

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN :2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 209–215 | 209

Code Plagiarism and Originality Detection using Machine Learning for

Ethical Code Practices

Dr. Harshali Patil1, Siddhi Ambre2, Dr. Karuna Bhosale3, Anamika Singh4, Harsh Jha5, Vedika Mandre*6,

Ankit Maurya7

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: The design and development of a Code Originality System—a sophisticated software solution aimed at preserving the intellectual

property rights of developers, upholding code quality, and promoting ethical coding practices. The primary goal of this research is to create

a Code Originality System that utilizes various algorithms to analyze code similarity and detect plagiarism. Emphasis is placed on

safeguarding intellectual property, ensuring code quality, and encouraging ethical coding practices. Utilizing token-based approaches and

advanced machine learning models, the Code Originality System addresses challenges of code diversity, scalability, privacy, and

algorithmic precision. The research emphasizes a pivotal role in safeguarding code integrity, offering insights into architectural

components, customizable features, and integration capabilities. The study presents a robust Code Originality System, revealing its

effectiveness in tackling challenges and underscoring its role in fostering innovation. The findings, supported by conclusive statistical data,

highlight the system's uniqueness and its contribution to responsible and ethical software development practices. This research pioneers a

Code Originality System, providing a critical stride towards a future defined by responsible and ethical software development practices.

Keywords: Code Analysis, Code Originality System, Code Similarity, Ethical Coding Practices, Plagiarism Detection

1. Introduction

In today's digital landscape, the development and

maintenance of software have become integral components

of our daily lives [1]. As the scale and complexity of

software projects continue to grow, the need to ensure code

originality and quality has never been more critical. In this

era of massive software repositories, where millions of lines

of code are generated, shared, and modified by countless

developers across the globe, code originality has emerged as

a fundamental concern [6].

"Code originality" refers to the distinctiveness and

innovation of code within a software project or repository

[2]. It involves preventing code plagiarism, unauthorized

copying, and inadvertent code reuse. For organizations,

maintaining code originality is crucial not only for

preserving intellectual property rights but also for ensuring

the reliability, security, and efficiency of their software

systems [5]. Challenges in massive repositories include

identifying and addressing unintentional code duplication,

tracking code evolution over time, and protecting against

malicious code injection. The vast size and complexity of

these repositories make manual inspection impractical,

necessitating the development of scalable automated

systems [7].

The primary objective of a code originality system is to

maintain the integrity and authenticity of software source

code throughout the software development process [4]. By

employing various techniques, including code analysis,

plagiarism detection, and version control, these systems

help developers and organizations protect their intellectual

property, prevent unauthorized code duplication, and

uphold ethical standards within the software development

community [8]. Ultimately, the goal is to foster innovation,

support legal compliance, and safeguard the investments

made in software development, benefiting both individual

developers and the software industry as a whole [11].

Software development has become a global endeavour, with

numerous developers and teams collaborating across

borders and boundaries [15]. This has led to a rising

concern: how to verify that the code written is genuinely

original and not plagiarized or infringing on existing

copyrights [17]. Code originality systems address this

1 Head of Department, Computer Engineering, Thakur College of

Engineering and Technology, Kandivali, Mumbai-400101, INDIA

ORCID ID : 0000-0003-2052-9940
2 Assistant Professor, Department of Computer Engineering, Thakur of

College of Engineering and Technology, Kandivali, Mumbai-400101,

INDIA

ORCID ID : 0009-0005-1300-8524
3Assistant Professor School of Engineering & Technology, Pimpri

Chinchwad University, Talegoan, Pune-410506, INDIA

ORCID ID : 0009-0006-6580-0991
4 Assistant Professor, Department of CS&E (cyber security), Thakur

College of Engineering and Technology, Kandivali, Mumbai-400101,

INDIA

ORCID ID : 0009-0009-6349-6879
5 Department of Computer Engineering, Thakur of College of Engineering

and Technology, Kandivali, Mumbai-400101, INDIA

ORCID ID : 0009-0003-1691-5918
6 Department of Computer Engineering, Thakur of College of Engineering

and Technology, Kandivali, Mumbai-400101, INDIA

ORCID ID : 0009-0007-0736-5095
7 Department of Computer Engineering, Thakur of College of Engineering

and Technology, Kandivali, Mumbai-400101, INDIA

ORCID ID : 0009-0007-2767-3802

* Corresponding Author Email: mandre.vedika@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 209–215 | 210

concern by offering a comprehensive approach to code

authentication [20].

The paper begins by conducting a thorough literature survey

to examine the existing research, tools, and technologies

related to code originality systems. Through an

examination of the available literature, our goal is to offer a

thorough overview of the present status within the field.

Subsequently, we delve into the methodologies employed in

code originality systems [14]. We discuss the use of static

and dynamic code analysis techniques, the utilization of

machine learning algorithms [10], and the integration of

version control systems [16]. The Result and Discussion

section contains the simulated results compared with other

findings in the field [19]. In conclusion, this research paper

highlights the critical role of code originality systems in the

software development process [13]. To substantiate our

research and provide a scholarly foundation, the paper will

include a comprehensive list of References citing the

sources and works consulted throughout the study, ensuring

the academic integrity and credibility of our findings [3].

2. Literature Survey

The creation of Code Originality Systems lies at the

crossroads of software engineering, safeguarding

intellectual property, and promoting ethical coding

practices. This literature survey provides a snapshot of key

research areas, notable methodologies, and critical findings

that have informed the design and development of Code

Originality Systems.

2.1. Code Similarity Analysis and Plagiarism Detection

The essence of Code Authenticity Systems lies in their

capacity to detect occurrences of code resemblance and

plagiarism. Scholars have investigated diverse methods to

address this difficulty. Early methods, such as cosine

similarity [11] and Jaccard index [12], have employed

token-based comparisons. They treat code as a sequence of

tokens or n-grams and measure similarity based on token

overlap. These techniques are effective for detecting code

reuse but may lack the ability to capture structural

similarities. To address structural similarities, Abstract

Syntax Tree (AST) matching and Tree Edit Distance (TED)

[21] have been proposed. Recent advancements in machine

learning have revolutionized code similarity analysis.

Siamese neural networks [11] and Convolutional Neural

Networks (CNNs) [14], have shown effectiveness in

capturing relevant features from code for similarity

comparisons.

2.2. Privacy and Ethical Considerations

As Code Originality Systems handle user-submitted code,

privacy and ethical considerations are paramount. Research

by [23] has delved into privacy-preserving code similarity

analysis techniques. Balancing the need for plagiarism

detection with ethical considerations is a growing concern.

Ensuring transparency in the analysis process, providing

clear guidelines for user consent, and allowing users to

control their data are essential aspects of ethical code

analysis [18].

2.3. Scalability and Performance

The scalability of Code Originality Systems is critical as

codebases continue to expand. [24] introduced scalable

parallel algorithms for code plagiarism detection.

Leveraging distributed computing frameworks like Apache

Hadoop [6] and cloud-based solutions has further improved

the scalability of Code Originality Systems.

2.4. Legal and Educational Perspectives

Legal aspects in code analysis, specifically regarding

copyright infringement and intellectual property rights, have

been highlighted. Wang et al. [10] emphasized the

significance of understanding copyright laws, licensing

agreements, and fair use principles in the context of Code

Originality Systems. In academia, these systems play a

crucial role in maintaining integrity, preventing code

plagiarism, and fostering responsible coding practices [17].

A dual-perspective technique has been proposed to

empower examiners, while Kuo, Cheng, and Wang [22]

introduced a unique method using Cosine correlation to

quantify similarity across variables, comments, and

functions, excluding IDE-generated comments from

comparison through string-matching. The literature survey

highlights the multidisciplinary nature of Code Originality

Systems, covering diverse research areas like code

similarity analysis, scalability, customization, and legal

implications. It offers an in-depth exploration of research

and developments in the field, providing insights into the

multifaceted challenges and considerations shaping these

systems.

Here is a table summarizing the literature survey with gaps

and findings:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 209–215 | 211

Table 1. Literature Survey on Code Originality System

Author & Year Research Focus Key Findings Key Findings

Ganguly et al.

(2018)

Syntax tree-based

code similarity

analysis

Tree kernel

algorithm for

measuring

similarity

Addressing the

time-inefficiency of

structure-based

techniques

Karnalim

(2017, 2019)

Syntax tree-based

and low-level

token sequences

Assessment of

similarity in low-

level token

sequences derived

from binary files

The evolution of

intricate code

representations

Rabbani &

Karnalim

(2017)

Token sequences

extracted from

binary files at a

low level.

Low-level token

sequences for

plagiarism

detection

Advancing

structure-based

techniques to reduce

time complexity

Fu et al.
Syntactic tree-

based code

structure

similarity analysis

Use of Abstract

syntax trees for

structural

The adoption of

more advanced

-2017 Similarity representations

Smith &

Waterman

(1981)

Structure-based

similarity

measurement

Local Alignment

for similarity

measurement

Enhancing the time

efficiency of

structure-based

techniques

Chen et al.

(2004)

Attribute-based

similarity

measurement

Shared

information

between tokens

using

Kolmogorov

complexity

Exploring different

attribute-based

techniques for

effectiveness

Grier (1981)
Early attribute-

based detection

Attributes for

early detection

Advancing early

attribute-based

detection techniques

Croft et al.

(2010)

Information

Retrieval (IR)

IR techniques

applied to

plagiarism

detection

Exploring IR

techniques in

different aspects of

plagiarism detection

3. Methodology

The methodology employed in the design and development

of a Code Originality System is critical to achieving the

system's objectives of code similarity analysis, plagiarism

detection, privacy preservation, scalability, and ethical

compliance. This section provides an in-depth exploration

of the methodology, outlining the steps, tools, and

techniques used to create a robust and effective Code

Originality System

3.1. Process Overview

The development of the Code Originality System involves a

series of interconnected tasks aimed at creating a robust

system. A Gantt Chart, a commonly used tool, was

employed to streamline the process, offering a visual

representation of the sequential tasks and milestones. The

Gantt chart below illustrates the timeline and sequence of

activities undertaken during the research:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 209–215 | 212

Fig 1. Gantt Chart

3.2. Algorithms for Code Analysis

In developing a robust code originality system, various

algorithms can be harnessed to ensure the authenticity and

integrity of software source code:

3.2.1. Token-Based Analysis Algorithm

This algorithm is instrumental in breaking down source

code into distinct tokens, such as keywords, identifiers, and

literals. By comparing the token sequences, it identifies

code snippets that might be similar in structure, aiding in the

detection of potential code reuse.

3.2.2. Abstract Syntax Tree (AST) Comparison

Algorithm

ASTs represent the hierarchical structure of source code.

This algorithm analyses ASTs to uncover similarities or

common structural elements in different code segments. It

can efficiently identify both straightforward and intricate

forms of code plagiarism.

3.2.3. Machine Learning-Based Classification

Leveraging machine learning models, this approach assigns

a probability score to code segments, indicating the

likelihood of them being plagiarized. The system is trained

on known cases of plagiarism and can adapt to various

coding styles and languages.

3.3. Data Models Techniques

Incorporating mathematical modelling and data structures is

vital for a comprehensive code originality system:

3.3.1. Feature Engineering

Feature engineering techniques are employed to extract

meaningful characteristics from the source code. These

features can include variables, function names, and code

structure. By comparing these features across code

segments, the system can detect similarities.

3.3.2. Clustering Algorithms

Utilising clustering algorithms, the system groups similar

code fragments together, making it easier to identify

potential code plagiarism. Hierarchical clustering, k-means,

and DBSCAN are examples of clustering methods that can

be applied.

3.3.3. Text Analysis using Language Processing

Techniques

Employing NLP methodologies for the examination of

comments and documentation within the source code is a

common practice. By identifying similarities in comments

and documentation, the system can detect cases of code

reuse.

Below is the software architecture diagram:

Fig 2. Software Architecture

The following diagram illustrates the Level-0 Data Flow

Diagram (DFD):

Fig 3. Data Flow Diagram (DFD) at Level 0

3.4. Features to be Included:

The code originality system will offer a range of features to

enhance code analysis and detection:

3.4.1. Code Upload and Analysis

Users can upload source code files, and the system will

analyse them using the selected algorithms.

3.4.2. Plagiarism Detection

The system will flag potential instances of code plagiarism,

highlighting similarities and providing detailed reports.

3.4.3. Code Comparison

Users can compare code segments side by side to identify

similarities and differences easily.

3.4.4. User Management

The system will support user roles and permissions,

allowing administrators, instructors, and students to access

different functionalities.

3.4.5. Real-time Monitoring

The dashboard will provide real-time monitoring of code

analysis progress, ensuring efficient handling of large

codebases.

3.4.6. Historical Reports

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 209–215 | 213

Users can access historical reports and track changes in code

originality over time.

 This comprehensive methodology outlines the

strategies, algorithms, and tools essential for developing a

code originality system. By combining advanced code

analysis techniques with a user-friendly interface, this

system aims to provide a powerful tool for maintaining the

integrity of software source code and upholding ethical

coding practices.

4. Result and Discussion

The outcomes derived from executing and evaluating the

Code Originality System were exceptionally encouraging.

The system adeptly detected and highlighted occurrences of

code resemblances within the provided codebase. The

comparison methodologies, encompassing tree-based,

token-centric, and text-based techniques, effectively

identified analogous code segments. The system's graphical

interface displayed these similarities in a visually intuitive

manner, allowing users to comprehend and interpret the

results effectively. Moreover, the system showed robustness

in handling large codebases and concurrent user

submissions. It efficiently processed and analyzed code

segments without compromising on system responsiveness.

The real-time detection and analysis of code plagiarism

were achieved, offering accurate results with minimal delay.

The successful development and deployment of the Code

Originality System bring several crucial points to light.

Firstly, the effectiveness of various similarity measurement

approaches, algorithms, was evident. Each approach

displayed its strengths and limitations, emphasizing the need

for a versatile and adaptable system that integrates multiple

algorithms to ensure comprehensive code analysis.

Additionally, the user-friendly interface and visual feedback

mechanism proved pivotal in aiding users from diverse

technical backgrounds in understanding and interpreting the

results. This not only ensures the accessibility of the system

but also enhances its usability.

Here are some of the pictures of the results:

Fig 4. User Interface

Fig 5. Output / Result

Table 2. Comparative Analysis of Code Originality

Systems: Existing vs. Implemented Features

Feature
Existing

System

Implemented

System

Code

Similarity

Detection

Limited or

absent

detection of

code

similarities

Highly

promising

results with

effective

detection

Comparison

Algorithms

May lack

diverse

algorithms

for code

analysis

Utilizes token-

based, tree-

based, and

text-based

approaches

Handling

Large

Codebases

Limited

efficiency in

processing

large

codebases

Robust

handling of

large

codebases

without

compromising

responsiveness

Real-time

Detection

Absence of

real-time

code

plagiarism

detection

Achieves real-

time detection

and analysis of

code

plagiarism

User

Interface

Possibly

lacks a user-

friendly

interface

Provides a

user-friendly

interface with

graphical

representation

Visual

Feedback

Mechanism

May lack

visual

feedback for

result

interpretation

Incorporates a

visual

feedback

mechanism for

effective

interpretation

Versatility

of

Algorithms

Limited

emphasis on

versatile

algorithm

integration

Recognizes

the importance

of integrating

multiple

algorithms for

comprehensive

analysis

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 209–215 | 214

Usability

and

Accessibility

Usability and

accessibility

might be a

concern

Ensures

accessibility

and usability

for users with

diverse

technical

backgrounds

5. Conclusion

The development and evaluation of the Code Originality

System represent a significant stride in ensuring code

integrity and upholding the standards of ethical software

development. This system provides a robust solution to

identify and address code similarities within a given

codebase. The research and implementation phase illustrated

the system's capability to effectively detect instances of code

plagiarism. By conducting a comparative examination

employing diverse similarity measurement techniques such

as token-centric, text-based and many tree-based algorithms,

the system showcased its adaptability in detecting both

nuanced and substantial resemblances among code

segments. Moreover, the user interface and visual

representation of code similarities facilitated a clear

understanding of the analysis results. This accessibility not

only enhances the system's user-friendliness but also ensures

its practicality for users across different levels of technical

proficiency. The successful integration of the system into the

software development lifecycle offers substantial benefits.

Its ability to handle large codebases and concurrent

submissions while maintaining real-time analysis and

feedback is a testament to its robustness. The Code

Originality System not only addresses current plagiarism

detection requirements but also paves the way for future

advancements. The potential for cross-language plagiarism

detection and the provision of an embedded code editor for

real-time plagiarism checks during the coding process holds

promise for further system enhancement.

References

[1] Cosma G, Joy M. Source-code plagiarism: A UK

academic perspective. In: The 7th Annual Conference

of the HEA Network for Information and Computer

Sciences. HEA Network for Information and

ComputerSciences; 2006.

Cosma G, Joy M. Towards a definition of source-code

plagiarism. IEEE Trans Educ. 2008;51(2):195–200.

[2] Culwin F, MacLeod A, Lancaster T. Source Code

Plagiarism in UK HE Computing Schools, Issues,

Attitudes, and Tools. South Bank University, London;

2001.

[3] Đurić Z, Gašević D. A source code similarity system

for plagiarism detection. Comput J. 2013;56(1):70–86.

[4] Joy M, Cosma G, Yau JY-K, Sinclair J. Source code

plagiarism – a student perspective. IEEE Trans

Educ.2011;54(1):125–132.

Hage J, Rademaker P, Vugt N. A Comparison of

Plagiarism Detection Tools. Department of

Information and Computing Sciences, Utrecht

University. 2014.

[5] Joy M, Luck M. Plagiarism in programming

assignments. IEEE Trans Educ. 1999;42(2):129–133.

[6] Lancaster T. Effective and Efficient Plagiarism

Detection. PhD Thesis, South Bank University,

London; 2003.Availablefrom:

http://www.academia.edu/168972/Effective_and_Effi

cient_Plagiarism_Detection

[7] Lancaster T, Culwin F. Using freely available tools to

produce a partially automated plagiarism. In: Proc. of

the 21st ASCILITE Conference, Perth, Australia;

2004. p. 520–529.

[8] Wang C, Xu H, Zhang D. Copyright issues in code

similarity detection: An empirical study on GitHub. In:

Proceedings of the 28th ACM International

Conference on Information and Knowledge

Management.ACM;2019.

[9] Burrows S, Tahaghoghi SMM, Zobel J. Efficient

plagiarism detection for large code repositories. Softw

Pract Exper. 2007;37(2):151–175.

[10] Lancaster T, Culwin F. Classifications of plagiarism

detection engines. Innov Teach Learn Inf Comput Sci.

2005;4(2).

[11] Mozgovoy M. Desktop tools for offline plagiarism

detection in computer programs. Informatics Educ.

2006;5(1):97–112.

[12] Mozgovoy M, Fredriksson K, White D, Joy M, Sutien

E. Fast plagiarism detection system. In: SPIRE’05,

Buenos Aires, Argentina; 2005. p. 267–270.

[13] Prechelt L, Malpohl G, Philippsen M. Finding

plagiarisms among a set of programs with JPlag. J

Universal Computer Sci. 2002;8(11):1016–1038.

[14] Prechelt L, Malpohl G, Phlippsen M. Finding

Plagiarisms Among a Set of Programs. Universität

Karlsruhe, Fakultültät für Informatik; 2000. Available

from: http://page.mi.fu-

berlin.de/~prechelt/Biblio/jplagTR.pdf

[15] Saini R, Sukhwani A, Ghose AK. Code plagiarism

detection using machine learning techniques. Int J

Comput Appl. 2017;178(41):22–28.

[16] Lavesson N, Samuelsson C. A survey of privacy in

code analysis. J Privacy Confidentiality. 2018;9(2).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 209–215 | 215

[17] Martin B. Plagiarism: a misplaced emphasis. J Inf

Ethics. 1994;3(2):36–47.

[18] Ahtiainen A, Surakka S, Rahikainen M. Plaggie:

GNU-licensed source code plagiarism detection

engine for Java exercises. In: Baltic sea ’06; 2006. p.

141–142.

[19] Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L.

Clone detection using abstract syntax trees. In:

ICSM’98; 1998. p. 368–377.

[20] Fowler M. Catalog of refactorings. 2013. Available

from: https://refactoring.com/catalog/

[21] Kamiya T, Kusumoto S, Inoue K. CCFInder: a

multilinguistic token-based code clone detection

system for large scale source code. Trans Softw Eng.

2002;28(7):654–670.

[22] Kapser C. Godfrey m: Cloning considered harmful”

considered harmful. In: 2006 13th working conference

on reverse engineering; 2006. p. 19–28.

[23] Udupa SK, Debray SK, Madou M (2005)

Deobfuscation: reverse engineering obfuscated code.

In: WCRE ’05, pp 45–56

[24] United States District Court (2011) Oracle America,

Inc. v. Google Inc., No. 3:2010cv03561 – Document

642 (N.D. Cal. 2011).

