

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 216

Efficiency-Enhanced Densenet Architectures: An Exploration of Multi-

Kernel, Multi-Branch Structures for Achieving Optimal Trade-Off

Between Parameters and Accuracy

Shaikh Abdus Samad Shaikh Aga Mohammad1, Gitanjali J.*2

Submitted: 25/01/2024 Revised: 03/03/2024 Accepted: 11/03/2024

Abstract: In this work, we present intricately woven investigative one-layer structure designs for the Dense-Block of the DenseNet,

intending to improve performance in visual recognition tasks. Developing a robust representation for accurate visual recognition is a critical

challenge that requires more than just increasing the depth and width of neural networks. Therefore, we have devoted significant effort to

developing new One-Layer Structures (OLSs) for the Dense-Block. Our proposed OLSs are comprising multiple branches of stacks of 1×1,

3×3, and 5×5 convolutional layers. We recommend replacing the standard OLS of Dense-Block with one of these proposed OLSs. Our

proposed OLSs are lightweight, simple, and optimally arranged, making them an ideal choice for optimizing network performance. We

organized them into three families: 1.0 and 1.1, 2.0 to 2.3, and 3.0 to 3.3. To evaluate the effectiveness of our proposed models, we conduct

experiments on the three benchmark datasets: Imagenette, CIFAR-10, and CIFAR-100. The investigation of DenseNet models enhanced

with OLSs up to version 3.3 provides a nuanced understanding of the intricate relationship between model complexity, computational

efficiency, and accuracy. Through meticulous analysis on multiple datasets, a consistent pattern of parameter and FLOP reduction is

observed, indicating progressive refinement in model architecture. OLS 2.X versions achieve accuracy values ranging from 94.84% to

95.31% on CIFAR-10, 80.33% to 80.69% on CIFAR-100, and 93.325% to 93.478% on Imagenette demonstrating that the integration of

OLSs contributes positively to model performance.

Keywords: One-Layer Structure, DenseNet, Dense-Block, Optimized Network, Convolutional Neural Network

1. Introduction

Convolutional Neural Networks (CNNs) have recently

achieved impressive breakthroughs in a diverse range of

computer vision tasks and have excelled beyond the

numerous conventional feature-driven approaches in this

realm. Its remarkable capability of extracting underlying

nonlinear structures of image data is the basis upon which

deep CNN is successful in image/video analytics. For

increasing the performance of CNN models, the two most

widely used steps are increasing the depth and width of the

network (in terms of the number of layers and feature maps

at each layer respectively) and using more training data if

feasible. In the meantime, efforts have been made to

minimize the number of floating-point operations (FLOPs)

and the number of model parameters. Especially when the

model has many layers, designing architectures becomes

more intricate as more hyperparameters are added, such as

kernel size or filter size, activation function, stride, learning

rate, etc.

The VGG [1] network, characterized by its simplistic yet

effective architecture consisting of stacked convolutional

layers, ReLU [2] activation functions, and a limited number

of pooling layers, has proven to be a seminal CNN model in

the field of image recognition. In recent years, there has

been a trend toward increasing the depth of CNNs.

However, this increase in depth also leads to optimization

and learning challenges and does not always result in better

performance. Therefore, research has shifted towards the

development of well-architected models such as Inception

[3][4][5], ResNet [6], and DenseNet [7], which have been

able to achieve high accuracy with fewer parameters.

Empirical evaluations on a wide range of visual recognition

tasks [6][8][9][10][11][12][13] have demonstrated the

robustness of VGG networks, DenseNets, and ResNets.

It was noted that better performance of a model in image

classification tasks would likely be transferred into quality

improvements in a diverse spectrum of other vision

applications. So, incorporating architectural improvements

in deep CNN architectures helps to elevate the quality of

other computer vision tasks that are strongly reliant upon

high-quality, learnable features. In VGGNet, layers are

stacked on top of each other, which results in a volumetric

number of parameters. If convolutional layers are simply

stacked on top of one another, the gradients of the layers

start losing their intensity. ResNets and DenseNets are

designed to assist in solving the vanishing gradient problem

with novel skip connection strategies. Through the

development of carefully designed topologies, the Inception

model family has demonstrated its ability to deliver high

1 Vellore Institute of Technology, Vellore – 632014, Tamil Nadu, INDIA

ORCID ID : 0009-0001-8908-9683
2 Vellore Institute of Technology, Vellore – 632014, Tamil Nadu, INDIA

ORCID ID : 0000-0002-2296-800X

* Corresponding Author Email: gitanjalij@vit.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 217

accuracy at low theoretical complexity. It has been common

practice in Inception models to split layers into multiple

branches, transform them, and then merge them. Inception

modules make use of 1×1 convolution to reduce the number

of channels of input volume of split branches. The output of

lower-dimensional embedding is then transformed using

different size filters, such as 3×3 and 5×5. It then merges the

outputs of the branches by concatenating them. Modules for

Inception will be able to approximate dense and large layers

with the same degree of representational power at a lower

computational complexity by splitting, transforming, and

merging.

In this work, we present the ten meticulously woven

alternate one-layer structures that inherit the properties of

the Inception model into DenseNet which utilizes the easy-

to-implement split-transform-merge approach of Inception.

Our approach is simple: we distribute input to multiple

branches and aggregate the features which are transformed

with different and similar topologies. A large number of

transformations can be carried out with this design without

requiring any specialized layers. In the proposed models, a

simplified version of Inception like modules is used in a

Dense-Block where it does not contain a max pool layer and

a direct layer with the convolution of 1×1 filters. We make

use of 3×3 and 5×5 filters in the proposed models. In some

of the proposed models, we employ two consecutive 3×3

filters to replace one 5×5 filter. The same receptive field can

be covered by two consecutive 3×3 filters as by one 5×5

filter. The section 3 discusses the ten proposed instances of

split-transform-merge approach modules in Dense-Block

that are used as the replacement structure strategies for One-

Layer. Figure Fig. 1 shows the standard OLS of a Dense-

Block. Although there are a few methods that increase

accuracy while maintaining (or reducing) complexity while

going deeper and wider, it is far easier to increase accuracy

by enhancing capacity, since capacity can increase accuracy

simultaneously. The methodology adopted in our study

reveals that the distribution of input across two or four

branches within a Dense-Block is a significant and concrete

dimension, in addition to the established dimensions of

length and width. Empirical investigations conducted

demonstrate that, in terms of accuracy, bifurcating a layer

within a Dense-Block into two or four branches, as opposed

to mere depth augmentation, leads to superior accuracy

outcomes.

In summary, we have made the following contributions:

We propose an intricately constructed split-transform-

merge strategy for One-Layer of the Dense-Block of

DenseNet, which leads to improved performance of the

network. Specifically, we present ten exquisitely knit

methodological OLS designs that are divided into three

families.

We adopt a multi-branch topology in the development of our

architectures, which includes multi-scale convolutions with

kernel sizes of 1×1, 3×3, and 5×5. This approach allows for

a more extensive feature space, as it includes different

receptive fields and multiple paths of varying complexity.

To evaluate the effectiveness of our proposed architectures,

we conducted extensive experiments on various benchmark

datasets. The results of our experiments confirm that

DenseNet with some of our proposed OLSs outperforms the

standard DenseNet in terms of accuracy with fewer

parameters.

Our study demonstrates that our OLS with a cardinality

(number of simultaneously occurring transformations) of

two and four for Dense-Block is superior to the standard

DenseNet despite having fewer parameters and reduced

complexity. OLS 2.0 and 2.1, for instance, are designed to

keep the number of parameters and FLOPs complexity low.

Although capacity (depth or width of the model) can raise

accuracy quite easily, it is rather difficult to achieve the

desired result while simultaneously reducing complexity (or

keeping it the same).

We demonstrate that more use of 1×1 convolution can

provide a means to improved accuracy. For example, OLSs

from 3.0 to 3.3 show how to utilize more use of 1×1

convolution in the model.

Our neural networks outperform several other CNN models

[6][7][14][15]. Proposed OLSs of the second family from

2.0 to 2.3 are exceptionally effective in achieving

comparable accuracy with fewer parameters. Third-family

models achieve better accuracy but with few extra

parameters.

2. Related Work

Improved network architecture designs are the most

effective means of improving deep network processing

efficiency. By designing network architecture, one aims to

describe backbone structures that can be used to improve

performance between a wide range of tasks. The measure of

the efficiency of architecture is the accuracy of

classification on Imagenette and CIFAR datasets, in

addition to other criteria.

Lightweight CNN architectures with efficient building units

are introduced to improve deep network processing

efficiency. In MobileNets and recent variations [16][17], the

design of network architecture is based on linear bottlenecks

and inverted residuals. In MobileNeXt [18], Sandglass

blocks are created by reversing their inverted residuals. It is

the cheap operation that is used in GhostNet [19] to create

novel feature maps. Moreover, ShuffleNet [20][21] and

CondenseNet [22] both employ shuffle layers along with

Learned Group Convolutions (LGC) for generating new

feature maps, respectively. Acknowledging the potential

trade-off in accuracy, it is worth noting that these models

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 218

are designed to be parameter-efficient so that they can be

deployed on hardware with limited resources. Their focus

on efficiency may result in some compromise in accuracy.

In order to make CNNs as accurate as possible, spatial

attention and channel attention are usually incorporated into

the network. A feature map for SK-Net [23] is built in such

a way that it incorporates a feature-based attention

mechanism across parallel branches of the network.

Applications that have been successful in the past that make

use of attention modules include image classification

[24][25], image captioning [26], face verification [27],

semantic segmentation [28][29], and video frame

interpolation [30]. Models with attention modules result in

additional parameters.

Various modules can be applied to existing architecture

networks to enhance their performance, such as

normalization modules [31], attention modules [32], group

convolution [33], and skip connection strategy [6].

Normalization can be done in several different ways, and

batch normalization [31] is the most common. In most deep

learning models, this is the default method used to improve

performance as well as speed up convergence time.

Moreover, random sampling contributes to improved

generalization capability in batch normalization. It is

important to note that while these techniques have shown

promise in improving performance, achieving optimal

performance in machine learning is an ongoing endeavour.

Many studies have been conducted on deep neural networks

aimed at reducing the computational cost of these networks.

Researchers have focused on pruning non-essential

connections in neural networks in order to reduce

computational costs [34][35][36] since these networks

contain a significant amount of redundant information.

Quantization [37][38], on the other hand, focuses on

reducing the memory usage and bit-width of floating-point

weights. These techniques can be applied post-training of a

model and it can be time and resource consuming.

Researchers have begun to look at systematically searched

neural networks instead of manually designed ones, due to

increased processing power. By utilizing neural architecture

search (NAS) convolutional neural networks

[39][40][41][42][43] are capable of providing improved

performance, however, they consume an enormous amount

of computing resources. Manually designing [44] the CNN

network space would require a great deal of manpower.

A deep neural network (DNN) can be re-parameterized in a

way that has no residual connections in the network. Re-

parameterization [45][46] refers to the process of replacing

the parameters of a structure with those of another set of

parameters. It is the case that the residual connections are to

be removed at inference based on a re- parameterization

process after the network with residual connections is

trained. RepVGG [47] is a CNN model that resembles a

multi-branch network, which can be transformed into a

VGG-like model. Structural re-parametrization can be used

to do so with stacks of 3×3 convolutions successively with

ReLU. At inference, it produces the same results. The

simplicity of RepVGG, while advantageous in many

contexts, may be suboptimal for highly challenging tasks,

such as training exceptionally deep neural networks.

3. Proposed One-Layer Structures

The present research study employs a network design

pattern that bears close resemblance to DenseNet, using

aesthetically similar configured components. To build the

model, we employed multiple Dense-Blocks in conjunction

with a transition layer. Our objective was to create a model

that is more accurate, with fewer parameters, by presenting

precisely intertwined designs of layers for one One-Layer of

a Dense-Block. Our work presents sophisticated design

approaches for the one-layer structure of a Dense-Block

concerning two key factors: 1) To enhance the one-layer

structure's exposure to a dual receptive field, our approach

incorporates two kernel sizes - 3×3 and 5×5. The former

maintains familiarity with the standard receptive field, while

the latter provides access to an expanded receptive field.

This duality in receptive field sizes enables the model to

capture both fine-grained and larger contextual information,

thereby enhancing its ability to comprehend complex data.

2) We propose parallelizing the convolution operations

within the one-layer Dense-Block by using 3×3 and 5×5

kernel sizes. This strategic approach coordinates these

operations in two and four parallel branches, allowing the

model to benefit from both 3×3 and 5×5 convolutions

simultaneously. This fosters a more nuanced and

comprehensive feature extraction process, resulting in more

effective and efficient operations.

Fig 1. Standard OLS of Dense-Block. 'K' in the figure

refers to the growth rate.

3.1. Revisiting One-layer structure of DenseNet

Traditional CNN models typically have no more than one

connection with the adjacent upper and adjacent lower

layers. DenseNet is made up of multiple Dense-Blocks and

a transition layer in between every two Dense-Blocks. In a

Dense-Block, every layer gets input information from all the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 219

previous layers. Within this context, information refers to

feature maps. In a Bottleneck Dense-Block, information

received from all the preceding layers goes through Batch

Normalization (BN), then Rectified Linear Unit (ReLU),

and then a convolutional layer with 1×1 kernel size which

produces 4×k feature maps. Here k is the 'growth rate' which

denotes the number of newly generated feature maps. For

all our proposed OLSs, we fixed the value of k=32. These

4×k feature maps then go through BN, ReLU, and 3×3

convolutional layer which produces only k feature maps. All

these operations take place within a Dense-Block, which is

considered to be one-layer. The standard OLS of the Dense-

Block is depicted in the figure Fig. 1.

To evaluate the effectiveness of our proposed OLSs in

reducing the number of learnable parameters and

computations, we must first determine the parameter and

multiplication count of the original OLS. This analysis will

provide a baseline for comparison with our proposed

approach, allowing us to quantify the extent of parameter

and computation reduction achieved by our proposed OLSs.

The original OLS gets m number of input feature maps at

1×1 convolutional layer and generates 4×k feature maps.

Kernel width and height are denoted by w and h. So, the total

number of learnable parameters at this layer is given by the

equation:

𝑚 × 4 × 𝑘 × ℎ × 𝑤 (1)

as w and h are 1, therefore it becomes: 4×m×k. The 4×k

feature maps generated by 1×1 convolutional layer is then

fed to 3×3 convolutional layer which in turn produces k

feature maps. Then the number of learnable parameters 3×3

convolutional layer is given as:

𝑚 × 𝑘 × 𝑘 × ℎ × 𝑤 (2)

Here h and w both are 3, so the total number of learnable

parameters at this layer is given as 36×k2. So total number

of learnable parameters for standard OLS can be calculated

as:

4 × 𝑚 × 𝑘 + 36 × 𝑘2 = 4𝑘(𝑚 + 9𝑘) (3)

The number of multiplications occurring in standard OLS

can be calculated as filter size multiplied by the output

dimensions of generated feature maps. One filter volume

size can be calculated as h×w×m. For 1×1 convolutional

layer, volume size is 1×1×m. For 3×3 convolutional layer

volume size can be calculated as h×w×4×k, but here h=3

and w=3, therefore, the filter volume size for 3×3

convolutional layer is 36×k. Dimension of generated feature

maps after convolved with 1×1 convolutional layer is given

as:

4 × 𝑘 × 𝐻 ×𝑊 (4)

where H and W are the height and width of generated feature

maps respectively. Because values of H and W are the same,

therefore, the dimension of generated feature maps is

4×k×H2. Dimensions of generated feature maps after

convolved with 3×3 convolution is given as 36×k×H2.

Therefore, total number of multiplications needed after 1×1

convolution are:

4 × 𝑘 × 𝐻2 (5)

and total number of multiplications needed after 3×3

convolution are:

36 × 𝑘2 × 𝐻2 (6)

For the remaining parts of this paper, we will continue using

the same notations to calculate the total number of

parameters and the total number of multiplications for the

proposed OLSs as we have done here.

Table 1. Comparison of the total number of parameters

and the total number of multiplication operations required

for standard and proposed OLSs of Dense-Block. ‘k’ is the

growth rate of feature maps. ‘m’ is input feature maps to

OLS. ‘H’ is the height of generated feature map.

Model

Family

Total

Parameters

Total Multiplications

Standard

OLS

4k(m+9k) 4kH2(m+9k)

OLS 1.0 4k(m+17k) 4kH2(m+17k)

OLS 1.1 4k(m+14.625k) 4kH2(m+14.625k)

OLS 2.0 4k(m+8.5k) 4kH2(m+8.5k)

OLS 2.1 4k(m+7.87k) 4kH2(m+7.87k)

OLS 2.2 4k(m+4.25k) 4kH2(m+4.25k)

OLS 2.3 4k(m+3.938k) 4kH2(m+3.938k)

OLS 3.0 4k(m+17.25k) 4kH2(m+17.25k)

OLS 3.1 4k(m+11.5k) 4kH2(m+11.5k)

OLS 3.2 4k(m+17.25k) 4kH2(m+17.25k)

OLS 3.3 4k(m+13.75k) 4kH2(m+13.75k)

Fig 2. Proposed OLS 1.0 (left) and OLS 1.1 (right).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 220

Fig 3. Proposed OLS 2.0 (right) and OLS 2.1 (left).

3.2. OLS 1.0 and OLS 1.1 (first family)

We employ the two key factors described in section 3 to

design the one-layer structure for Dense-Block. In this

proposed design, the cardinality of parallelism is two.

Hereafter, we refer to cardinality as the degree of parallel

layers in a one-layer structure. Figure Fig. 2 (left) depicts

the first proposed one-layer structure. This OLS is referred

to as 'OLS 1.0'. The first 1×1 convolution operation here

generates 4×k (4k) feature maps. As mentioned earlier here

the cardinality is two, therefore we have two parallel

branches of convolution operations operating on 4k feature

maps. One with

Fig 4. Proposed OLS 2.2.

3×3 kernel size and another with 5×5 kernel size. Each

branch generates k/2 feature maps. The input feature maps

to this OLS are then concatenated with the output of these

two branches. We mentioned in the previous section that

whenever we refer to input feature maps being processed

through convolutional layers, this means they have passed

through BN and ReLU processes prior to being processed

through convolutional layers. We have followed this series

of sequential operations throughout our proposed OLSs.

The total learnable parameter counts and multiplication

count required by OLS 1.0 are mentioned in the Table 1.

Fig 5. Proposed OLS 2.3.

Another model in this family, namely 'OLS 1.1', is proposed

as a further extension of OLS 1.0. In the 'OLS 1.1', figure

Fig. 2 (right), we propose to use two consecutive 3×3

convolutional layers instead of one 5×5 convolutional layer.

The two consecutive convolutional layers of 3×3 kernel

sizes cover the same receptive field as one 5×5 kernel.

Comparing two consecutive 3×3 kernels to one 5×5 kernel

has two advantages. The first advantage is that it requires

fewer parameters, and the second is that it involves fewer

computations.

The total learnable parameter counts and multiplication

count required by OLS 1.1 are mentioned in the Table 1. It

is evident that the structure of OLS 1.1 is lighter than the

structure of OLS 1.0.

3.3. OLS 2.0, 2.1, 2.2, and 2.3 (second family)

It is quite evident from the proposed OLS 1.0 and OLS 1.1

that the number of parameters and computing operations is

significantly greater than with the original DenseNet's OLS

as a basis for comparison. We propose an evolving second

family of one-layer structures for Dense-Block with

cardinality two and four that is cost-effective, comparatively

accurate, and lightweight. As shown in figure Fig. 3, OLS

2.0 and OLS 2.1 are configured in a simplified one-layer

structure. The received feature maps are processed in

parallel on two distinct pathways. In every first branch, they

are passed through a convolutional layer of kernel size 1×1.

The 2k feature maps are produced separately for each of the

1×1 convolutional layer on two parallel processing lines. In

the structure of OLS 2.0, the output feature maps of 1×1

convolutional layer from the first branch are further

processed by stacking a 3×3 convolution layer, an operation

that generates k/2 feature maps. It is in the second branch

that the output feature maps of the 1×1 convolutional layer

are further processed with a 5×5 convolutional layer. This

also results in the output of k/2 feature maps. Afterward,

output feature maps of this OLS are generated by

concatenating feature maps made from the two branches and

the received input feature maps to this OLS. In the structure

of OLS 2.1, we essentially maintained the first branch of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 221

OLS 2.0. However, we replaced one 5×5 convolution with

two 3×3 convolutional layers in the second branch. The

output features from the 1×1 convolutional layer of the

second branch is passed through the first 3×3 convolutional

layer that produces 1k feature maps. The k/2 feature maps

are then created using the second 3×3 convolutional layer

with the intent of enriching these feature maps. To generate

output feature maps, feature maps from the two branches

and actual input feature maps received to this OLS are

concatenated. Based on the calculations in Table 1, we

conclude that these two structures are lighter than the

structures of the first proposed family, as indicated by their

lower number of learnable parameters and multiplications.

To make them more lightweight and enhance these OLSs

further, we modelled two more one-layer structures in this

family where cardinality is set to four. In the proposed

model for OLS 2.2, all four parallel 1×1 convolutional

layers process input feature maps and produce k feature

maps. Parallel 3×3 convolutional layers from 2 left branches

process k input feature maps independently, generating k/4

feature maps for each branch. Likewise, the remaining two

parallel 5×5 convolutional layers from the right branches

process k feature maps individually and generate k/4 feature

maps for each branch. The output feature maps are

generated by concatenating feature maps from all four

branches and the input feature map received at this OLS.

Figure Fig. 4 illustrates these details of the OLS 2.2

structure in a clear and concise manner. Later, an enhanced

version of OLS 2.2 is developed, namely OLS 2.3, in which

the 5×5 convolutional layer from OLS 2.2 model is broken

down into two successive 3×3 convolutional layers. The

first 3×3 convolutional layer generates k/2 feature maps and

the second 3×3 convolutional layer generates k/4 feature

maps. This OLS is outlined in figure Fig. 5. Our calculations

over these two structures, as presented in the Table 1, show

that OLS 2.2 and OLS 2.3 have lighter structures than the

previous ones, as demonstrated by their lower number of

learnable parameters and multiplications.

3.4. OLS 3.0, 3.1, 3.2, and 3.3 (third family)

We have designed four further new OLSs, labelled OLS 3.0

to OLS 3.3. These are enhanced versions of the OLSs

ranging from 2.0 to 2.3. Two of the structures have a

cardinality of two, while the other two have a cardinality of

four. Models 3.0 and 3.1 are implemented as one-layer

structures similar to those of 2.0 and 2.1 respectively with a

single additional layer before the concatenation of feature

maps. That additional layer is a 1×1 convolutional layer in

each pathway. Figure Fig. 6 illustrates the one-layer

structure designs for OLS 3.0 and OLS 3.1. Similarly, one-

layer structure designs of models 3.2 and 3.3 are developed

as those of 2.2 and 2.3

Fig 6. Proposed OLS 3.0 (left) and OLS 3.1 (right).

respectively, with an additional one 1×1 convolutional layer

in each branch. The illustration of OLS 3.2 and 3.3 are

depicted in figures Fig. 7 and Fig. 8 respectively.

Comparison of total required parameters and total

multiplication operations by all these OLSs are presented in

the Table 1.

Fig 7. Proposed OLS 3.2.

Fig 8. Proposed OLS 3.3.

3.5. Architecture designs

We used the same design architecture framework as the

original DenseNet-BC except for some minor modifications

in layers and growth rate. The growth rate of every model is

fixed at 32 (k=32). We developed our first three families of

models for the CIFAR dataset where the input shape is

32×32×3. A second three families of models have been built

for the Imagenette dataset, which has an input shape of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 222

224×224×3. Models for CIFAR-10 and CIFAR-100 are

almost identical with the exception of the last layer. The

output layer of the CIFAR-10 model has 10 neurons, while

the output layer of the CIFAR-100 model has 100 neurons.

Models for a 32×32×3 input shape composed of three

Dense-Blocks. There are 6, 12, and 24 one-layer structures

within each Dense-Block. Two consecutive Dense-Blocks

are separated by an intermediate layer called a transition

layer. Any of the OLSs that we proposed could be used as

the one-layer structure. Table 2 has the details of the model

for 32×32×3 shape of inputs. In the case of the input shape

224×224×3, there are initially two convolutional layers

followed by four Dense-Block layers. Each Dense-Block

contains 6, 12, 24, and 18 one-layer structures. From our

proposed designs, we can use any one of the OLS. In

addition to this, there is a transition layer in between each

set of consecutive dense blocks. The transition layer consists

of one 1×1 convolutional layer and a 2×2 average pool layer.

Architectural details for input shape 224×224×3 is

mentioned in the Table 3.

Table 2. Architecture details for CIFAR-10 and CIFAR-

100. 'D' is the depth of a model. 'OLS' stands for 'one-layer

structure'. 'P' denotes padding and 'S' denotes stride.

Layers Output Size
k=32,

D=47

Convolution 32 × 32

3 × 3

Conv,

P=1,

S=1

Dense

Block–1
32 × 32

Proposed

OLS × 6

Transition

Layer–1
16 × 16

1 × 1

Conv, 2

× 2 Avg.

Pool

Dense

Block–2
16 × 16

Proposed

OLS ×

12

Transition

Layer–2
8 × 8

1 × 1

Conv, 2

× 2 Avg.

Pool

Dense

Block–3
8 × 8

Proposed

OLS ×

24

Average Pool 1 × 1

Global

Average

Pooling

Classification

Layer

10-D or 100-D fully

connected linear layer

Table 3. Architecture details for Imagenette. 'D' is the

depth of a model. 'OLS' stands for 'one-layer structure'. 'P'

denotes padding and 'S' denotes stride.

Layers Output

Size

k=32, D=47

Convolution 112 ×

112

7 × 7 Conv, P=3, S=2

Convolution 56 × 56 7 × 7 Conv, P=3, S=2

Dense Block–1 56 × 56 Proposed OLS × 6

Transition Layer–

1

28 × 28 1 × 1 Conv, 2 × 2 Avg.

Pool

Dense Block–2 28 × 28 Proposed OLS × 12

Transition Layer–

2

14 × 14 1 × 1 Conv, 2 × 2 Avg.

Pool

Dense Block–3 14 × 14 Proposed OLS × 24

Transition Layer

– 3

7 × 7 1 × 1 Conv 2 × 2, Avg.

Pool

Dense Block – 4 7 × 7 Proposed OLS × 18

Average Pool 1 × 1 Global Average

Pooling

Classification

Layer

10-D fully connected linear layer

4. Experimental Results

4.1. Datasets

4.1.1. CIFAR-10 & CIFAR-100

CIFAR-10 [48] dataset consists of 10 class types and 60000

RGB images of a 32×32 resolution, which is broken down

into training data and testing data. There are a total of 50,000

images in the training dataset, while the rest of the images

appear in the testing dataset. A CIFAR-100 dataset [48] also

consists of 50,000 training images and 10,000 test images

distributed across 100 categories within the dataset. For the

purposes of augmentation, the input images were cropped

into 32×32 squares and horizontally flipped as part of the

process. Images are cropped at random from the input

images after they have been padded by four pixels.

4.1.2. Imagenette

Images in the Imagenette [49] dataset, a subset of the

ImageNet dataset, are classified into ten categories (classes).

Each of the ten categories in the Imagenette consists of

approximately 950 images. A total of 9469 images were

used for the training set, while 3925 were used for the

validation set, and all of them have been grouped into 10

categories. There are approximately 400 images in each

category of the Imagenette in the validation set. We have

applied the techniques that were used in the papers [6,50,51]

in order to enhance training images in this work. We applied

a center crop of 224×224 pixels to our dataset in order to test

the efficiency of our model for test data. The presence of

color jitter on the training set is determined by adjusting a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 223

jitter value of 0.4. It randomly adjusts brightness, contrast,

and saturation. As a regularization technique, a label

smoothing technique using an epsilon of 0.1 is employed.

4.2. Experiments on CIFAR-10, and CIFAR-100

Dense-Block includes one of the proposed OLSs, creating

10 models with different configurations. In order to

demonstrate the progressive innovation of our model with

respect to the original DenseNet, we have conducted

extensive experiments with our proposed models. Our

networks are first trained on the CIFAR-10 dataset. We used

Stochastic Gradient Descent (SGD) as an optimization

method to train all the models. The momentum value is set

to 0.9. All the models have been trained for 200 epochs.

Cosine Annealing has been used for scheduling the learning

rate, and initially, the learning rate is set to 0.1. The value

for weight decay is 0.0001. Weight matrices are initialized

as per the recommendation of this [52] paper. Mini-batch

size is 64 for all the models. The same hyper-parameters and

training strategy we used for models designed for the

CIFAR-100 dataset. To ensure a fair comparison, the

original DenseNet model was also trained under an identical

training process. In consequence, the original performance

was marginally downgraded. In both datasets, the validation

set was used to evaluate the models.

4.3. Experiments on Imagenette

The architecture specifications for the Imagenette dataset as

an input to our model are mentioned in the Table 3. Any one

of the proposed OLSs of the same type can be incorporated

into that. Therefore, ten different models are possible. Each

of these models was trained using SGD. The momentum

value is 0.9. We trained all the models for 310 iterations, 10

of which were chosen as cool-down epochs. We used these

10 epochs to achieve stability of the learning rate at a

minimum value. For weight decay, this value is 0.00002.

There are 64 samples in a mini-batch. We are using a cosine

annealing learning rate scheduler with an initial learning

rate value of 0.05. Kernel weight matrices are initialized

with the values suggested by the [52] paper.

Fig 9. Train and Test set accuracies on CIFAR-10 of

DenseNet with OLS 1.0, OLS 1.1, and standard DenseNet.

4.4. Experimental results

4.4.1. Results on CIFAR-10

DenseNet, the state-of-the-art architecture in computer

vision, serves as the benchmark base model for our

proposed models. With k=32 and 4.36 million parameters,

DenseNet demonstrates an accuracy rate of 94.99% on the

CIFAR-10 benchmark dataset. In an effort to surpass the

performance of DenseNet, we proposed the

Fig 10. Train and Test set accuracies on CIFAR-10 of

DenseNet with OLS 2.0 to OLS 2.3, and standard

DenseNet.

first model of our family, designated as 'DenseNet with OLS

1.0', which incorporated additional parameters, specifically

a total of 5.74 million parameters. Through extensive

experimentation and evaluation, DenseNet with OLS 1.0

achieved an accuracy rate of 95.56%, surpassing the

performance of the base model. However, we recognized

that the number of parameters can have a significant impact

on the overall efficiency of the model. Therefore, the second

model DenseNet with OLS 1.1 incorporated a reduced

number of parameters, specifically a total of 5.33 million

parameters. Despite the reduction in parameters, DenseNet

with OLS 1.1 achieved an accuracy rate of 95.53%, which

is comparable to the accuracy of DenseNet with OLS 1.0

and higher than the base model DenseNet. Fig. 9 shows the

learning curves of DenseNet and DenseNet with OLS 1.0,

and 1.1.

The first two models in the second family, designated as

'OLS 2.0' and 'OLS 2.1', incorporate a unique architecture

with two parallel branches. Despite having a lower number

of parameters, specifically a total of 4.27 and 4.17 million

respectively, both models demonstrate a high level of

accuracy, achieving rates of 95.25% and 95.31%

respectively on the CIFAR-10 dataset. These results suggest

that a reduction in parameters may not necessarily result in

a decrease in performance and may even potentially lead to

improved accuracy.

In an effort to further optimize the performance of our

proposed models, we introduced the last two models in this

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 224

family, designated as 'OLS 2.2' and 'OLS 2.3'. These OLSs

incorporate a more complex architecture, with four parallel

branches. OLS '2.2' has 3.54 million parameters, while OLS

'2.3' has 3.49 million parameters. Both models achieved an

accuracy rate of 94.84% and 94.98% respectively. While the

accuracy is marginally lower than the original DenseNet

model, the number of parameters is considerably lower as

well. In fact, OLS '2.3' has been proven to be almost as

accurate as the original DenseNet model. Graph Fig. 10

shows the learning curves of DenseNet with a second family

and standard DenseNet.

We proposed a third family of models to further investigate

the relationship between model architecture, number of

parameters, and accuracy. The first two models in this

family, incorporate a unique architecture with two parallel

branches, while the last two models have a more complex

architecture with four parallel branches. Despite having a

higher number of parameters than the original DenseNet

model and our earlier proposed models, all models within

this family achieved a remarkably high level of accuracy on

the CIFAR-10 dataset. These results are presented in the

Table 4 of our paper.

These results of proposed OLSs with DenseNet suggest that

an increase in the number of parameters does not necessarily

result in a decrease or saturation in performance and that the

architecture of the model plays a crucial role in determining

the accuracy of the model. Moreover, the high accuracy

achieved by these models, despite having more parameters

in the third family than the previous models, highlights the

potential of our proposed models to outperform the state-of-

the-art DenseNet model.

4.4.2. Results on CIFAR-100

The original DenseNet model achieves 80.53% accuracy on

CIFAR-100. The first family of proposed OLS models,

namely OLS 1.0, and OLS 1.1 achieves 81.07%, and

81.24% accuracy respectively. OLS 1.0 and OLS 1.1 exhibit

the same pattern of results as CIFAR-10, i.e., a greater

number of parameters than standard DenseNet, and a higher

level of accuracy. Among the first two models of the second

family, OLS 2.0 and OLS 2.1, provide improved accuracy

for fewer parameters than the original DenseNet. The next

two models from the same family, OLS 2.2 and OLS 2.3

achieve almost similar accuracy with considerably fewer

parameters than the original DenseNet model. In all four

models that are part of the proposed third family, OLS 3.0

to OLS 3.3, an improvement in accuracy is observed over

all the previously proposed models and the baseline

DenseNet model. Since the number of convolutions per 1×1

is higher in the third family, the parameters are higher as

well. All the results are shown in Table 4. The train and test

accuracy curves of DenseNet and DenseNet with the third

family are shown in the Fig. 11.

Table 4. Results on CIFAR-10 and CIFAR-100.

Model
Parameters

(Million)

FLOPs

(GMAC)

CIFAR-

10

Accuracy

CIFAR-

100

Accuracy

SWRN

28-10-1

[13]

12 - 95.99% 80.77%

WRN 28-

10 [13]
36 - 96% 80.75%

CCT-7 /

3 × 1

[12]

3.76 0.95 94.78% 77.05%

DenseNet 4.36 0.83 94.99% 80.53%

DenseNet

with OLS

1.0

5.74 1.19 95.46% 81.07%

DenseNet

with OLS

1.1

5.33 1.08 95.53 81.24%

DenseNet

with OLS

2.0

4.27 0.81 95.25% 80.60%

DenseNet

with OLS

2.1

4.17 0.79 95.31% 80.69%

DenseNet

with OLS

2.2

3.54 0.64 94.84% 80.33%

DenseNet

with OLS

2.3

3.49 0.62 94.98% 80.44%

DenseNet

with OLS

3.0

5.78 1.2 95.73% 81.72%

DenseNet

with OLS

3.1

4.8 0.95 95.45% 81.58%

DenseNet

with OLS

3.2

5.79 1.21 95.89% 81.78%

DenseNet

with OLS

3.3

5.19 1.06 95.58% 81.64%

Fig 11. Train and Test set accuracies on CIFAR-100 of

DenseNet with OLS 3.0, OLS 3.1, OLS 3.2, OLS 3.3, and

standard DenseNet.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 225

4.5. Results on Imagenette

Our empirical investigation on the Imagenette dataset has

yielded noteworthy findings, particularly in the context of

the ARViT [53] and SmoothNet [54] architectures. ARViT,

boasting a parameter count of 10 million, has demonstrated

an impressive accuracy level, reaching 92.05%. Conversely,

the reduction in parameter complexity within the

SmoothNet model has led to a diminished accuracy

performance, registering at 69.7%.

With 7.93 million parameters, the standard DenseNet model

on Imagenette achieves 92.7% accuracy. The proposed OLS

designs from each family achieve higher accuracy than

standard DenseNet; however, not all the models have fewer

parameters. The proposed models from the second family

have a much smaller number of parameters, especially

DenseNet with OLS 2.2 and DenseNet with OLS 2.3.

DenseNet with OLS 3.2 has 9.97 million parameters and

delivers 94.01% accuracy. In contrast, DenseNet with OLS

3.3 has 9.12 million parameters and achieves 94.36%

accuracy. Results are mentioned in the Table 5 and figure

Fig. 12 shows learning curves of test accuracies on

Imagenette. Figure Fig. 13 shows the trade-off between

number of parameters, number of floating-point operations,

and accuracies of the models. Figure Fig. 13 shows

GradCAM++ results with respective softmax scores of plain

DenseNet and DenseNet with second family of OLS.

Table 5. Results on Imagenette

Model Parameters

(Million)

FLOPs

(GMAC)

Imagenette

Accuracy

ARViT 10 - 92.05%

SmoothNet 3.4 - 69.7%

DenseNet 7.93 4.42 92.713%

DenseNet with OLS

1.0

9.9 5.54 93.936%

DenseNet with OLS

1.1

9.32 5.21 93.885%

DenseNet with OLS

2.0

7.808 4.37 93.427%

DenseNet with OLS

2.1

7.66 4.29 93.478%

DenseNet with OLS

2.2

6.76 3.83 93.325%

DenseNet with OLS

2.3

6.69 3.79 93.427%

DenseNet with OLS

3.0

9.97 5.59 94.166%

DenseNet with OLS

3.1

8.56 4.8 93.987%

DenseNet with OLS

3.2

9.97 5.64 94.013%

DenseNet with OLS

3.3

9.12 5.16 94.369%

Fig 12. Test accuracies of DenseNet with all the proposed

OLSs and standard DenseNet on Imagenette.

5. Observations

5.1. 3×3 and 5×5 kernel size in split branch

We employed an architecture that utilizes a combination of

two parallel branches, one with a 5×5 kernel and the other

with a 3×3 kernel. This architecture was implemented in our

proposed OLSs 1.0 and 1.1 for the CIFAR and Imagenette

datasets. The results of our experiments demonstrate that

this architectural design leads to a significant improvement

in the accuracy of the models on these datasets, resulting in

a better overall model performance.

5.2. Two 3×3 kernels instead of one 5×5

In order to improve the efficiency of our proposed OLSs, we

employed a unique architectural design that utilizes multiple

smaller kernel sizes in place of a single large kernel.

Specifically, instead of using a single 5×5 filter, which

would require 25 parameters to be learned, we used two

successive 3×3 kernels, which only require 18 parameters to

be learned, resulting in a 28% reduction in the number of

parameters to be learned. Through extensive

experimentation and evaluation, we have demonstrated that

this architectural design leads to results that are similar or

have slightly better accuracy compared to models that

utilize a single large kernel.

Fig 13. Relationship between test accuracies, parameters,

and FLOPs of models on Imagenette.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 226

Fig 14. GradCAM++ and softmax score results of second

family of OLS on Imagenette input image of chainsaw

category.

5.3. More parallel branches results in less parameters

and better accuracy

The two parallel branches were used to construct OLSs 2.0,

2.1, 3.0, and 3.1. While OLSs 2.2, 2.3, 3.2, and 3.3 were

constructed with 4 parallel branches. Empirical evaluations

have been conducted to demonstrate that the latter versions

with four branches exhibit a reduction in the number of

parameters while concurrently achieving improved

accuracy.

5.4. Using more 1×1 convolutions give better results

The third family of models under consideration incorporates

a greater number of 1×1 convolutional layers. Empirical

evaluations have demonstrated that the incorporation of

additional 1×1 convolution operations lead to a marked

improvement in accuracy, although this performance gain

comes at the cost of an increase in the number of parameters.

6. Conclusion and Future Work

By leveraging DenseNet as a framework, we suggested ten

intricately constructed One-Layer Structure architecture

designs for Dense-Block categorized into three families. In

this research work, we examined whether the use of a kernel

of 5×5 in a split branch of Dense-Block leads to increased

accuracy. Rather than using one 5×5 kernel, two successive

3×3 kernels and breaking a branch into multiple parallel

branches help to achieve a greater degree of accuracy and

reduce the number of parameters that are to be learned. It is

more advantageous to use multiple split branches and two

consecutive 3×3 kernels rather than a 5×5. It reduces the

number of parameters considerably. Along with these

strategies, in the third family of models, there is a

straightforward method that uses more 1×1 convolution at

the end in the split branch of the Dense-Block. As a result,

the accuracy increases, but at the expense of adding more

parameters. In spite of this, we do not make any claims that

our models are state-of-the-art; rather they serve as a starting

point for further optimization through a collaborative effort

between the architecture and training techniques. Our

research highlighted the potential of utilizing split branches

and various kernel sizes in improving the accuracy of image

classification models and the importance of balancing the

number of parameters with the desired level of accuracy.

Our forthcoming research will tackle the issue of reducing

the amplified memory needs that ensue from dividing a

single branch into multiple branches and then merging them.

Inadequate hardware support for these increased memory

demands may lead to suboptimal training performance. Our

future work will aim to optimize memory usage for multiple

branches to further enhance the efficiency of our proposed

method.

References

[1] Liu S, Deng W. Very deep convolutional neural

network based image classification using small

training sample size. In2015 3rd IAPR Asian

conference on pattern recognition (ACPR) 2015 Nov

3 (pp. 730-734). IEEE.

[2] Nair V, Hinton GE. Rectified linear units improve

restricted boltzmann machines. InProceedings of the

27th international conference on machine learning

(ICML-10) 2010 (pp. 807-814).

[3] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S,

Anguelov D, Erhan D, Vanhoucke V, Rabinovich A.

Going deeper with convolutions. InProceedings of the

IEEE conference on computer vision and pattern

recognition 2015 (pp. 1-9).

[4] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z.

Rethinking the inception architecture for computer

vision. InProceedings of the IEEE conference on

computer vision and pattern recognition 2016 (pp.

2818-2826).

[5] Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-

v4, inception-resnet and the impact of residual

connections on learning. InProceedings of the AAAI

conference on artificial intelligence 2017 Feb 12 (Vol.

31, No. 1).

[6] He K, Zhang X, Ren S, Sun J. Deep residual learning

for image recognition. InProceedings of the IEEE

conference on computer vision and pattern recognition

2016 (pp. 770-778).

[7] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ.

Densely connected convolutional networks.

InProceedings of the IEEE conference on computer

vision and pattern recognition 2017 (pp. 4700-4708).

[8] Girshick R. Fast r-cnn. InProceedings of the IEEE

international conference on computer vision 2015 (pp.

1440-1448).

[9] Girshick R, Donahue J, Darrell T, Malik J. Rich feature

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 227

hierarchies for accurate object detection and semantic

segmentation. InProceedings of the IEEE conference

on computer vision and pattern recognition 2014 (pp.

580-587).

[10] Bendou Y, Hu Y, Lafargue R, Lioi G, Pasdeloup B,

Pateux S, Gripon V. Easy—ensemble augmented-

shot-y-shaped learning: State-of-the-art few-shot

classification with simple components. Journal of

Imaging. 2022 Jun 24;8(7):179.

[11] Ridnik T, Sharir G, Ben-Cohen A, Ben-Baruch E, Noy

A. Ml-decoder: Scalable and versatile classification

head. InProceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision 2023

(pp. 32-41).

[12] Jin C, Liang J, Fan C, Chen L, Wang Q, Lu Y, Wang

K. Study on segmentation of blasting fragment images

from open-pit mine based on U-CARFnet. Plos one.

2023 Sep 14;18(9):e0291115.

[13] Shen X, Wang H, Wei B, Cao J. Real-time scene

classification of unmanned aerial vehicles remote

sensing image based on Modified GhostNet. Plos one.

2023 Jun 7;18(6):e0286873.

[14] Hassani A, Walton S, Shah N, Abuduweili A, Li J, Shi

H. Escaping the big data paradigm with compact

transformers. arXiv preprint arXiv:2104.05704. 2021

Apr 12.

[15] Savarese P, Maire M. Learning implicitly recurrent

CNNs through parameter sharing. arXiv preprint

arXiv:1902.09701. 2019 Feb 26.

[16] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang

W, Weyand T, Andreetto M, Adam H. Mobilenets:

Efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861.

2017 Apr 17.

[17] Chiang HY, Frumkin N, Liang F, Marculescu D.

MobileTL: on-device transfer learning with inverted

residual blocks. InProceedings of the AAAI

Conference on Artificial Intelligence 2023 Jun 26

(Vol. 37, No. 6, pp. 7166-7174).

[18] Zhou D, Hou Q, Chen Y, Feng J, Yan S. Rethinking

bottleneck structure for efficient mobile network

design. InComputer Vision–ECCV 2020: 16th

European Conference, Glasgow, UK, August 23–28,

2020, Proceedings, Part III 16 2020 (pp. 680-697).

Springer International Publishing.

[19] Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. Ghostnet:

More features from cheap operations. InProceedings

of the IEEE/CVF conference on computer vision and

pattern recognition 2020 (pp. 1580-1589).

[20] Zhang X, Zhou X, Lin M, Sun J. Shufflenet: An

extremely efficient convolutional neural network for

mobile devices. InProceedings of the IEEE conference

on computer vision and pattern recognition 2018 (pp.

6848-6856).

[21] Zhang H, Zhu X, Li B, Guan Z, Che W. LA-

ShuffleNet: A Strong Convolutional Neural Network

for Edge Computing Devices. IEEE Access. 2023 Oct

16.

[22] Huang G, Liu S, Van der Maaten L, Weinberger KQ.

Condensenet: An efficient densenet using learned

group convolutions. InProceedings of the IEEE

conference on computer vision and pattern recognition

2018 (pp. 2752-2761).

[23] Li X, Wang W, Hu X, Yang J. Selective kernel

networks. InProceedings of the IEEE/CVF conference

on computer vision and pattern recognition 2019 (pp.

510-519).

[24] Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H,

Wang X, Tang X. Residual attention network for

image classification. InProceedings of the IEEE

conference on computer vision and pattern recognition

2017 (pp. 3156-3164).

[25] Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H. Dual

attention network for scene segmentation.

InProceedings of the IEEE/CVF conference on

computer vision and pattern recognition 2019 (pp.

3146-3154).

[26] Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua

TS. Sca-cnn: Spatial and channel-wise attention in

convolutional networks for image captioning.

InProceedings of the IEEE conference on computer

vision and pattern recognition 2017 (pp. 5659-5667).

[27] Chen S, Liu Y, Gao X, Han Z. Mobilefacenets:

Efficient cnns for accurate real-time face verification

on mobile devices. InBiometric Recognition: 13th

Chinese Conference, CCBR 2018, Urumqi, China,

August 11-12, 2018, Proceedings 13 2018 (pp. 428-

438). Springer International Publishing.

[28] Li H, Xiong P, An J, Wang L. Pyramid attention

network for semantic segmentation. arXiv preprint

arXiv:1805.10180. 2018 May 25.

[29] Jiang Y, Cheng T, Dong J, Liang J, Zhang Y, Lin X,

Yao H. Dermoscopic image segmentation based on

Pyramid Residual Attention Module. Plos one. 2022

Sep 16;17(9):e0267380.

[30] Choi M, Kim H, Han B, Xu N, Lee KM. Channel

attention is all you need for video frame interpolation.

InProceedings of the AAAI Conference on Artificial

Intelligence 2020 Apr 3 (Vol. 34, No. 07, pp. 10663-

10671).

[31] Ioffe S, Szegedy C. Batch normalization: Accelerating

deep network training by reducing internal covariate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 216–228 | 228

shift. In International conference on machine learning

2015 Jun 1 (pp. 448-456). pmlr.

[32] Hu J, Shen L, Sun G. Squeeze-and-excitation

networks. InProceedings of the IEEE conference on

computer vision and pattern recognition 2018 (pp.

7132-7141).

[33] Zhang T, Qi GJ, Xiao B, Wang J. Interleaved group

convolutions. InProceedings of the IEEE international

conference on computer vision 2017 (pp. 4373-4382).

[34] Ullrich K, Meeds E, Welling M. Soft weight-sharing

for neural network compression. arXiv preprint

arXiv:1702.04008. 2017 Feb 13.

[35] Han S, Mao H, Dally WJ. Deep compression:

Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149. 2015 Oct 1.

[36] Zhang X, Colbert I, Kreutz-Delgado K, Das S.

Training deep neural networks with joint quantization

and pruning of weights and activations. arXiv preprint

arXiv:2110.08271. 2021 Oct 15.

[37] Lu Q, Jiang W, Xu X, Hu J, Shi Y. Quantization

Through Search: A Novel Scheme to Quantize

Convolutional Neural Networks in Finite Weight

Space. InProceedings of the 28th Asia and South

Pacific Design Automation Conference 2023 Jan 16

(pp. 378-383).

[38] Choi Y, El-Khamy M, Lee J. Towards the limit of

network quantization. arXiv preprint

arXiv:1612.01543. 2016 Dec 5.

[39] Pham H, Guan M, Zoph B, Le Q, Dean J. Efficient

neural architecture search via parameters sharing. In

International conference on machine learning 2018 Jul

3 (pp. 4095-4104). PMLR.

[40] Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ,

Fei-Fei L, Yuille A, Huang J, Murphy K. Progressive

neural architecture search. InProceedings of the

European conference on computer vision (ECCV)

2018 (pp. 19-34).

[41] Real E, Aggarwal A, Huang Y, Le QV. Regularized

evolution for image classifier architecture search.

InProceedings of the aaai conference on artificial

intelligence 2019 Jul 17 (Vol. 33, No. 01, pp. 4780-

4789).

[42] Guo X, Wu Y, Miao J, Chen Y. LiteGaze: Neural

architecture search for efficient gaze estimation. Plos

one. 2023 May 1;18(5):e0284814.

[43] Zoph B, Vasudevan V, Shlens J, Le QV. Learning

transferable architectures for scalable image

recognition. InProceedings of the IEEE conference on

computer vision and pattern recognition 2018 (pp.

8697-8710).

[44] Radosavovic I, Kosaraju RP, Girshick R, He K,

Doll´ar P. Designing network design spaces.

InProceedings of the IEEE/CVF conference on

computer vision and pattern recognition 2020 (pp.

10428-10436).

[45] Ding X, Zhang X, Han J, Ding G. Diverse branch

block: Building a convolution as an inception-like unit.

InProceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition 2021 (pp.

10886-10895).

[46] Ding X, Guo Y, Ding G, Han J. Acnet: Strengthening

the kernel skeletons for powerful cnn via asymmetric

convolution blocks. InProceedings of the IEEE/CVF

international conference on computer vision 2019 (pp.

1911-1920).

[47] Ding X, Zhang X, Ma N, Han J, Ding G, Sun J.

Repvgg: Making vgg-style convnets great again.

InProceedings of the IEEE/CVF conference on

computer vision and pattern recognition 2021 (pp.

13733-13742).

[48] Krizhevsky A, Nair V, Hinton G. Cifar-10 (canadian

institute for advanced research). URL http://www. cs.

toronto. edu/kriz/cifar. html. 2010 Mar;5(4):1.

[49] Howard J. Imagewang. URL https://github.

com/fastai/imagenette. 2019.

[50] He K, Zhang X, Ren S, Sun J. Identity mappings in

deep residual networks. InComputer Vision–ECCV

2016: 14th European Conference, Amsterdam, The

Netherlands, October 11–14, 2016, Proceedings, Part

IV 14 2016 (pp. 630-645). Springer International

Publishing.

[51] Gross S, Wilber M. Training and investigating residual

nets. Facebook AI Research. 2016 May;6(3).

[52] He K, Zhang X, Ren S, Sun J. Delving deep into

rectifiers: Surpassing human-level performance on

imagenet classification. InProceedings of the IEEE

international conference on computer vision 2015 (pp.

1026-1034).

[53] Mormille LH, Broni-Bediako C, Atsumi M.

Regularizing self-attention on vision transformers with

2D spatial distance loss. Artificial Life and Robotics.

2022 Aug;27(3):586-93.

[54] Remerscheid NW, Ziller A, Rueckert D, Kaissis G.

Smoothnets: Optimizing cnn architecture design for

differentially private deep learning. arXiv preprint

arXiv:2205.04095. 2022 May 9.

