
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 |  199 

Translating Sanskrit to Hindi Language using Recurrent Neural 

Network (RNN)-L2 Regularization 

Prashanth Kammar*1, Parashuram Baraki2, Sunil Kumar Ganganayaka3, Manjunath Swamy 

Byranahalli Eraiah4, Kolakaluri Lakshman Arun Kumar5 

 

Submitted: 29/01/2024    Revised: 07/03/2024     Accepted: 15/03/2024 

Abstract: Machine Translation (MT) is a subfield of computer linguistics that focuses on the automatic translation from one natural 

language into another without any human involvement. There is a huge need for translating information between languages to send and 

communicate thoughts because native people interact in a variety of languages. However, Sanskrit is an ancient Indo-European language 

that requires essential processing to be explored in computer science and computational language analysis. In this paper, Recurrent Neural 

Network (RNN)-L2 regularization method is proposed for the Sanskrit to Hindi translation language. A neural machine translation system 

is trained using the linguistic information from the rule-based input. The proposed method is innovative and adaptable to any low-resource 

language with extensive morphology that covers multiple domains with minimal human involvement. The efficacy of the RNN-L2 

regularization method is demonstrated by employing the dataset of Corpora. The existing methods such as machine translation systems, 

and hybrid machine translation systems are used to explain the efficacy of the RNN-L2 regularization method. The proposed RNN-L2 

regularization method achieves better BLEU score, and METEOR of 76% and 72% compared with the existing methods such as machine 

translation systems, and hybrid machine translation systems. 
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1. Introduction 

Machine Translation (MT) systems have become enhanced 

through the use of an ongoing methodology known as 

Neural Machine Translation (NMT). Many online 

translation services, including Bing Systran, Google 

Translate, and e-Translation, use Neural Machine 

Translation (NMT) [1]. The NMT invention is a method that 

employs deep learning neural networks to map among 

several natural languages [2]. Dictionary-matching methods 

were initially employed for managing machine translation 

tasks and eventually upgraded to rule-based methods [3]. 

Systems for machine translation are particularly helpful 

since they greatly simplify human-to-human 

communications. Today, people use them for a variety of 

purposes including professional settings, traveling, reading 

books, and articles published in various languages. The 

accessibility, quickness, affordability, and user-friendliness 

of machine translation systems are major benefits [4].  The 

corpora dataset includes 1012 multilingual sentence pairs 

from mobile translation services, including daily chats, clear 

sentences, and travel sentences [5]. Rule-Based Machine 

Translation (RBMT) can be done using the free and open-

source Apertium platform. The majority of the pipeline’s 

modulus follows rules created by linguists and language 

developers and was built to employ the shallow transfer-

based translation method [6].  

In the structure of the encoder-decoder, the encoder 

compresses the sequences of input in NMT systems into a 

single vector representation. The decoder then employs the 

vector representation to create the sequence of outcomes [7]. 

There are numerous websites offering news articles in both 

English and Hindi, which are the two languages that are 

most commonly spoken around the world. Latent Dirichlet 

Allocation (LDA) has conducted numerous studies for 

undefined text classification. The most recent studies use a 

model of generative LDA to determine which texts are 

written in English [8]. Cross-Language Text Summarization 

(CLTS) is the procedure of analyzing the text in the source 

language to determine its meaning before creating a brief, 

accurate summary of that text in the target language. Similar 

to the Text Summarization (TS) field, the method created 

for CLTS can be categorized based on whether they are 

abstractive, compressive, or extractive [9]. There are 
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numerous regional sign languages within a nation. By 

creating new and upgrading existing assistive technology 

for disabled people, including the deaf population, 

developed countries have been attempting to establish 

inclusive communities [10]. Quechua is a language of 

indigenous with limited parallel resources, classifying it as 

a Low-Resource Language (LRL) [11]. The widespread use 

of holes punched in the text for binding purposes is a 

distinctive feature of manuscripts from South-East Asia and 

India. Text lines have difficult gaps because of these holes. 

The manuscript’s physical size is often smaller than that of 

other historical documents, leading to a layout with a dense 

amount of text [12]. Sanskrit requires significant processing 

to be explored in computer science and computational 

language analysis. To overcome this issue, the RNN-L2 

regularization method is proposed for Sanskrit to Hindi 

translation language. In the following, the primary 

contribution of this paper is summarized: 

• To construct a neural model with the architecture of 

encoder-decoder and attention mechanism, a parallel 

corpus of data from several sources was obtained, and 

the remaining data was manually constructed. 

• The output of the linguistic tools was combined with 

NMT embedding feature metrics to determine the 

multiple meanings of a word translation in various 

contexts. Additionally, evaluated its capacity to 

effectively tokenize data and reduce the sparsity of 

data. 

• Sanskrit to Hindi MT sentences were assessed based 

on precision, F1-Score, accuracy, and Recall. 

The rest of the paper is organized as follows: Literature 

survey presented in section 2. Section 3 discusses the 

proposed methodology. Section 4 discusses the results. 

Section 5 describes the conclusion. 

2. Literature Survey 

S. Thara & Poornachandran [13] implemented a Word-

Level Language Identification (WLLI) for Malayalam-

English code-mixed data from social media websites like 

Youtube. This method was focused on the model of 

transformer BERT and its derivatives, DistilBERT, and 

CamemBERT for naturally perceiving word-level language. 

The WLLI method provides six labels to the code-mixed 

Malayalam-English data set: Malayalam (mal), undefined 

(undef), acronyms (acr), mixed (mix), English (eng), and 

universal (univ). The proposed method effectively captures 

the linguistic patterns and features identified in the code-

mixed text, providing precise language identification. 

However, WLLI produces inaccurate language predictions 

when dealing with complex phrase structures or linguistic 

differences. 

Surbhi Bhatia et al. [14] presented a Genetic Algorithm 

(GA) for the Hindi Word Sense Disambiguation (WSD). 

The ambiguous phrases left and right are employed, along 

with the dynamic configuration window function. Two 

context windows have been established while one context 

window was dynamic and contained the neighbor 

ambiguous words, the other context window was static and 

only contained the ambiguous word. The intricacy, 

instability, and vast search spaces associated with Hindi 

Word Sense Disambiguation were successfully handled by 

a genetic algorithm. However, manual tuning of several 

parameters such as selection criteria, population size, 

mutation, and crossover rates was required for the genetic 

algorithm.  

Muskaan Singh et al. [15] introduced an MT system for 

Sanskrit-to-Hindi translation. The method develops a neural 

machine translation system using linguistic data from a rule-

based feed. The method was innovative and suitable to any 

language of low resource with a rich morphology and 

covered multiple domains with minimum human 

involvement. The method achieves high performance by 

using both human and automatic measures and also 

generates effectively in terms of accuracy, response time, 

and speed. However, machine translation systems 

commonly operate on a sentence-by-sentences basis and 

struggle to incorporate contextual data effectively. 

Jani Dugonik et al. [16] implemented a Hybrid Machine 

Translation (HMT) system that combines Statistical 

Machine Translation (SMT) and NMT to enhance NMT’S 

quality. For the Slovenian-English language pair, two NMT 

and SMT systems were established each for translation in 

one direction. The original sentences and translations were 

placed in the space of the same vector using a multilingual 

language model. HMT provides a higher-quality translation 

by utilizing the best characteristics of each system. 

However, multiple machine translation techniques were 

acquired for establishing and maintaining an HMT system. 

Sahinur Rahman Laskar et al. [17] presented different kinds 

of negation effects for English-to-Assamese and Assamese-

to-English translation by examining machine translation 

models. A rule-based method was provided for the step of 

data preprocessing to solve modal-verb negation difficulties 

that demonstrate significant improvement in terms of 

manual and automatic assessment scores. Machine 

translation models were trained and evaluated using 

language-specific resources which enhance their 

performance particularly when handling the sentences of 

negation. However, the method was challenging to translate 

negated statements effectively, which resulted in 

information loss or translation errors.  

Shubham Dewangan et al. [18] introduced a Neural 

Machine Translation (NMT) for the Indian languages to 

enhance the translation. The effectiveness of a relatively 

limited number of Byte Pair Encoding (BPE) combined 
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operations in low-resource contexts, particularly for related 

languages was demonstrated. An effective training data 

augmentation method was introduced namely, phrase table 

injection, which combines NMT and SMT. The introduced 

method captures and utilizes contextual information 

efficiently. However, to attain the best translation 

performance, NMT models need a significant amount of 

high-quality data training. 

Sitender & Seema Bawa [19] implemented a Sanskrit-to-

English MT system by employing a hybridized form of rule-

based and direct machine translation method. This method 

includes the language difference between Sanskrit and 

English, as well as a potential remedy to manage the 

differences. The Elasticsearch method has improved the 

machine translation system’s ability to obtain information 

from multiple data dictionaries and rule bases utilized in 

system development. The implemented method achieves a 

fluency score, BLEU score, and adequacy score using 

natural language processing. However, high-quality parallel 

training data for Sanskrit-to-English translation was 

inadequate. 

Md. Adnanul Islam et al. [20] presented a Corpus-based 

machine translator NMT and SMT for the translation of 

Bengali to English. Each corpus-based machine translation 

system incorporates the rule-based translator separately 

using various methods. The effectiveness of each 

integrating method was assessed using standard 

performance measures. The presented method provides 

continual improvements in translation quality by retaining 

or updating the models with new data. However, for optimal 

performance, the presented method requires a substantial 

amount of parallel training data. 

 

Fig. 1. Block diagram for the proposed method 

3. Proposed Methodology 

The Recurrent Neural Network (RNN)-L2 regularization 

method is proposed for Sanskrit to Hindi translation 

language. It includes a dataset, data pre-processing, adding 

linguistic components, a vector encoder that embeds input 

source sentences, a decoder that converts learning vectors 

into target sentences, and a web interface for providing users 

with access to the translation as a service. The overview of 

the proposed method is represented in Fig. 1. 

3.1. Corpora dataset 

A Corpora dataset is a kind of structured learning data that 

includes texts from a variety of sources including 

Wikipedia, the news, literature, tourism, judicial, 

healthcare, and the general domain. It has two types: 

Monolingual and parallel corpus. Corpora consists of a total 

of 8.8 billion tokens from news crawls across all 11 

languages along with Indian English. The Bhagwad-Geeta 

which consists of 700 slokas and has been converted into 

Hindi, was also manually developed. Additionally, the 

Indian Languages Corpora Initiative (ILCI) project made 

50,000 Sanskrit-Hindi corpus. The algorithm was trained 

using the whole parallel corpus of 162,760 parallel 

sentences. 

3.2. Data Pre-processing 

The data of the corpus is prepared for the NMT application 

and there are two steps to it; clean text and split text. Text is 

separated into sentences is an essential process in text 

cleaning. Then, the remaining non-numeric or non-

alphabetical tokens are removed, along with any 

punctuation marks, and non-printable characters. Unicode 

characters are converted to ASCII value and all uppercase 

letters become lowercase. For each pair of imported 

datasets, these operations are performed on each sentence. 

The splitting operations are then applied to cleaned data. 

Different computation graphs were created because the 

dataset contained sentence pairs of varying lengths. Then, 

sentences of a similar length are divided into smaller batches 

after sorting sentences in a batch according to the length of 

sentence pairs. The training corpus is shuffled periodically 

by splitting the corpus into maximum batches and then 

splitting the corpus again into mini-batches. Applying a 

gradient for the parameter update completes the processing.  

3.3. Rule-based machine translation system; extraction 

of linguistic features 

The pre-processing rule-based MT system is performed 

based on main semantic, morphological, and syntactic 

regularities of the source and target language, which are 

mostly retrieved from dictionaries and grammar. The 

Sanskrit Consortium Project supported by MIT, used Anu-

saaraka to divide various tools into several modules. The 

rule-based pipeline design for the translation of Sanskrit to 
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Hindi consists of 11 modules. To more effectively train the 

system, each module outputs a unique set of linguistic 

information to the neural-based encoder-decoder.  

1. Pre-processing of user input: It enables the user’s 

input, cleans it up, normalizes it, and translates the 

notations of input into WX notation. It then calls the 

system of MT, which executes the computation, and 

displays the outcomes. 

2. Tokenizer: A character flow is inputted into the 

tokenizer, which separates the character into tokens 

(markers, words, and punctuation). It eliminates the 

data formatting and inserts a sentence tag. Linguistics 

referred to as morphology implies the study of words, 

including their inherent structure and meaning word. 

It has word streams, which are tokenized to give 

those words meaning. 

3. Sandhi splitter: When the words of Sanskrit sandhi 

appear in the input text, it is called sandhi splitter. 

Both of these words and compound words are divided 

by it. 

4. Morphological Analyzer: Words are divided into 

their roots and grammatical suffixes using the 

morphological analyzer. There are various units, and 

each one serves grammatical and semantic purposes. 

Additionally, it offers inflectional analysis, reduces 

the response, handles unrecognized words using the 

analysis of local morph, and generates a derived roots 

derivational analysis. 

5. Parsing: For simple translation from one language to 

another, a parser is employed as an interpreter or 

compiler to break data into smaller components. 

Word or token sequences serve as the input for 

parsers. These inputs are transformed into a parse tree 

format. The tree structure containing labels for verbs, 

nouns, and their corresponding properties, transforms 

the source into the language of the target. In addition 

to karaka analysis, morph analysis according to 

context is carried out. The relationship between the 

verb and its participants is named and identified in 

computational Paninian grammar. 

6. Shallow Parsing: When the parser detects an input 

failure, it occurs a minimal amount of phrase parsing 

and generates cleaned morph analysis for the 

subsequent layer. 

7. Word Sense Disambiguation (WSD): The modules 

use the input phrase terms vibhakti and lakara to 

execute WSD. It displays a word’s proper Sanskrit 

meaning. 

8. Parts of Speech Tag (POS): It includes tags for each 

word’s components of speech such as nouns, verbs, 

or adjectives. 

9. Chunker: A minimum word grouping such as noun, 

verb, or adjective is carried out during this step. A 

suitable chunk tag is given to it on a rule basis. 

10. Hindi Lexical Transfer: The Sanskrit Lexicon is 

translated into Hindi by employing the dictionary to 

find the roots of the words. The format of the output 

is determined by the Generator of Hindi, which 

produces the Hindi language output as it relates to 

Sanskrit. If translation fails, this module executes 

transliteration. 

11. Hindi Generator: An agreement check among a noun, 

verb, and adjective in the language of the target is 

performed by a sentence-level generator during this 

step. The ‘ne’ marks for vibhakti are added, while 

‘ko’ markers are dropped at the appropriate locations. 

The process of final generation includes grammatical 

properties, their associated suffixes, and the root 

words that occur alone with them. 

As a result, linguistic principles and techniques are used to 

translate each Sanskrit word into its equivalent Hindi word. 

Additionally, the subsequent phase receives this data. The 

input that is passed on to the following stage is transformed 

into Comma-Separated Values (CSV), which is ideal for the 

development of the model, training, and fitting values for 

the architecture of neural-based encoder-decoder for 

determining the Sanskrit to Hindi translation words. The 

outcomes of this linguistic tool are included as features for 

source sentence input encoding. 

3.4. RNN encoder-decoder with attention mechanism 

embedding extracted features 

 RNN-L2 regularization is proposed for Sanskrit to Hindi 

translation. It can be used with any language of low-

resource because of minimal parallel data sources. GRU 

cells and enhanced NMT with an attention mechanism were 

utilized for the computation. With an attention mechanism 

for both the encoder and decoder, the implementation makes 

use of stacked bi-directional RNN layers. The source 

sentence 𝑊𝑠 = 𝑊𝑠1,….𝑊𝑠𝑛 into sequence variable of context 

vectors 𝑆 =  ℎ1, ℎ2, ℎ3, … . , ℎ𝑛. The decoder constructs the 

target phrase by decoding the context vector 𝑆𝑖. By 

increasing the probability of the target word given the 

previously created word ℎ𝑖−1, the hidden state decoder 𝑑𝑠𝑖 

and vector context 𝑠𝑖𝑃(ℎ𝑖\𝑑𝑠𝑖,ℎ𝑖−1, 𝑠𝑖) can be produced.  

3.4.1. Encoder 

The Sanskrit language source sentence is given in (1) 

𝑊𝑠 = 𝑊𝑠1,𝑊𝑠2,𝑊𝑠3, … 𝑊𝑠𝑧 , 𝑆𝑖 ∈ 𝑅𝐾𝑠                              (1) 

Hindi target sentences: from the parallel corpus provided in 

(2) 

𝑊ℎ = 𝑊ℎ1, 𝑊ℎ2, 𝑊ℎ3,…..𝑊ℎ𝑖,ℎ𝑥 ∈ 𝑅𝑘ℎ                        (2) 
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Where 

𝑧, 𝑥 – length of the input and output sentences 

𝑘𝑠 , 𝑘ℎ- vocabulary size 

The model initially tokenizes 𝑊𝑠 to provide an input 

representation where sequences probability of 

𝑇(𝑊𝑠1, 𝑊𝑠2,….𝑊𝑠𝑛) is represented as 𝑃1(𝑊𝑠1,……, 𝑊𝑠𝑡). 

Instead of considering all previous words, it is typically 

dependent on a word window. Because the input 

document’s places affect the number of words before the 

previous word (𝑊1) in (3) 

𝑃1(𝑊𝑠1, 𝑊𝑠2…,𝑊𝑠𝑡𝑧
) = ∏ 𝑃(𝑊𝑠1,……, 𝑊𝑠𝑖−1

)

𝑡

𝑖=1

 

≈ ∏ 𝑃(𝑊𝑠𝑖
|𝑊𝑠1….𝑊𝑠𝑧−1

) … .𝑡
𝑖=1 𝑊𝑠𝑧−1

                                            

(3) 

Since text data cannot be directly applied to neural 

networks. By embedding layers, text is transformed into 

integer tokens or numbers, which are then transformed into 

vectors. The tokenizer is employed for source and target 

language by defining the maximum number of vocabulary 

terms. After being transformed into a series of integer 

tokens, the dataset is then padded, trimmed, and saved as 

NumPy arrays. The encoder computes embedded vectors 

(𝑊𝑠1,𝑊𝑠2,𝑊𝑠3,….𝑊𝑠𝑧,
) for the computation of the hidden layer 

using the tokenizer’s output as arrays. These vectors, which 

range in value from 1 to -1, correspond to words with similar 

semantic meanings. Forward RNN computes the hidden 

states ℎ1,ℎ2,ℎ3,…..ℎ𝜏𝑗
 by processing the input sentence from 

beginning to end 𝑓. The backward RNN analyzes the text in 

reverse order to determine the hidden states ℎ1,ℎ2, … ℎ𝜏𝑗
. An 

annotation vector 𝐻𝑖 = [ℎ𝑗
𝑇;  ℎ𝑗

𝑇] is created by combining 

these hidden states, i.e., backward and forward. For each 

input word 𝑠𝑧, the conventional encoder includes an 

embedding lookup and steps for mapping via hidden states 

in (4) 

𝐻𝑗 = 𝑓(ℎ𝑖 − 1, �̅�𝑊𝑠𝑛)                                                     (4) 

The encoder calculations are deeply layered as shown in (5), 

(6) in the manner described below. For each input word, the 

traditional encoder contains an embedding lookup. 

ℎ𝑡,1 = 𝑓1(ℎ𝑡−1, 1, 𝑊𝑠𝑡)                          (5) 

For 𝑖 > 1 

ℎ𝑡,𝑖 = 𝑓ℎ𝑡−1,𝑖,ℎ𝑡,𝑖−1
                                                     (6) 

Where  

ℎ𝑡−1,𝑖 – value of the previous timestamp  

ℎ𝑡,𝑖−1 – value for the preceding layer in the sequence 

The input sentence is calculated by processing backward 

and forward RNNs, and is contained in the context vector 

𝑠𝑖. For the encoder and decoder function, Gated Recurrent 

Unit (GRU) is employed. To facilitate the detection of long-

term dependence by RNN, GRU is built to have the longer-

lasting memory. GRU employs input 𝑊𝑠𝑡 and the previous 

hidden state ℎ𝑡−1 to produce the next hidden state ℎ𝑡.  

Equations (7), (8), (9), (10), (11), and (12) shows the update 

gate, the reset, the new memory and the state of hidden, for 

all I words in a phrase 

𝑢𝑝𝑖 = 𝜎(𝑊𝑢𝑝𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂𝑢𝑝ℎ𝑖−1)                             (7) 

𝑟𝑒𝑠𝑖 = 𝜎(𝑊𝑟𝑒𝑠𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂𝑟𝑒𝑠ℎ𝑖−1)                          (8) 

ℎ𝑖 = tanh (𝑊𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂[𝑟𝑒𝑠𝑖 ⊙ ℎ𝑖−1]                  (9) 

ℎ𝑖 = (1 − 𝑢𝑝𝑖) ⊙ ℎ𝑖−1 + 𝑢𝑝𝑖 ⊙ ℎ𝑖)                 (10) 

Where  

𝑑 – word embedding dimensionality 

𝑢 – number of hidden units �̅� ∈ 𝑅𝑑𝑥𝑘𝑠 

𝜎 – function of the logistic sigmoid 

𝑊, 𝑊𝑢𝑝,𝑊𝑟𝑒𝑠 ∈ 𝑅𝑢𝑥𝑑                                                     (11) 

𝑂, 𝑂𝑢𝑝,𝑂𝑟𝑒𝑠 ∈ 𝑅𝑢𝑥𝑢                                                 (12) 

A bidirectional recurrent neural networks backward states 

are calculated identically for the update gate in (13), the 

reset gate in (14), the new memory in (15), and the state of 

hidden, for all I words in an (16) 

𝑢𝑝𝑖 = 𝜎(𝑊𝑢𝑝𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂𝑢𝑝ℎ𝑖−1)                                      (13) 

𝑟𝑒𝑠𝑖 = 𝜎(𝑊𝑟𝑒𝑠𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂𝑟𝑒𝑠ℎ𝑖−1)                             (14) 

ℎ𝑖 = tanh (𝑊𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂[𝑟𝑒𝑠𝑖 ⊙ ℎ − 𝑖 − 1]                  (15) 

ℎ𝑖 = (1 − 𝑢𝑝𝑖) ⊙ ℎ𝑖−1 + 𝑢𝑝𝑖 ⊙ ℎ𝑖)                    (16) 

The combined forward and reverse states are represented as 

𝐻𝑖 = [ℎ𝑗
𝑇;  ℎ𝑗

𝑇]. 

3.4.2. Adding linguistic features to the encoder 

To train recurrent neural networks, the system incorporates 

linguistic elements that were taken from the rule-based 

pipeline design. A unique vector word embedding 𝑠𝑧𝑦  is 

present for each feature. Integrating all of these word 

vectors 𝐸𝜖𝑅𝑑𝑦𝑋𝑘𝑦 with 𝑑𝑘 as the sum of all embedding 

feature dimensions and 𝑘𝑦 as the 𝐾𝑡ℎ feature vocabulary 

size. The entire embedding size is later combined with these 

embeddings because their lengths are compatible. These 

linguistic features are retrieved and multiplexed onto the 

input embedded sentence vectors. All other model 

functionality and parameters remain the same, only the 

encoder change is made as in (17), resulting in an 

outstanding enhancement in the output fluency. 
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ℎ𝑙 = tanh (𝑊 ∏ 𝐸𝑦
̅̅ ̅𝑠𝑧𝑦 + 𝑂ℎ𝑙−1)𝐹

𝑦                                            

(17) 

3.4.3. Attention Mechanism 

The attention layer covers the gap between the decoder, 

which generates a 𝑠𝑖 vector context at each time step 𝑡𝑖 and 

the encoder, which produces a word sequence 

representation in the form of ℎ𝑗 = (ℎ𝑖 , ℎ𝑖). By computing 

the effect of word representation (ℎ𝑖 , ℎ𝑖), it determines the 

connection between the input word 𝑊𝑠 and the subsequent 

output word 𝑊ℎ. The context vector can be described as the 

weighted annotations sum ℎ𝑖. For this, required to identify 

the model of alignment 𝑎𝑖𝑗 , or output position score to the 

input position, as shown in (18), (19), (20). It uses the input 

Sanskrit sentences 𝑗𝑡ℎ annotation and hidden state 𝑑𝑖−1. 

𝑎𝑖𝑗 = 𝐽𝑎
𝜏tanh (𝑊𝑎𝑑𝑖−1 + 𝑂𝑎ℎ𝑗)                         (18) 

𝛼𝑖𝑗 =
exp (𝑎𝑖𝑗)

∑ exp (𝑎𝑖𝑦)
𝑇𝑠
𝑦=1

                                       (19) 

𝑆𝑖 = ∑ 𝛼𝑖𝑗ℎ𝑗
𝑡𝑠
𝑗=1                                               (20) 

Where 𝑆 – feed-forward neural network 

𝑊𝑎 ∈ 𝑅𝑛1
′
, 𝑂𝑎 ∈ 𝑅𝑛′𝑋𝑛, 𝐽𝑎 ∈ 𝑅𝑛′𝑋2𝑛 are matrics weight. 

Using the function of SoftMax activation, the computed 

value of scalar attention is normalized so that the sum of all 

input words is 1. 

3.4.4. Decoder 

The decoder outputs a new word prediction 𝑊ℎ𝑖 and new 

outcome hidden state decoder at each time step 𝑡 by 

employing a previously hidden state phrase 𝑑𝑖−1, an input 

context representation 𝑠𝑖, and a previous word embedding 

outcome 𝐸ℎ𝑖−1
. In (21), the initial hidden state is calculated.  

𝑑0 = 𝑓(𝑤𝑑ℎ1)                                                                            

(21) 

The hidden state 𝑑𝑖 is calculated given the encoder’s 

annotation in (22), updated in (23), and reset in (24) 

𝑑𝑖 = 𝑡𝑎𝑛ℎ̅(𝑊𝐸ℎ𝑦𝑖−1
) + 𝑂[𝑟𝑒𝑠𝑖 + 𝑑𝑖−1] + 𝑆𝑠𝑖

)       (22) 

𝑢𝑝𝑖 = 𝜎(𝑊𝑢𝑝𝐸ℎ𝑖−1 + 𝑂𝑢𝑝𝑑𝑖−1𝑆𝑢𝑝𝑠𝑖)                    (23) 

𝑟𝑒𝑠𝑖 = 𝜎(𝑊𝑟𝑒𝑠𝐸ℎ𝑖−1 + 𝑂𝑟𝑒𝑠ℎ𝑖−1 + 𝑆𝑟𝑒𝑠𝑆𝑖)              (24) 

Where 𝑢 – number of hidden units  

            𝑑 – word embedding dimension 

            𝐸 – embedded word matrix for the target language 

Weight matrices are 𝑊, 𝑊𝑢𝑝,𝑊𝑟𝑒𝑠 ∈ 𝑅𝑢𝑋𝑑 , 0, 𝑂𝑢𝑝,𝑂𝑟𝑒𝑠 ∈

𝑅𝑢𝑋2𝑑. The decoder's hidden state 𝑑𝑖−1, input context 𝑠𝑖, and 

prior output word embedding  ℎ𝑖−1 as in (25), provide the 

basis of the prediction vector 𝑃𝑖  for an output word.  

𝑃𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑂𝑜𝑡𝑑𝑖−1
+ 𝑉𝑜𝑡𝐸ℎ𝑖−1 + 𝑆0𝑠𝑖            (25) 

Where, 𝑉𝑜𝑡 ∈ 𝑅2𝑙𝑋𝑑 , 𝑂𝑜𝑡𝑅2𝑙𝑋𝑢 , 𝐶𝑜𝑅 ∈ 2𝑙𝑋2𝑢 is an 

embedding matrix of output word. 

As a result of the encoder state progression from 𝑑𝑖−1 to 𝑑𝑖 

being fragmented when utilizing 𝑑𝑖−1 instead of 𝑑𝑖 for the 

output word prediction 𝑃𝑖  in (26), the 𝐸𝑊ℎ𝑖−1
 condition is 

repeated 

𝑃𝑖 = [𝑚𝑎𝑥𝑃𝑖 , 2𝑗̅ − 1, 𝑖, 2̅𝑗]𝑗=1…….,𝑙
𝜏                         (26) 

Even training is carried out according to the network’s 

knowledge of the proper output, which is given a value of 

higher probability as in (27) 

𝑃𝑟𝑜𝑏(ℎ𝑖|𝑑𝑖−1,𝑠𝑖)𝛼(ℎ𝜏𝑊𝑜𝑝𝑖)                                (27) 

Function of activation SoftMax is employed to transform a 

raw vector into a range of probabilities with a total value 

equal to one. Additionally, ReLU is utilized, which 

combines input to produce the next hidden state. The 

function of activation is supplied to the model to better 

predict the target variable and it also functions as a rectifier. 

3.4.5. L2 Regularization 

L2 regularization techniques operate by introducing a norm 

penalty parameter to the objective function as shown in (28), 

to restrict the model capacity. 

𝐽(𝜃) = 𝐽(𝜃) + 𝜆𝑅(𝑤) = 𝐽(𝜃) + 𝜆 ∑ |𝑤𝑖
2|𝑖          (28) 

Where the norm penalty term’s 𝑅(𝑤) relative contribution 

to the common objective function 𝐽(𝜃)is weighted. On the 

data training, this parameter reduces the original and 

objective function size J. A measurement of the parameter’s 

size 𝑤𝑖  when the regularized objective function is 

minimized 𝐽 by the training procedure. The L2 

regularization makes the learning algorithm “perceive” the 

input to have a high variance, which causes the feature 

weight whose covariance with the target output is smaller 

than this additional variance to be reduced. 

4. Experimental Setup and Results 

To obtain a processing speed of about 2500 words per 

second, the RNN-L2 regularization method is processed by 

employing a heavily configured core GPU with 32GB 

RAM. Normal systems cannot operate at this speed since it 

will take two hours to complete one epoch. So, 

NVIDIAGeforceGTX1050 and QuadroK6000 are used 

together with a GPU that is well configured. Both automated 

metrics and evaluations by humans were used to evaluate 

the proposed method's performance. 

4.1. Evaluation Metrics 

• Bilingual Evaluation Understudy (BLEU) – It is an 

essential parameter for assessing sentence translation 

accuracy in comparison to human generated 

reference translation as shown in (29) 
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𝐵𝐿𝐸𝑈 = min (1,
𝑜𝑢𝑡𝑝𝑢𝑡𝑙𝑒𝑛𝑔𝑡ℎ

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ
)(∏ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖)

4
𝑖=1                 

(29) 

• Metric for Evaluation of Translation with Explicit 

ORdering (METEOR) - It is a metric to evaluate the 

output of machine translation. The metric is based on 

the harmonic mean of unigram recall and precision as 

shown in (30), and (31) 

𝐹𝑚𝑒𝑎𝑛 =  
10𝑃𝑅

9+𝑅𝑃
                                                                            

(30) 

𝑀𝐸𝑇𝐸𝑂𝑅 = 𝐹𝑚𝑒𝑎𝑛(1 − 𝑝)                                                       

(31) 

4.2. Experimental Results 

The model update is affected by the corpora’s length 

sentence. Fig. 2 shows that as the length of sentences 

increases in the corpus training, the number of weight 

updates dramatically rises beyond a point, and later drops 

off following the sentence length reaches 20 words. Table 

1. shows the Sentence Length affecting updates on different 

sentence lengths ranging from 0 to 50 respectively. 

Table 1. Sentence Length affecting updates 

Sentence Length Updates 

0 0 

10 6 

20 8.5 

30 6.8 

40 4.9 

50 3 

 

 

Fig. 2. Sentence Length affecting updates 

Table 2. shows the Sentence Length affecting epochs on 

different sentence length ranges from 0 to 50 respectively. 

The effect of sentence length on the number of training set 

iterations, or epochs that are executed in Fig. 3. The graph 

makes it highly apparent that there are a number of epochs 

reduced following the point (20 sentences long).  

Table 2. Sentence Length affecting Epochs 

Sentence Length Epochs 

0 0 

10 4.2 

20 6.5 

30 5 

40 3.8 

50 2.5 

 

 

Fig. 3. Sentence Length Affecting Epochs 

The sentence length affecting model time is shown in Fig. 

4. It indicates that the period fluctuates significantly. The 

model training time is stable for sentences between 10 to 20, 

but increases rapidly for sentences between 20 to 30. Table 

3 shows different sentence lengths ranging from 0 to 50 

respectively. In conclusion, the updates, epochs, and time 

are limited by sentences that are no longer than 20 words. 

There is a decrease in the graphs when the corpus sentence 

length crosses this limit.  

Table 3. Sentence Length Affecting Time (H) 

Sentence Length Time (H) 

0 0 

10 110 

20 110 

30 250 

40 120 

50 123 

 

 

Fig. 4. Sentence Length Affecting Time (H) 
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The BLEU score fluctuates with the size of the beam as 

shown in Fig. 5. The inference process uses a beam search 

to identify the most probable word order for each 

translation. In comparison to conventional statistical 

machine translation beam sizes, the beam issue related to the 

translation of neural machines affects comparatively small 

beam sizes. The beam size 1 to 4 exhibits constant variation 

in the BLEU score, whereas the BLEUs increased between 

5 to 10. The BLEU score decreases if there is a significant 

rise in beam size. Therefore, in training sentence length is 

normalized to limit the size of the beam. Table 4. shows that 

the BLEU varies with the size of the beam as below. 

Table 4. BLEU varies with the size of the beam 

Size of Beam BLEU 

1 39 

2 42 

3 43 

4 44 

5 55 

6 58 

7 61 

8 61 

9 57 

10 53 

 

 

Fig. 5. BLEU varies with the size of the beam 

Fig. 6. demonstrates the Development probability varies 

with Sentence Length. The plot shows that the development 

probability rises to 20 sentence length and then drops. As a 

result, dividing larger sentences or normalizing sentences 

longer than 20 words would be an appropriate technique. 

Table 5. shows the development probability varies with 

sentence length on different ranges from 0 to 50 

respectively. 

Table 5. Development probability varies with sentence 

Length 

Sentence Length Dev-prob 

0 0 

10 45 

20 55 

30 35 

40 48 

50 40 

 

 

Fig. 6. Development probability varies with Sentence 

Length 

Table 6 shows different sentence lengths ranging from 0 to 

50 respectively. Fig. 7 simulates that the training probability 

varies with sentence length. As seen, the training probability 

drops gradually. Therefore, shorter sentences would be 

more effectively modeled to raise the training probability. 

Table 6. Training probability varies with Sentence Length 

Sentence Length Training probability 

0 0 

10 45 

20 30 

30 38 

40 30 

50 42 

 

 

Fig. 7. Training probability varies with Sentence Length 
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4.3. Comparative Analysis 

The comparative analysis includes methods, BLEU, and 

METEOR. Table 7. shows that the comparative analysis 

with the existing methods 

Table 7. Comparative Analysis with Existing Methods 

Author Dataset Methods BLEU 

(%) 

METEOR 

(%) 

Muskaan 

Singh [15] 

Corpora MT system 75 61 

Jani 

Dugonik 

[16] 

Corpora Hybrid MT 

system: English-

Slovenian  

42.9 61.5 

Slovenian-

English 

47.9 70.9 

Proposed 

method 

Corpora RNN-L2 

regularization 

76 72 

 

The existing method Sanskrit-Hindi MT system [15] has a 

BLEU score of 75% and METEOR has 61%. The hybrid 

MT system [16] has two techniques: English-Slovenian has 

42.9%, 61.5% of BLEU and METEOR. Slovenian-English 

has 47.9 and 70.9 of BLEU and METEOR. When compared 

with the existing method, the RNN-L2 regularization 

achieves 76%, 72% of BLEU and METEOR. 

4.4. Discussion 

This section provides a discussion about the Recurrent 

Neural Network (RNN)-L2 regularization method and 

compares those results in the comparative analysis section 

4.3. The major goal of this study is to translate the Sanskrit-

Hindi language using RNN-L2 regularization. To construct 

a neural model with the architecture of encoder-decoder and 

attention mechanism, a parallel corpus of data from several 

sources was obtained, and the remaining data was manually 

constructed. A neural machine translation system is trained 

using the linguistic information from the rule-based input. 

The output of the linguistic tools from the conventional rule-

based method was combined as NMT feature embedding 

matrices to determine the multiple meanings of a word 

translation in various contexts. Additionally, evaluated its 

capacity to effectively tokenize data and reduce the sparsity 

of data. L2 regularization techniques operated by 

introducing a norm penalty parameter to the objective 

function to restrict the model capacity. The efficacy of 

RNN-L2 regularization method is demonstrated by 

employing the dataset of Corpora. The data of the corpus are 

prepared for the NMT application. There are two steps to it; 

clean text and split text. Separating the text into sentences is 

an essential process in text cleaning. Then, the remaining 

non-numeric or non-alphabetical tokens are removed, along 

with any punctuation marks, and non-printable characters. 

When compared with the existing methods such as machine 

translation system, and hybrid machine translation system, 

the RNN-L2 regularization achieves 76%, 72% of BLEU 

and METEOR. 

5. Conclusion 

In this paper, the RNN-L2 regularization method is 

proposed for Sanskrit to Hindi translation. The proposed 

method is unique and appropriate to any language pair with 

limited resources and linguistic knowledge. The features are 

taken from the language rule and then used to train an RNN. 

A neural machine translation system is trained using the 

linguistic information from the rule-based input. The 

proposed method can be used with any morphologically rich 

low-resource language. High performance is achieved via 

performance evaluation using both manual and automated 

measures. When compared to the current rule-based 

systems, the RNN-L2 regularization is quicker and more 

effective. When there is no rule match, the rule-based model 

fails to generate outcomes, but RNN-L2 regularization 

returns the optimal answer. The RNN-L2 regularization 

achieves 76%, and 72% of BLEU and METEOR when 

compared to the existing methods of machine translation 

system, hybrid machine translation system. In the future, the 

term overfitting issues in training data will be reduced using 

the RNN-L2 regularization method. 
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