

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 199

Translating Sanskrit to Hindi Language using Recurrent Neural

Network (RNN)-L2 Regularization

Prashanth Kammar*1, Parashuram Baraki2, Sunil Kumar Ganganayaka3, Manjunath Swamy

Byranahalli Eraiah4, Kolakaluri Lakshman Arun Kumar5

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: Machine Translation (MT) is a subfield of computer linguistics that focuses on the automatic translation from one natural

language into another without any human involvement. There is a huge need for translating information between languages to send and

communicate thoughts because native people interact in a variety of languages. However, Sanskrit is an ancient Indo-European language

that requires essential processing to be explored in computer science and computational language analysis. In this paper, Recurrent Neural

Network (RNN)-L2 regularization method is proposed for the Sanskrit to Hindi translation language. A neural machine translation system

is trained using the linguistic information from the rule-based input. The proposed method is innovative and adaptable to any low-resource

language with extensive morphology that covers multiple domains with minimal human involvement. The efficacy of the RNN-L2

regularization method is demonstrated by employing the dataset of Corpora. The existing methods such as machine translation systems,

and hybrid machine translation systems are used to explain the efficacy of the RNN-L2 regularization method. The proposed RNN-L2

regularization method achieves better BLEU score, and METEOR of 76% and 72% compared with the existing methods such as machine

translation systems, and hybrid machine translation systems.

Keywords: Linguistic Feature Extraction, Machine Translation, Natural Language, Recurrent Neural Network, Rule-based system

1. Introduction

Machine Translation (MT) systems have become enhanced

through the use of an ongoing methodology known as

Neural Machine Translation (NMT). Many online

translation services, including Bing Systran, Google

Translate, and e-Translation, use Neural Machine

Translation (NMT) [1]. The NMT invention is a method that

employs deep learning neural networks to map among

several natural languages [2]. Dictionary-matching methods

were initially employed for managing machine translation

tasks and eventually upgraded to rule-based methods [3].

Systems for machine translation are particularly helpful

since they greatly simplify human-to-human

communications. Today, people use them for a variety of

purposes including professional settings, traveling, reading

books, and articles published in various languages. The

accessibility, quickness, affordability, and user-friendliness

of machine translation systems are major benefits [4]. The

corpora dataset includes 1012 multilingual sentence pairs

from mobile translation services, including daily chats, clear

sentences, and travel sentences [5]. Rule-Based Machine

Translation (RBMT) can be done using the free and open-

source Apertium platform. The majority of the pipeline’s

modulus follows rules created by linguists and language

developers and was built to employ the shallow transfer-

based translation method [6].

In the structure of the encoder-decoder, the encoder

compresses the sequences of input in NMT systems into a

single vector representation. The decoder then employs the

vector representation to create the sequence of outcomes [7].

There are numerous websites offering news articles in both

English and Hindi, which are the two languages that are

most commonly spoken around the world. Latent Dirichlet

Allocation (LDA) has conducted numerous studies for

undefined text classification. The most recent studies use a

model of generative LDA to determine which texts are

written in English [8]. Cross-Language Text Summarization

(CLTS) is the procedure of analyzing the text in the source

language to determine its meaning before creating a brief,

accurate summary of that text in the target language. Similar

to the Text Summarization (TS) field, the method created

for CLTS can be categorized based on whether they are

abstractive, compressive, or extractive [9]. There are

1 Department of Computer Science and Engineering, Proudhadevaraya

institute of Technology, Hosapete, and Visvesvaraya Technological

University, Belagavi, India

ORCID ID : 0009-0006-6119-201X
2 Department of Computer Science & Engineering, Smt.Kamala and Sri

Venkappa M Agadi College of Engineering and Technology, Laxmeshwar

and Visvesvaraya Technological University, Belagavi, India

ORCID ID : 0000-0003-4857-6079
3 Department of Computer Science and Engineering, University

Visvesvaraya College of Engineering, Bengaluru, India

ORCID ID : 0009-0005-7888-6475
4 Department of Computer Science and Engineering, Don Bosco Institute of

Technology, Bengaluru, and Visvesvaraya Technical University, Belagavi

India

ORCID ID : 0000-0002-3991-0031
5 Department of Computer Science and Engineering, KNS Institute of

Technology, Bengaluru, and Visvesvaraya Technical University, Belagavi,

India

ORCID ID : 0000-0002-5131-9404

* Corresponding Author Email: prashanthkogali@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 200

numerous regional sign languages within a nation. By

creating new and upgrading existing assistive technology

for disabled people, including the deaf population,

developed countries have been attempting to establish

inclusive communities [10]. Quechua is a language of

indigenous with limited parallel resources, classifying it as

a Low-Resource Language (LRL) [11]. The widespread use

of holes punched in the text for binding purposes is a

distinctive feature of manuscripts from South-East Asia and

India. Text lines have difficult gaps because of these holes.

The manuscript’s physical size is often smaller than that of

other historical documents, leading to a layout with a dense

amount of text [12]. Sanskrit requires significant processing

to be explored in computer science and computational

language analysis. To overcome this issue, the RNN-L2

regularization method is proposed for Sanskrit to Hindi

translation language. In the following, the primary

contribution of this paper is summarized:

• To construct a neural model with the architecture of

encoder-decoder and attention mechanism, a parallel

corpus of data from several sources was obtained, and

the remaining data was manually constructed.

• The output of the linguistic tools was combined with

NMT embedding feature metrics to determine the

multiple meanings of a word translation in various

contexts. Additionally, evaluated its capacity to

effectively tokenize data and reduce the sparsity of

data.

• Sanskrit to Hindi MT sentences were assessed based

on precision, F1-Score, accuracy, and Recall.

The rest of the paper is organized as follows: Literature

survey presented in section 2. Section 3 discusses the

proposed methodology. Section 4 discusses the results.

Section 5 describes the conclusion.

2. Literature Survey

S. Thara & Poornachandran [13] implemented a Word-

Level Language Identification (WLLI) for Malayalam-

English code-mixed data from social media websites like

Youtube. This method was focused on the model of

transformer BERT and its derivatives, DistilBERT, and

CamemBERT for naturally perceiving word-level language.

The WLLI method provides six labels to the code-mixed

Malayalam-English data set: Malayalam (mal), undefined

(undef), acronyms (acr), mixed (mix), English (eng), and

universal (univ). The proposed method effectively captures

the linguistic patterns and features identified in the code-

mixed text, providing precise language identification.

However, WLLI produces inaccurate language predictions

when dealing with complex phrase structures or linguistic

differences.

Surbhi Bhatia et al. [14] presented a Genetic Algorithm

(GA) for the Hindi Word Sense Disambiguation (WSD).

The ambiguous phrases left and right are employed, along

with the dynamic configuration window function. Two

context windows have been established while one context

window was dynamic and contained the neighbor

ambiguous words, the other context window was static and

only contained the ambiguous word. The intricacy,

instability, and vast search spaces associated with Hindi

Word Sense Disambiguation were successfully handled by

a genetic algorithm. However, manual tuning of several

parameters such as selection criteria, population size,

mutation, and crossover rates was required for the genetic

algorithm.

Muskaan Singh et al. [15] introduced an MT system for

Sanskrit-to-Hindi translation. The method develops a neural

machine translation system using linguistic data from a rule-

based feed. The method was innovative and suitable to any

language of low resource with a rich morphology and

covered multiple domains with minimum human

involvement. The method achieves high performance by

using both human and automatic measures and also

generates effectively in terms of accuracy, response time,

and speed. However, machine translation systems

commonly operate on a sentence-by-sentences basis and

struggle to incorporate contextual data effectively.

Jani Dugonik et al. [16] implemented a Hybrid Machine

Translation (HMT) system that combines Statistical

Machine Translation (SMT) and NMT to enhance NMT’S

quality. For the Slovenian-English language pair, two NMT

and SMT systems were established each for translation in

one direction. The original sentences and translations were

placed in the space of the same vector using a multilingual

language model. HMT provides a higher-quality translation

by utilizing the best characteristics of each system.

However, multiple machine translation techniques were

acquired for establishing and maintaining an HMT system.

Sahinur Rahman Laskar et al. [17] presented different kinds

of negation effects for English-to-Assamese and Assamese-

to-English translation by examining machine translation

models. A rule-based method was provided for the step of

data preprocessing to solve modal-verb negation difficulties

that demonstrate significant improvement in terms of

manual and automatic assessment scores. Machine

translation models were trained and evaluated using

language-specific resources which enhance their

performance particularly when handling the sentences of

negation. However, the method was challenging to translate

negated statements effectively, which resulted in

information loss or translation errors.

Shubham Dewangan et al. [18] introduced a Neural

Machine Translation (NMT) for the Indian languages to

enhance the translation. The effectiveness of a relatively

limited number of Byte Pair Encoding (BPE) combined

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 201

operations in low-resource contexts, particularly for related

languages was demonstrated. An effective training data

augmentation method was introduced namely, phrase table

injection, which combines NMT and SMT. The introduced

method captures and utilizes contextual information

efficiently. However, to attain the best translation

performance, NMT models need a significant amount of

high-quality data training.

Sitender & Seema Bawa [19] implemented a Sanskrit-to-

English MT system by employing a hybridized form of rule-

based and direct machine translation method. This method

includes the language difference between Sanskrit and

English, as well as a potential remedy to manage the

differences. The Elasticsearch method has improved the

machine translation system’s ability to obtain information

from multiple data dictionaries and rule bases utilized in

system development. The implemented method achieves a

fluency score, BLEU score, and adequacy score using

natural language processing. However, high-quality parallel

training data for Sanskrit-to-English translation was

inadequate.

Md. Adnanul Islam et al. [20] presented a Corpus-based

machine translator NMT and SMT for the translation of

Bengali to English. Each corpus-based machine translation

system incorporates the rule-based translator separately

using various methods. The effectiveness of each

integrating method was assessed using standard

performance measures. The presented method provides

continual improvements in translation quality by retaining

or updating the models with new data. However, for optimal

performance, the presented method requires a substantial

amount of parallel training data.

Fig. 1. Block diagram for the proposed method

3. Proposed Methodology

The Recurrent Neural Network (RNN)-L2 regularization

method is proposed for Sanskrit to Hindi translation

language. It includes a dataset, data pre-processing, adding

linguistic components, a vector encoder that embeds input

source sentences, a decoder that converts learning vectors

into target sentences, and a web interface for providing users

with access to the translation as a service. The overview of

the proposed method is represented in Fig. 1.

3.1. Corpora dataset

A Corpora dataset is a kind of structured learning data that

includes texts from a variety of sources including

Wikipedia, the news, literature, tourism, judicial,

healthcare, and the general domain. It has two types:

Monolingual and parallel corpus. Corpora consists of a total

of 8.8 billion tokens from news crawls across all 11

languages along with Indian English. The Bhagwad-Geeta

which consists of 700 slokas and has been converted into

Hindi, was also manually developed. Additionally, the

Indian Languages Corpora Initiative (ILCI) project made

50,000 Sanskrit-Hindi corpus. The algorithm was trained

using the whole parallel corpus of 162,760 parallel

sentences.

3.2. Data Pre-processing

The data of the corpus is prepared for the NMT application

and there are two steps to it; clean text and split text. Text is

separated into sentences is an essential process in text

cleaning. Then, the remaining non-numeric or non-

alphabetical tokens are removed, along with any

punctuation marks, and non-printable characters. Unicode

characters are converted to ASCII value and all uppercase

letters become lowercase. For each pair of imported

datasets, these operations are performed on each sentence.

The splitting operations are then applied to cleaned data.

Different computation graphs were created because the

dataset contained sentence pairs of varying lengths. Then,

sentences of a similar length are divided into smaller batches

after sorting sentences in a batch according to the length of

sentence pairs. The training corpus is shuffled periodically

by splitting the corpus into maximum batches and then

splitting the corpus again into mini-batches. Applying a

gradient for the parameter update completes the processing.

3.3. Rule-based machine translation system; extraction

of linguistic features

The pre-processing rule-based MT system is performed

based on main semantic, morphological, and syntactic

regularities of the source and target language, which are

mostly retrieved from dictionaries and grammar. The

Sanskrit Consortium Project supported by MIT, used Anu-

saaraka to divide various tools into several modules. The

rule-based pipeline design for the translation of Sanskrit to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 202

Hindi consists of 11 modules. To more effectively train the

system, each module outputs a unique set of linguistic

information to the neural-based encoder-decoder.

1. Pre-processing of user input: It enables the user’s

input, cleans it up, normalizes it, and translates the

notations of input into WX notation. It then calls the

system of MT, which executes the computation, and

displays the outcomes.

2. Tokenizer: A character flow is inputted into the

tokenizer, which separates the character into tokens

(markers, words, and punctuation). It eliminates the

data formatting and inserts a sentence tag. Linguistics

referred to as morphology implies the study of words,

including their inherent structure and meaning word.

It has word streams, which are tokenized to give

those words meaning.

3. Sandhi splitter: When the words of Sanskrit sandhi

appear in the input text, it is called sandhi splitter.

Both of these words and compound words are divided

by it.

4. Morphological Analyzer: Words are divided into

their roots and grammatical suffixes using the

morphological analyzer. There are various units, and

each one serves grammatical and semantic purposes.

Additionally, it offers inflectional analysis, reduces

the response, handles unrecognized words using the

analysis of local morph, and generates a derived roots

derivational analysis.

5. Parsing: For simple translation from one language to

another, a parser is employed as an interpreter or

compiler to break data into smaller components.

Word or token sequences serve as the input for

parsers. These inputs are transformed into a parse tree

format. The tree structure containing labels for verbs,

nouns, and their corresponding properties, transforms

the source into the language of the target. In addition

to karaka analysis, morph analysis according to

context is carried out. The relationship between the

verb and its participants is named and identified in

computational Paninian grammar.

6. Shallow Parsing: When the parser detects an input

failure, it occurs a minimal amount of phrase parsing

and generates cleaned morph analysis for the

subsequent layer.

7. Word Sense Disambiguation (WSD): The modules

use the input phrase terms vibhakti and lakara to

execute WSD. It displays a word’s proper Sanskrit

meaning.

8. Parts of Speech Tag (POS): It includes tags for each

word’s components of speech such as nouns, verbs,

or adjectives.

9. Chunker: A minimum word grouping such as noun,

verb, or adjective is carried out during this step. A

suitable chunk tag is given to it on a rule basis.

10. Hindi Lexical Transfer: The Sanskrit Lexicon is

translated into Hindi by employing the dictionary to

find the roots of the words. The format of the output

is determined by the Generator of Hindi, which

produces the Hindi language output as it relates to

Sanskrit. If translation fails, this module executes

transliteration.

11. Hindi Generator: An agreement check among a noun,

verb, and adjective in the language of the target is

performed by a sentence-level generator during this

step. The ‘ne’ marks for vibhakti are added, while

‘ko’ markers are dropped at the appropriate locations.

The process of final generation includes grammatical

properties, their associated suffixes, and the root

words that occur alone with them.

As a result, linguistic principles and techniques are used to

translate each Sanskrit word into its equivalent Hindi word.

Additionally, the subsequent phase receives this data. The

input that is passed on to the following stage is transformed

into Comma-Separated Values (CSV), which is ideal for the

development of the model, training, and fitting values for

the architecture of neural-based encoder-decoder for

determining the Sanskrit to Hindi translation words. The

outcomes of this linguistic tool are included as features for

source sentence input encoding.

3.4. RNN encoder-decoder with attention mechanism

embedding extracted features

 RNN-L2 regularization is proposed for Sanskrit to Hindi

translation. It can be used with any language of low-

resource because of minimal parallel data sources. GRU

cells and enhanced NMT with an attention mechanism were

utilized for the computation. With an attention mechanism

for both the encoder and decoder, the implementation makes

use of stacked bi-directional RNN layers. The source

sentence 𝑊𝑠 = 𝑊𝑠1,….𝑊𝑠𝑛 into sequence variable of context

vectors 𝑆 = ℎ1, ℎ2, ℎ3, … . , ℎ𝑛. The decoder constructs the

target phrase by decoding the context vector 𝑆𝑖. By

increasing the probability of the target word given the

previously created word ℎ𝑖−1, the hidden state decoder 𝑑𝑠𝑖

and vector context 𝑠𝑖𝑃(ℎ𝑖\𝑑𝑠𝑖,ℎ𝑖−1, 𝑠𝑖) can be produced.

3.4.1. Encoder

The Sanskrit language source sentence is given in (1)

𝑊𝑠 = 𝑊𝑠1,𝑊𝑠2,𝑊𝑠3, … 𝑊𝑠𝑧 , 𝑆𝑖 ∈ 𝑅𝐾𝑠 (1)

Hindi target sentences: from the parallel corpus provided in

(2)

𝑊ℎ = 𝑊ℎ1, 𝑊ℎ2, 𝑊ℎ3,…..𝑊ℎ𝑖,ℎ𝑥 ∈ 𝑅𝑘ℎ (2)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 203

Where

𝑧, 𝑥 – length of the input and output sentences

𝑘𝑠 , 𝑘ℎ- vocabulary size

The model initially tokenizes 𝑊𝑠 to provide an input

representation where sequences probability of

𝑇(𝑊𝑠1, 𝑊𝑠2,….𝑊𝑠𝑛) is represented as 𝑃1(𝑊𝑠1,……, 𝑊𝑠𝑡).

Instead of considering all previous words, it is typically

dependent on a word window. Because the input

document’s places affect the number of words before the

previous word (𝑊1) in (3)

𝑃1(𝑊𝑠1, 𝑊𝑠2…,𝑊𝑠𝑡𝑧
) = ∏ 𝑃(𝑊𝑠1,……, 𝑊𝑠𝑖−1

)

𝑡

𝑖=1

≈ ∏ 𝑃(𝑊𝑠𝑖
|𝑊𝑠1….𝑊𝑠𝑧−1

) … .𝑡
𝑖=1 𝑊𝑠𝑧−1

(3)

Since text data cannot be directly applied to neural

networks. By embedding layers, text is transformed into

integer tokens or numbers, which are then transformed into

vectors. The tokenizer is employed for source and target

language by defining the maximum number of vocabulary

terms. After being transformed into a series of integer

tokens, the dataset is then padded, trimmed, and saved as

NumPy arrays. The encoder computes embedded vectors

(𝑊𝑠1,𝑊𝑠2,𝑊𝑠3,….𝑊𝑠𝑧,
) for the computation of the hidden layer

using the tokenizer’s output as arrays. These vectors, which

range in value from 1 to -1, correspond to words with similar

semantic meanings. Forward RNN computes the hidden

states ℎ1,ℎ2,ℎ3,…..ℎ𝜏𝑗
 by processing the input sentence from

beginning to end 𝑓. The backward RNN analyzes the text in

reverse order to determine the hidden states ℎ1,ℎ2, … ℎ𝜏𝑗
. An

annotation vector 𝐻𝑖 = [ℎ𝑗
𝑇; ℎ𝑗

𝑇] is created by combining

these hidden states, i.e., backward and forward. For each

input word 𝑠𝑧, the conventional encoder includes an

embedding lookup and steps for mapping via hidden states

in (4)

𝐻𝑗 = 𝑓(ℎ𝑖 − 1, �̅�𝑊𝑠𝑛) (4)

The encoder calculations are deeply layered as shown in (5),

(6) in the manner described below. For each input word, the

traditional encoder contains an embedding lookup.

ℎ𝑡,1 = 𝑓1(ℎ𝑡−1, 1, 𝑊𝑠𝑡) (5)

For 𝑖 > 1

ℎ𝑡,𝑖 = 𝑓ℎ𝑡−1,𝑖,ℎ𝑡,𝑖−1
 (6)

Where

ℎ𝑡−1,𝑖 – value of the previous timestamp

ℎ𝑡,𝑖−1 – value for the preceding layer in the sequence

The input sentence is calculated by processing backward

and forward RNNs, and is contained in the context vector

𝑠𝑖. For the encoder and decoder function, Gated Recurrent

Unit (GRU) is employed. To facilitate the detection of long-

term dependence by RNN, GRU is built to have the longer-

lasting memory. GRU employs input 𝑊𝑠𝑡 and the previous

hidden state ℎ𝑡−1 to produce the next hidden state ℎ𝑡.

Equations (7), (8), (9), (10), (11), and (12) shows the update

gate, the reset, the new memory and the state of hidden, for

all I words in a phrase

𝑢𝑝𝑖 = 𝜎(𝑊𝑢𝑝𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂𝑢𝑝ℎ𝑖−1) (7)

𝑟𝑒𝑠𝑖 = 𝜎(𝑊𝑟𝑒𝑠𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂𝑟𝑒𝑠ℎ𝑖−1) (8)

ℎ𝑖 = tanh (𝑊𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂[𝑟𝑒𝑠𝑖 ⊙ ℎ𝑖−1] (9)

ℎ𝑖 = (1 − 𝑢𝑝𝑖) ⊙ ℎ𝑖−1 + 𝑢𝑝𝑖 ⊙ ℎ𝑖) (10)

Where

𝑑 – word embedding dimensionality

𝑢 – number of hidden units �̅� ∈ 𝑅𝑑𝑥𝑘𝑠

𝜎 – function of the logistic sigmoid

𝑊, 𝑊𝑢𝑝,𝑊𝑟𝑒𝑠 ∈ 𝑅𝑢𝑥𝑑 (11)

𝑂, 𝑂𝑢𝑝,𝑂𝑟𝑒𝑠 ∈ 𝑅𝑢𝑥𝑢 (12)

A bidirectional recurrent neural networks backward states

are calculated identically for the update gate in (13), the

reset gate in (14), the new memory in (15), and the state of

hidden, for all I words in an (16)

𝑢𝑝𝑖 = 𝜎(𝑊𝑢𝑝𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂𝑢𝑝ℎ𝑖−1) (13)

𝑟𝑒𝑠𝑖 = 𝜎(𝑊𝑟𝑒𝑠𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂𝑟𝑒𝑠ℎ𝑖−1) (14)

ℎ𝑖 = tanh (𝑊𝐸𝑠𝑖
̅̅ ̅̅ + 𝑂[𝑟𝑒𝑠𝑖 ⊙ ℎ − 𝑖 − 1] (15)

ℎ𝑖 = (1 − 𝑢𝑝𝑖) ⊙ ℎ𝑖−1 + 𝑢𝑝𝑖 ⊙ ℎ𝑖) (16)

The combined forward and reverse states are represented as

𝐻𝑖 = [ℎ𝑗
𝑇; ℎ𝑗

𝑇].

3.4.2. Adding linguistic features to the encoder

To train recurrent neural networks, the system incorporates

linguistic elements that were taken from the rule-based

pipeline design. A unique vector word embedding 𝑠𝑧𝑦 is

present for each feature. Integrating all of these word

vectors 𝐸𝜖𝑅𝑑𝑦𝑋𝑘𝑦 with 𝑑𝑘 as the sum of all embedding

feature dimensions and 𝑘𝑦 as the 𝐾𝑡ℎ feature vocabulary

size. The entire embedding size is later combined with these

embeddings because their lengths are compatible. These

linguistic features are retrieved and multiplexed onto the

input embedded sentence vectors. All other model

functionality and parameters remain the same, only the

encoder change is made as in (17), resulting in an

outstanding enhancement in the output fluency.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 204

ℎ𝑙 = tanh (𝑊 ∏ 𝐸𝑦
̅̅ ̅𝑠𝑧𝑦 + 𝑂ℎ𝑙−1)𝐹

𝑦

(17)

3.4.3. Attention Mechanism

The attention layer covers the gap between the decoder,

which generates a 𝑠𝑖 vector context at each time step 𝑡𝑖 and

the encoder, which produces a word sequence

representation in the form of ℎ𝑗 = (ℎ𝑖 , ℎ𝑖). By computing

the effect of word representation (ℎ𝑖 , ℎ𝑖), it determines the

connection between the input word 𝑊𝑠 and the subsequent

output word 𝑊ℎ. The context vector can be described as the

weighted annotations sum ℎ𝑖. For this, required to identify

the model of alignment 𝑎𝑖𝑗 , or output position score to the

input position, as shown in (18), (19), (20). It uses the input

Sanskrit sentences 𝑗𝑡ℎ annotation and hidden state 𝑑𝑖−1.

𝑎𝑖𝑗 = 𝐽𝑎
𝜏tanh (𝑊𝑎𝑑𝑖−1 + 𝑂𝑎ℎ𝑗) (18)

𝛼𝑖𝑗 =
exp (𝑎𝑖𝑗)

∑ exp (𝑎𝑖𝑦)
𝑇𝑠
𝑦=1

 (19)

𝑆𝑖 = ∑ 𝛼𝑖𝑗ℎ𝑗
𝑡𝑠
𝑗=1 (20)

Where 𝑆 – feed-forward neural network

𝑊𝑎 ∈ 𝑅𝑛1
′
, 𝑂𝑎 ∈ 𝑅𝑛′𝑋𝑛, 𝐽𝑎 ∈ 𝑅𝑛′𝑋2𝑛 are matrics weight.

Using the function of SoftMax activation, the computed

value of scalar attention is normalized so that the sum of all

input words is 1.

3.4.4. Decoder

The decoder outputs a new word prediction 𝑊ℎ𝑖 and new

outcome hidden state decoder at each time step 𝑡 by

employing a previously hidden state phrase 𝑑𝑖−1, an input

context representation 𝑠𝑖, and a previous word embedding

outcome 𝐸ℎ𝑖−1
. In (21), the initial hidden state is calculated.

𝑑0 = 𝑓(𝑤𝑑ℎ1)

(21)

The hidden state 𝑑𝑖 is calculated given the encoder’s

annotation in (22), updated in (23), and reset in (24)

𝑑𝑖 = 𝑡𝑎𝑛ℎ̅(𝑊𝐸ℎ𝑦𝑖−1
) + 𝑂[𝑟𝑒𝑠𝑖 + 𝑑𝑖−1] + 𝑆𝑠𝑖

) (22)

𝑢𝑝𝑖 = 𝜎(𝑊𝑢𝑝𝐸ℎ𝑖−1 + 𝑂𝑢𝑝𝑑𝑖−1𝑆𝑢𝑝𝑠𝑖) (23)

𝑟𝑒𝑠𝑖 = 𝜎(𝑊𝑟𝑒𝑠𝐸ℎ𝑖−1 + 𝑂𝑟𝑒𝑠ℎ𝑖−1 + 𝑆𝑟𝑒𝑠𝑆𝑖) (24)

Where 𝑢 – number of hidden units

 𝑑 – word embedding dimension

 𝐸 – embedded word matrix for the target language

Weight matrices are 𝑊, 𝑊𝑢𝑝,𝑊𝑟𝑒𝑠 ∈ 𝑅𝑢𝑋𝑑 , 0, 𝑂𝑢𝑝,𝑂𝑟𝑒𝑠 ∈

𝑅𝑢𝑋2𝑑. The decoder's hidden state 𝑑𝑖−1, input context 𝑠𝑖, and

prior output word embedding ℎ𝑖−1 as in (25), provide the

basis of the prediction vector 𝑃𝑖 for an output word.

𝑃𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑂𝑜𝑡𝑑𝑖−1
+ 𝑉𝑜𝑡𝐸ℎ𝑖−1 + 𝑆0𝑠𝑖 (25)

Where, 𝑉𝑜𝑡 ∈ 𝑅2𝑙𝑋𝑑 , 𝑂𝑜𝑡𝑅2𝑙𝑋𝑢 , 𝐶𝑜𝑅 ∈ 2𝑙𝑋2𝑢 is an

embedding matrix of output word.

As a result of the encoder state progression from 𝑑𝑖−1 to 𝑑𝑖

being fragmented when utilizing 𝑑𝑖−1 instead of 𝑑𝑖 for the

output word prediction 𝑃𝑖 in (26), the 𝐸𝑊ℎ𝑖−1
 condition is

repeated

𝑃𝑖 = [𝑚𝑎𝑥𝑃𝑖 , 2𝑗̅ − 1, 𝑖, 2̅𝑗]𝑗=1…….,𝑙
𝜏 (26)

Even training is carried out according to the network’s

knowledge of the proper output, which is given a value of

higher probability as in (27)

𝑃𝑟𝑜𝑏(ℎ𝑖|𝑑𝑖−1,𝑠𝑖)𝛼(ℎ𝜏𝑊𝑜𝑝𝑖) (27)

Function of activation SoftMax is employed to transform a

raw vector into a range of probabilities with a total value

equal to one. Additionally, ReLU is utilized, which

combines input to produce the next hidden state. The

function of activation is supplied to the model to better

predict the target variable and it also functions as a rectifier.

3.4.5. L2 Regularization

L2 regularization techniques operate by introducing a norm

penalty parameter to the objective function as shown in (28),

to restrict the model capacity.

𝐽(𝜃) = 𝐽(𝜃) + 𝜆𝑅(𝑤) = 𝐽(𝜃) + 𝜆 ∑ |𝑤𝑖
2|𝑖 (28)

Where the norm penalty term’s 𝑅(𝑤) relative contribution

to the common objective function 𝐽(𝜃)is weighted. On the

data training, this parameter reduces the original and

objective function size J. A measurement of the parameter’s

size 𝑤𝑖 when the regularized objective function is

minimized 𝐽 by the training procedure. The L2

regularization makes the learning algorithm “perceive” the

input to have a high variance, which causes the feature

weight whose covariance with the target output is smaller

than this additional variance to be reduced.

4. Experimental Setup and Results

To obtain a processing speed of about 2500 words per

second, the RNN-L2 regularization method is processed by

employing a heavily configured core GPU with 32GB

RAM. Normal systems cannot operate at this speed since it

will take two hours to complete one epoch. So,

NVIDIAGeforceGTX1050 and QuadroK6000 are used

together with a GPU that is well configured. Both automated

metrics and evaluations by humans were used to evaluate

the proposed method's performance.

4.1. Evaluation Metrics

• Bilingual Evaluation Understudy (BLEU) – It is an

essential parameter for assessing sentence translation

accuracy in comparison to human generated

reference translation as shown in (29)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 205

𝐵𝐿𝐸𝑈 = min (1,
𝑜𝑢𝑡𝑝𝑢𝑡𝑙𝑒𝑛𝑔𝑡ℎ

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ
)(∏ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖)

4
𝑖=1

(29)

• Metric for Evaluation of Translation with Explicit

ORdering (METEOR) - It is a metric to evaluate the

output of machine translation. The metric is based on

the harmonic mean of unigram recall and precision as

shown in (30), and (31)

𝐹𝑚𝑒𝑎𝑛 =
10𝑃𝑅

9+𝑅𝑃

(30)

𝑀𝐸𝑇𝐸𝑂𝑅 = 𝐹𝑚𝑒𝑎𝑛(1 − 𝑝)

(31)

4.2. Experimental Results

The model update is affected by the corpora’s length

sentence. Fig. 2 shows that as the length of sentences

increases in the corpus training, the number of weight

updates dramatically rises beyond a point, and later drops

off following the sentence length reaches 20 words. Table

1. shows the Sentence Length affecting updates on different

sentence lengths ranging from 0 to 50 respectively.

Table 1. Sentence Length affecting updates

Sentence Length Updates

0 0

10 6

20 8.5

30 6.8

40 4.9

50 3

Fig. 2. Sentence Length affecting updates

Table 2. shows the Sentence Length affecting epochs on

different sentence length ranges from 0 to 50 respectively.

The effect of sentence length on the number of training set

iterations, or epochs that are executed in Fig. 3. The graph

makes it highly apparent that there are a number of epochs

reduced following the point (20 sentences long).

Table 2. Sentence Length affecting Epochs

Sentence Length Epochs

0 0

10 4.2

20 6.5

30 5

40 3.8

50 2.5

Fig. 3. Sentence Length Affecting Epochs

The sentence length affecting model time is shown in Fig.

4. It indicates that the period fluctuates significantly. The

model training time is stable for sentences between 10 to 20,

but increases rapidly for sentences between 20 to 30. Table

3 shows different sentence lengths ranging from 0 to 50

respectively. In conclusion, the updates, epochs, and time

are limited by sentences that are no longer than 20 words.

There is a decrease in the graphs when the corpus sentence

length crosses this limit.

Table 3. Sentence Length Affecting Time (H)

Sentence Length Time (H)

0 0

10 110

20 110

30 250

40 120

50 123

Fig. 4. Sentence Length Affecting Time (H)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 206

The BLEU score fluctuates with the size of the beam as

shown in Fig. 5. The inference process uses a beam search

to identify the most probable word order for each

translation. In comparison to conventional statistical

machine translation beam sizes, the beam issue related to the

translation of neural machines affects comparatively small

beam sizes. The beam size 1 to 4 exhibits constant variation

in the BLEU score, whereas the BLEUs increased between

5 to 10. The BLEU score decreases if there is a significant

rise in beam size. Therefore, in training sentence length is

normalized to limit the size of the beam. Table 4. shows that

the BLEU varies with the size of the beam as below.

Table 4. BLEU varies with the size of the beam

Size of Beam BLEU

1 39

2 42

3 43

4 44

5 55

6 58

7 61

8 61

9 57

10 53

Fig. 5. BLEU varies with the size of the beam

Fig. 6. demonstrates the Development probability varies

with Sentence Length. The plot shows that the development

probability rises to 20 sentence length and then drops. As a

result, dividing larger sentences or normalizing sentences

longer than 20 words would be an appropriate technique.

Table 5. shows the development probability varies with

sentence length on different ranges from 0 to 50

respectively.

Table 5. Development probability varies with sentence

Length

Sentence Length Dev-prob

0 0

10 45

20 55

30 35

40 48

50 40

Fig. 6. Development probability varies with Sentence

Length

Table 6 shows different sentence lengths ranging from 0 to

50 respectively. Fig. 7 simulates that the training probability

varies with sentence length. As seen, the training probability

drops gradually. Therefore, shorter sentences would be

more effectively modeled to raise the training probability.

Table 6. Training probability varies with Sentence Length

Sentence Length Training probability

0 0

10 45

20 30

30 38

40 30

50 42

Fig. 7. Training probability varies with Sentence Length

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 207

4.3. Comparative Analysis

The comparative analysis includes methods, BLEU, and

METEOR. Table 7. shows that the comparative analysis

with the existing methods

Table 7. Comparative Analysis with Existing Methods

Author Dataset Methods BLEU

(%)

METEOR

(%)

Muskaan

Singh [15]

Corpora MT system 75 61

Jani

Dugonik

[16]

Corpora Hybrid MT

system: English-

Slovenian

42.9 61.5

Slovenian-

English

47.9 70.9

Proposed

method

Corpora RNN-L2

regularization

76 72

The existing method Sanskrit-Hindi MT system [15] has a

BLEU score of 75% and METEOR has 61%. The hybrid

MT system [16] has two techniques: English-Slovenian has

42.9%, 61.5% of BLEU and METEOR. Slovenian-English

has 47.9 and 70.9 of BLEU and METEOR. When compared

with the existing method, the RNN-L2 regularization

achieves 76%, 72% of BLEU and METEOR.

4.4. Discussion

This section provides a discussion about the Recurrent

Neural Network (RNN)-L2 regularization method and

compares those results in the comparative analysis section

4.3. The major goal of this study is to translate the Sanskrit-

Hindi language using RNN-L2 regularization. To construct

a neural model with the architecture of encoder-decoder and

attention mechanism, a parallel corpus of data from several

sources was obtained, and the remaining data was manually

constructed. A neural machine translation system is trained

using the linguistic information from the rule-based input.

The output of the linguistic tools from the conventional rule-

based method was combined as NMT feature embedding

matrices to determine the multiple meanings of a word

translation in various contexts. Additionally, evaluated its

capacity to effectively tokenize data and reduce the sparsity

of data. L2 regularization techniques operated by

introducing a norm penalty parameter to the objective

function to restrict the model capacity. The efficacy of

RNN-L2 regularization method is demonstrated by

employing the dataset of Corpora. The data of the corpus are

prepared for the NMT application. There are two steps to it;

clean text and split text. Separating the text into sentences is

an essential process in text cleaning. Then, the remaining

non-numeric or non-alphabetical tokens are removed, along

with any punctuation marks, and non-printable characters.

When compared with the existing methods such as machine

translation system, and hybrid machine translation system,

the RNN-L2 regularization achieves 76%, 72% of BLEU

and METEOR.

5. Conclusion

In this paper, the RNN-L2 regularization method is

proposed for Sanskrit to Hindi translation. The proposed

method is unique and appropriate to any language pair with

limited resources and linguistic knowledge. The features are

taken from the language rule and then used to train an RNN.

A neural machine translation system is trained using the

linguistic information from the rule-based input. The

proposed method can be used with any morphologically rich

low-resource language. High performance is achieved via

performance evaluation using both manual and automated

measures. When compared to the current rule-based

systems, the RNN-L2 regularization is quicker and more

effective. When there is no rule match, the rule-based model

fails to generate outcomes, but RNN-L2 regularization

returns the optimal answer. The RNN-L2 regularization

achieves 76%, and 72% of BLEU and METEOR when

compared to the existing methods of machine translation

system, hybrid machine translation system. In the future, the

term overfitting issues in training data will be reduced using

the RNN-L2 regularization method.

Author contributions

Prashanth Kammar: Conceptualization, Methodology,

Software, Writing-Original draft preparation, Parashuram

Baraki: Visualization, Software, Writing-Reviewing and

Editing, Sunil Kumar Ganganayaka: Visualization,

Software, Investigation, Writing-Reviewing and Editing,

Manjunath Swamy Byranahalli Eraiah: Visualization,

Field study, Investigation, Kolakaluri Lakshman Arun

kumar: Visualization, Investigation, Writing-Reviewing

and Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] L. Benkova, D. Munkova, L. Benko, and M. Munk,

“Evaluation of English–Slovak neural and statistical

machine translation,” Applied Sciences, vol. 11, no. 7,

p. 2948, Mar. 2021,

https://doi.org/10.3390/app11072948.

[2] K. D. Garg, S. Shekhar, A. Kumar, V. Goyal, B.

Sharma, R. Chengoden, and G. Srivastava,

“Framework for Handling Rare Word Problems in

Neural Machine Translation System Using Multi-

Word Expressions,” Applied Sciences, vol. 12, no. 21,

p. 11038, Oct. 2022,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 199–208 | 208

https://doi.org/10.3390/app122111038.

[3] S. Saini and V. Sahula, “Setting up a neural machine

translation system for English to Indian languages,” in:

Cognitive Informatics, Computer Modelling, and

Cognitive Science, Academic Press, 2020, pp. 195-

212, https://doi.org/10.1016/B978-0-12-819443-

0.00011-8.

[4] M. Brour, and A. Benabbou, “ATLASLang NMT:

Arabic text language into Arabic sign language neural

machine translation,” Journal of King Saud

University-Computer and Information Sciences, vol.

33, no. 9, pp. 1121-1131, Nov. 2021,

https://doi.org/10.1016/j.jksuci.2019.07.006.

[5] J. X. Huang, K. S. Lee, and Y. K. Kim, “Hybrid

translation with classification: Revisiting rule-based

and neural machine translation,” Electronics, vol. 9,

no. 2, p. 201, Jan. 2020,

https://doi.org/10.3390/electronics9020201.

[6] T. Khanna, J. N. Washington, F. M. Tyers, S. Bayatlı,

D. G. Swanson, T. A. Pirinen, I. Tang, and H. Alòs i

Font, “Recent advances in Apertium, a free/open-

source rule-based machine translation platform for

low-resource languages,” Mach. Transl., vol. 35, no.

4, pp. 475-502, Dec. 2021,

https://doi.org/10.1007/s10590-021-09260-6.

[7] L. H. Baniata, I. K. Ampomah, and S. Park, “A

transformer-based neural machine translation model

for Arabic dialects that utilizes subword

units,” Sensors, vol. 21, no. 19, p. 6509, Sep. 2021,

https://doi.org/10.3390/s21196509.

[8] A. Srivastav and S. Singh, “Proposed model for

context topic identification of english and hindi news

article through LDA approach with NLP technique,” J.

Inst. Eng. India Ser. B, pp. 1-7, Apr. 2022,

https://doi.org/10.1007/s40031-021-00655-w.

[9] E. L. Pontes, S. Huet, J. M. Torres-Moreno, and A. C.

Linhares, “Compressive approaches for cross-

language multi-document summarization,” Data &

Knowledge Engineering, vol. 125, p. 101763, Jan.

2020, https://doi.org/10.1016/j.datak.2019.101763.

[10] N. S. Khan, A. Abid, and K. Abid, “A novel natural

language processing (NLP)–based machine translation

model for English to Pakistan sign language

translation,” Cognit. Comput., vol. 12, pp. 748-765,

Jul. 2020, https://doi.org/10.1007/s12559-020-09731-

7.

[11] J.E. Ortega, R. Castro Mamani, and K. Cho, “Neural

machine translation with a polysynthetic low resource

language,” Mach. Transl., vol. 34, no. 4, pp. 325-346,

Dec. 2020, https://doi.org/10.1007/s10590-020-

09255-9.

[12] D. Banik, A. Ekbal, P. Bhattacharyya, and S.

Bhattacharyya, “Assembling translations from multi-

engine machine translation outputs,” Appl. Soft

Comput., vol. 78, pp. 230-239, May 2019,

https://doi.org/10.1016/j.asoc.2019.02.031.

[13] S. Thara and P. Poornachandran, “Transformer based

language identification for Malayalam-english code-

mixed text,” IEEE Access, vol. 9, pp. 118837-118850,

Aug. 2021,

https://doi.org/10.1109/ACCESS.2021.3104106.

[14] S. Bhatia, A. Kumar, and M. M. Khan, “Role of

genetic algorithm in optimization of Hindi word sense

disambiguation,” IEEE Access, vol. 10, pp. 75693-

75707, Jul. 2022,

https://doi.org/10.1109/ACCESS.2022.3190406.

[15] M. Singh, R. Kumar, and I. Chana, “Improving neural

machine translation for low-resource Indian languages

using rule-based feature extraction,” Neural Comput.

Appl., vol. 33, pp. 1103-1122, Feb. 2021,

https://doi.org/10.1007/s00521-020-04990-9.

[16] J. Dugonik, M. Sepesy Maučec, D. Verber, and J.

Brest, “Reduction of Neural Machine Translation

Failures by Incorporating Statistical Machine

Translation,” Mathematics, vol. 11, no. 11, p. 2484,

May 2023, https://doi.org/10.3390/math11112484.

[17] S. R. Laskar, A. Gogoi, S. Dutta, P. K. Adhikary, P.

Nath, P. Pakray, and S. Bandyopadhyay,

“Investigation of negation effect for English–

Assamese machine translation,” Sādhanā, vol. 47, no.

4, p. 238, Nov. 2022, https://doi.org/10.1007/s12046-

022-01965-5.

[18] S. Dewangan, S. Alva, N. Joshi, and P. Bhattacharyya,

“Experience of neural machine translation between

indian languages,” Mach. Transl., vol. 35, no. 1, pp.

71-99, Apr. 2021, https://doi.org/10.1007/s10590-

021-09263-3.

[19] Sitender and S. Bawa, “A Sanskrit-to-English machine

translation using hybridization of direct and rule-based

approach”, Neural Comput. Appl., vol. 33, pp. 2819-

2838, Apr. 2021, https://doi.org/10.1007/s00521-020-

05156-3.

[20] M. A. Islam, M. S. H. Anik, and A. A. A. Islam,

“Towards achieving a delicate blending between rule-

based translator and neural machine

translator,” Neural Comput. Appl., vol. 33, pp. 12141-

12167, Sep. 2021, https://doi.org/10.1007/s00521-

021-05895-x.

