

come up if the conditions of linearity between the variables 

that are independent and the variable that is dependent are 

not fulfilled. The logistic function's formula is as follows: 

𝑝(𝑥) =
1

1+𝑒−𝑧  (1) 

where p(x) is the likelihood of the event occurring given the 

independent variable values and z is the linear combination 

of the variables that are independent. 

2.4.2. Decision Tree 

The decision tree is a widely employed machine learning 

technique for classification and regression tasks, offering a 

comprehensible representation of decision-making 

processes. It maximizes class separation or minimizes 

regression error by repeatedly partitioning input data based 

on informative features, making it valuable for interpretable 

and accurate predictions. The entropy is given by: 

𝐸(𝑆) =  −𝑝(+)𝑙𝑜𝑔𝑝(+) − 𝑝(−)𝑙𝑜𝑔𝑝(−)  (2) 
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where p(+) is the likelihood of the class that is positive, p(-

) is the likelihood of the class that is negative, and S is the 

training sample subset. 

The information gain is as follows: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸(𝑃𝑎𝑟𝑒𝑛𝑡) − 𝐸(𝑃𝑎𝑟𝑒𝑛𝑡|𝐶ℎ𝑖𝑙𝑑) 

 (3) 

2.4.3. Random Forest 

Random Forest, an ensemble learning algorithm, is widely 

employed for diverse predictive modeling applications such 

as classification and regression. By aggregating outputs 

from multiple decision trees, each constructed on random 

subsets of data and features, it effectively mitigates 

overfitting, enhances generalization, and offers advantages 

such as robustness to noise, high-dimensional data handling, 

and feature importance estimation with minimal 

hyperparameter tuning. The formula for Random Forest is 

given by: 

𝑓(𝑥) =
1

𝑇
∑ 𝑓𝑡(𝑥)𝑇

1   (4) 

where ft(x) is the prediction of the tth tree, T represents the 

total amount of trees, and 1/T represents the normalization 

factor. 

2.4.4. Gradient Boosting 

Gradient Boosting, a potent ensemble learning algorithm, is 

utilized for regression and classification tasks, effectively 

combining weak models to construct a robust predictive 

model. By iteratively minimizing residual errors through 

negative gradient fitting, it addresses complex relationships, 

missing data, and feature importance estimation, yielding 

accurate predictions with limited data and reducing 

overfitting concerns. The formula for Gradient Boosting is 

given by: 

𝐹𝑚(𝑥) = 𝐹𝑚 − 1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)  (5) 

where m is the amount of decision trees made, Fm-1(x) is 

the base model's prediction (previous prediction), γm is the 

multiplicative factor and hm(x) is the recent decision tree 

made on the residuals. 

2.4.5. XGBoost 

XGBoost, an influential machine learning algorithm, finds 

widespread application in supervised learning tasks like 

regression, classification, and ranking. Utilizing decision 

trees as base models, XGBoost excels in delivering 

remarkably accurate results while maintaining 

computational efficiency. The formula for XGBoost is 

given by: 

𝐹𝑚(𝑥) = 𝐹𝑚 − 1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)  (6) 

where m is the amount of decision trees made, Fm-1(x) is 

the base model's prediction (previous prediction), γm is the 

multiplicative factor and hm(x) is the recent decision tree 

made on the residuals. 

2.4.6. Support Vector Machine (SVM) 

Support Vector Machine (SVM), a popular and powerful 

machine learning technique, is extensively applied in 

supervised tasks encompassing classification, regression, 

and outlier detection. SVM's notable strength lies in 

effectively managing high-dimensional data and nonlinear 

relationships by utilizing kernel functions to map data to a 

higher-dimensional space, facilitating optimal hyperplane 

identification for class separation. The formula for SVM can 

be represented as: 

𝑓(𝑥) = 𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏)   (7) 

where w represents the weight vector, b represents the bias 

term, and sgn represents the signum function, which returns 

either +1 or -1 based on the sign of the argument. 

2.5. Workflow 

The first step involved in building the machine learning 

model, depicted in the figure (Fig. 2.), is data pre-

processing. It includes several tasks such as identifying the 

count of fraudulent and non-fraudulent transactions, 

checking for any missing or null values, and analyzing the 

correlation between the features and the class label. A 

correlation plot can be plotted to visualize the correlation 

matrix and identify which features have no significant 

impact on the class label. These inconsequential features can 

be removed from the dataset to minimize its dimensionality. 

The dataset is then divided into training and testing data. In 

this paper, three different splits have been implemented, 

60:40, 70:30, and 80:20. The training dataset is employed 

for training the model, while the testing dataset is employed 

to assess the model's performance. 

The data is scaled before the model is trained to ensure that 

all features are on the same scale. This helps the model to 

understand the trends in the data and increases its 

performance. 

The dataset used is imbalanced, with a high proportion of 

non-fraudulent transactions and a low proportion of 

fraudulent transactions. This can lead to biased models, 

where the classifier tends to predict the majority class. To 

tackle this issue, the Synthetic Minority Over-sampling 

Technique (SMOTE) is employed to generate synthetic data 

and oversample the class which is in the minority. This 

technique helps to balance the dataset and improves the 

performance of the classifier. 

Using the dataset for training, various classifiers like 

Logistic Regression, Random Forest, Decision Tree, 

XGBoost, Gradient Boosting, and Support Vector Machine 

(SVM) are taught. The model is assessed after training using 

the testing dataset and various metrics such as precision, 
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accuracy, F1 score, recall, Matthews Correlation Coefficient 

(MCC), and AUC ROC score. These metrics help in 

measuring the model's performance in identifying 

transactions that are fraudulent. 

 

Fig. 2. Flowchart depicting the machine learning model's 

workflow 

3. Results and Discussion 

3.1. Evaluation Metrics 

3.1.1. Confusion Matrix 

The confusion matrix, a fundamental tool in assessing the 

performance of classification models, presents a tabular 

summary of correct and incorrect predictions on test data. 

By partitioning predictions into True Positives, True 

Negatives, False Positives, and False Negatives, it enables 

the evaluation of crucial metrics such as precision, accuracy, 

F1-score, and recall, thus offering valuable insights for 

research purposes. 

 

Fig. 3. Binary Classification Confusion Matrix 

The figure shown above (Fig. 3.) depicts a typical binary 

classification confusion matrix which gives an idea about 

the count of TP, FP, TN, and FN. 

3.1.2. Accuracy 

Accuracy, a commonly employed metric in the area of 

classification, quantifies the percentage of properly 

classified instances within a dataset, reflecting the model's 

proficiency in assigning the correct class labels. However, 

this metric exhibits limitations by not accounting for the 

varying significance of different types of errors and proving 

inadequate for imbalanced datasets, where alternative 

evaluation metrics like recall, precision, area under the ROC 

curve, F1-score, etc., play a crucial role in comprehensive 

model assessment ([12], [14]). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8) 

3.1.3. Precision 

Precision, a vital metric in classification tasks, gauges the 

accuracy of positive predictions by measuring the 

proportion of correctly identified positive instances among 

those predicted as positive, excluding false positives. Its 

significance lies in scenarios where false positives carry 

substantial ramifications ([9], [10]). Nonetheless, a 

comprehensive evaluation of classification models 

necessitates the incorporation of complementary metrics 

like recall, accuracy, and F1 score especially in domains 

where false negatives hold critical implications, such as 

medical diagnosis or fraud detection. Precision is 

mathematically expressed as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (9) 

3.1.4. Recall 

Recall, a prevalent evaluation metric in classification tasks, 

quantifies the model's capability to accurately identify all 

positive cases by measuring the proportion of true positive 

predictions among all actual positive cases in the dataset, 

avoiding false negatives. Its significance is particularly 

pronounced in contexts where false negatives hold 

significant implications. However, to comprehensively 

assess the model's performance, considering precision 

alongside recall becomes imperative, especially in scenarios 

like spam email detection, where false positives bear 

substantial consequences. Recall is mathematically 

expressed as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (10) 

3.1.5. F1 Score 

The F1 score, a widely adopted metric in classification 

tasks, offers a balanced evaluation by harmonizing recall 

and precision into a single value. With equal consideration 

of both metrics, the F1 score, ranging from 0 to 1, indicates 
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superior performance, particularly in scenarios where recall 

and precision hold equal importance. Nonetheless, being a 

general metric, it is advisable to complement the F1 score 

with other relevant metrics to gain a comprehensive 

perspective on the performance of the model, considering 

the specific requirements of the task. The following 

equation determines the F1 score: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

3.1.6. Area under the Receiver Operating Characteristic 

Curve (AUC ROC) 

The Area under the Receiver Operating Characteristic 

Curve (AUC ROC) is a widely employed evaluation statistic 

in classification tasks, gauging the effectiveness of a binary 

classification model by plotting the True Positive Rate 

(TPR) versus the False Positive Rate (FPR) at various 

settings for the threshold. Ranging from 0 to 1, a higher 

AUC ROC value signifies superior performance, remaining 

advantageous over other metrics by its robustness to class 

disparity, comprehensive assessment across threshold 

settings, and ease of interpretation for non-technical 

stakeholders. Nevertheless, a potential limitation lies in its 

focus on prediction order rather than absolute values, which 

may lead to varying implications in specific applications 

even when classifiers possess the same AUC ROC value. 

3.1.7. Matthews Correlation Coefficient 

Matthews Correlation Coefficient (MCC) serves as a 

valuable indicator in binary classification evaluations, 

capturing the correlation between actual and predicted class 

labels while encompassing all possible outcomes. Ranging 

from -1 to +1, MCC offers advantages over other metrics by 

comprehensively considering positive and negative 

examples, proving robustness in handling imbalanced 

datasets, and accommodating class size variations. 

However, its interpretation may require additional effort, 

and as a correlation coefficient, it does not convey 

information regarding the magnitude or direction of 

classifier errors. Matthew's Correlation Coefficient is 

calculated as follows: 

𝑀𝐶𝐶 =
𝑇𝑁×𝑇𝑃−𝐹𝑁×𝐹𝑃

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (12) 

3.2. Results 

Table 1. Performance Evaluation of 60:40 Split 

 

 

 

 

 

Fig. 4. Comparison of Evaluation Metrics for Various 

Classifiers (60:40) 

The table (Table 1.) and the figure (Fig. 4.) exhibit the 

model's evaluation considering several evaluation measures 

for the dataset's 60:40 split. Some conclusions that can be 

drawn from them are: 

1) With accuracy scores of 0.9995 and 0.9977, the 

Random Forest and Decision Tree models are the 

most accurate. 

2) The Random Forest model has the highest 

precision, with a score of 0.8526. 

3) The Logistic Regression model obtains the greatest 

recall value of 0.9162, and the SVM model follows 

close behind with a score of 0.9110. 

4) The Random Forest model has the highest F1 

score, with a score of 0.8504. 

5) The Gradient Boosting and XGBoost models have 

the highest AUC ROC scores, with scores of 

0.9826 and 0.9825, respectively. 

6) The Random Forest model has the highest MCC 

score, with a score of 0.8501. 

In summary, the Random Forest model performs best 

overall based on the provided data, with high scores across 

multiple performance metrics. 

Table 2. Performance Evaluation of 70:30 Split 
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Fig. 5. Comparison of Evaluation Metrics for Various 

Classifiers (70:30) 

The table (Table 2.) and the figure (Fig. 5.) exhibit the 

model's evaluation considering several evaluation measures 

for the dataset's 70:30 split. Some conclusions that can be 

drawn from them are: 

1) With accuracy scores of 0.9995 and 0.9971, the 

Random Forest and Decision Tree models are the 

most accurate. 

2) The Random Forest model has the highest 

precision, with a score of 0.8357. 

3) The Logistic Regression and SVM models obtain 

the greatest recall value of 0.9338 each. 

4) The Random Forest model has the highest F1 

score, with a score of 0.8478. 

5) The XGBoost and Gradient Boosting models have 

the highest AUC ROC scores, with scores of 

0.9892 and 0.9860, respectively. 

6) The Random Forest model has the highest MCC 

score, with a score of 0.8477. 

Overall, the Random Forest model performs the best. 

Table 3. Performance Evaluation of 80:20 Split 

 

 

 

 

 

Fig. 6. Comparison of Evaluation Metrics for Various 

Classifiers (80:20) 

The table (Table 3.) and the figure (Fig. 6.) exhibit the 

model's evaluation considering several evaluation measures 

for the dataset's 80:20 split. Some conclusions that can be 

drawn from them are: 

1) With accuracy scores of 0.9996 and 0.9976, the 

Random Forest and Decision Tree models are the 

most accurate. 

2) The Random Forest model has the highest 

precision, with a score of 0.9213. 

3) The Logistic Regression model obtain the greatest 

recall value of 0.9286. 

4) The Random Forest model has the highest F1 

score, with a score of 0.8770. 

5) The XGBoost and Gradient Boosting models have 

the highest AUC ROC scores, with scores of 

0.9892 and 0.9889, respectively. 

6) The Random Forest model has the highest MCC 

score, with a score of 0.8778. 

Overall, the Random Forest models is the top performer 

based on the metrics. 

4. Conclusion 

In recent years, the application of machine learning 

algorithms for the detection of credit card fraud has proven 

to be quite successful. This study investigated and analyzed 

the performance of many common machine learning 

methods for detecting credit card fraud, with an emphasis 

on the influence of the SMOTE methodology on the 

performance of the model. SMOTE greatly enhanced the 

model's performance, with a noticeable reduction in false 

positives and false negatives. Among the various algorithms 

implemented, Random Forest performed the best, with a 

recall of 0.8482, precision of 0.8526 and F1 score of 0.8504 

in the 60:40 split. It had a recall of 0.8603, precision of 

0.8357 and F1 score of 0.8478 for the 70:30 split. For the 
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80:20 split, it had a recall of 0.8367, precision of 0.9213 and 

F1 score of 0.8770. However, it is worth noting that Logistic 

Regression, Gradient Boosting, XGBoost, and SVM also 

achieved good results in this context. In the future, there is 

plenty of room for more study in this field. For instance, the 

application of deep learning algorithms or hybrid models 

that combine multiple machine learning techniques can be 

explored to improve performance further. Furthermore, 

future work might concentrate on the creation of real-time 

detection and mitigation of credit card fraud systems 

capable of processing enormous volumes of data in real-

time and preventing fraudulent transactions. 
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