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Abstract: In this work, we present intricately woven investigative one-layer structure designs for the Dense-Block of the DenseNet, 

intending to improve performance in visual recognition tasks. Developing a robust representation for accurate visual recognition is a critical 

challenge that requires more than just increasing the depth and width of neural networks. Therefore, we have devoted significant effort to 

developing new One-Layer Structures (OLSs) for the Dense-Block. Our proposed OLSs are comprising multiple branches of stacks of 1×1, 

3×3, and 5×5 convolutional layers. We recommend replacing the standard OLS of Dense-Block with one of these proposed OLSs. Our 

proposed OLSs are lightweight, simple, and optimally arranged, making them an ideal choice for optimizing network performance. We 

organized them into three families: 1.0 and 1.1, 2.0 to 2.3, and 3.0 to 3.3. To evaluate the effectiveness of our proposed models, we conduct 

experiments on the three benchmark datasets: Imagenette, CIFAR-10, and CIFAR-100. The investigation of DenseNet models enhanced 

with OLSs up to version 3.3 provides a nuanced understanding of the intricate relationship between model complexity, computational 

efficiency, and accuracy. Through meticulous analysis on multiple datasets, a consistent pattern of parameter and FLOP reduction is 

observed, indicating progressive refinement in model architecture. OLS 2.X versions achieve accuracy values ranging from 94.84% to 

95.31% on CIFAR-10, 80.33% to 80.69% on CIFAR-100, and 93.325% to 93.478% on Imagenette demonstrating that the integration of 

OLSs contributes positively to model performance. 
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1. Introduction 

Convolutional Neural Networks (CNNs) have recently 

achieved impressive breakthroughs in a diverse range of 

computer vision tasks and have excelled beyond the 

numerous conventional feature-driven approaches in this 

realm. Its remarkable capability of extracting underlying 

nonlinear structures of image data is the basis upon which 

deep CNN is successful in image/video analytics. For 

increasing the performance of CNN models, the two most 

widely used steps are increasing the depth and width of the 

network (in terms of the number of layers and feature maps 

at each layer respectively) and using more training data if 

feasible. In the meantime, efforts have been made to 

minimize the number of floating-point operations (FLOPs) 

and the number of model parameters. Especially when the 

model has many layers, designing architectures becomes 

more intricate as more hyperparameters are added, such as 

kernel size or filter size, activation function, stride, learning 

rate, etc. 

The VGG [1] network, characterized by its simplistic yet 

effective architecture consisting of stacked convolutional 

layers, ReLU [2] activation functions, and a limited number 

of pooling layers, has proven to be a seminal CNN model in 

the field of image recognition. In recent years, there has 

been a trend toward increasing the depth of CNNs. 

However, this increase in depth also leads to optimization 

and learning challenges and does not always result in better 

performance. Therefore, research has shifted towards the 

development of well-architected models such as Inception 

[3][4][5], ResNet [6], and DenseNet [7], which have been 

able to achieve high accuracy with fewer parameters. 

Empirical evaluations on a wide range of visual recognition 

tasks [6][8][9][10][11][12][13] have demonstrated the 

robustness of VGG networks, DenseNets, and ResNets. 

It was noted that better performance of a model in image 

classification tasks would likely be transferred into quality 

improvements in a diverse spectrum of other vision 

applications. So, incorporating architectural improvements 

in deep CNN architectures helps to elevate the quality of 

other computer vision tasks that are strongly reliant upon 

high-quality, learnable features. In VGGNet, layers are 

stacked on top of each other, which results in a volumetric 

number of parameters. If convolutional layers are simply 

stacked on top of one another, the gradients of the layers 

start losing their intensity. ResNets and DenseNets are 

designed to assist in solving the vanishing gradient problem 

with novel skip connection strategies. Through the 

development of carefully designed topologies, the Inception 

model family has demonstrated its ability to deliver high 
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accuracy at low theoretical complexity. It has been common 

practice in Inception models to split layers into multiple 

branches, transform them, and then merge them. Inception 

modules make use of 1×1 convolution to reduce the number 

of channels of input volume of split branches. The output of 

lower-dimensional embedding is then transformed using 

different size filters, such as 3×3 and 5×5. It then merges the 

outputs of the branches by concatenating them. Modules for 

Inception will be able to approximate dense and large layers 

with the same degree of representational power at a lower 

computational complexity by splitting, transforming, and 

merging. 

In this work, we present the ten meticulously woven 

alternate one-layer structures that inherit the properties of 

the Inception model into DenseNet which utilizes the easy-

to-implement split-transform-merge approach of Inception. 

Our approach is simple: we distribute input to multiple 

branches and aggregate the features which are transformed 

with different and similar topologies. A large number of 

transformations can be carried out with this design without 

requiring any specialized layers. In the proposed models, a 

simplified version of Inception like modules is used in a 

Dense-Block where it does not contain a max pool layer and 

a direct layer with the convolution of 1×1 filters. We make 

use of 3×3 and 5×5 filters in the proposed models. In some 

of the proposed models, we employ two consecutive 3×3 

filters to replace one 5×5 filter. The same receptive field can 

be covered by two consecutive 3×3 filters as by one 5×5 

filter. The section 3 discusses the ten proposed instances of 

split-transform-merge approach modules in Dense-Block 

that are used as the replacement structure strategies for One-

Layer. Figure Fig. 1 shows the standard OLS of a Dense-

Block. Although there are a few methods that increase 

accuracy while maintaining (or reducing) complexity while 

going deeper and wider, it is far easier to increase accuracy 

by enhancing capacity, since capacity can increase accuracy 

simultaneously. The methodology adopted in our study 

reveals that the distribution of input across two or four 

branches within a Dense-Block is a significant and concrete 

dimension, in addition to the established dimensions of 

length and width. Empirical investigations conducted 

demonstrate that, in terms of accuracy, bifurcating a layer 

within a Dense-Block into two or four branches, as opposed 

to mere depth augmentation, leads to superior accuracy 

outcomes. 

In summary, we have made the following contributions: 

We propose an intricately constructed split-transform-

merge strategy for One-Layer of the Dense-Block of 

DenseNet, which leads to improved performance of the 

network. Specifically, we present ten exquisitely knit 

methodological OLS designs that are divided into three 

families. 

We adopt a multi-branch topology in the development of our 

architectures, which includes multi-scale convolutions with 

kernel sizes of 1×1, 3×3, and 5×5. This approach allows for 

a more extensive feature space, as it includes different 

receptive fields and multiple paths of varying complexity. 

To evaluate the effectiveness of our proposed architectures, 

we conducted extensive experiments on various benchmark 

datasets. The results of our experiments confirm that 

DenseNet with some of our proposed OLSs outperforms the 

standard DenseNet in terms of accuracy with fewer 

parameters. 

Our study demonstrates that our OLS with a cardinality 

(number of simultaneously occurring transformations) of 

two and four for Dense-Block is superior to the standard 

DenseNet despite having fewer parameters and reduced 

complexity. OLS 2.0 and 2.1, for instance, are designed to 

keep the number of parameters and FLOPs complexity low. 

Although capacity (depth or width of the model) can raise 

accuracy quite easily, it is rather difficult to achieve the 

desired result while simultaneously reducing complexity (or 

keeping it the same). 

We demonstrate that more use of 1×1 convolution can 

provide a means to improved accuracy. For example, OLSs 

from 3.0 to 3.3 show how to utilize more use of 1×1 

convolution in the model. 

Our neural networks outperform several other CNN models 

[6][7][14][15]. Proposed OLSs of the second family from 

2.0 to 2.3 are exceptionally effective in achieving 

comparable accuracy with fewer parameters. Third-family 

models achieve better accuracy but with few extra 

parameters. 

2. Related Work 

Improved network architecture designs are the most 

effective means of improving deep network processing 

efficiency. By designing network architecture, one aims to 

describe backbone structures that can be used to improve 

performance between a wide range of tasks. The measure of 

the efficiency of architecture is the accuracy of 

classification on Imagenette and CIFAR datasets, in 

addition to other criteria. 

Lightweight CNN architectures with efficient building units 

are introduced to improve deep network processing 

efficiency. In MobileNets and recent variations [16][17], the 

design of network architecture is based on linear bottlenecks 

and inverted residuals. In MobileNeXt [18], Sandglass 

blocks are created by reversing their inverted residuals. It is 

the cheap operation that is used in GhostNet [19] to create 

novel feature maps. Moreover, ShuffleNet [20][21] and 

CondenseNet [22] both employ shuffle layers along with 

Learned Group Convolutions (LGC) for generating new 

feature maps, respectively. Acknowledging the potential 

trade-off in accuracy, it is worth noting that these models 
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are designed to be parameter-efficient so that they can be 

deployed on hardware with limited resources. Their focus 

on efficiency may result in some compromise in accuracy. 

In order to make CNNs as accurate as possible, spatial 

attention and channel attention are usually incorporated into 

the network. A feature map for SK-Net [23] is built in such 

a way that it incorporates a feature-based attention 

mechanism across parallel branches of the network. 

Applications that have been successful in the past that make 

use of attention modules include image classification 

[24][25], image captioning [26], face verification [27], 

semantic segmentation [28][29], and video frame 

interpolation [30]. Models with attention modules result in 

additional parameters. 

Various modules can be applied to existing architecture 

networks to enhance their performance, such as 

normalization modules [31], attention modules [32], group 

convolution [33], and skip connection strategy [6]. 

Normalization can be done in several different ways, and 

batch normalization [31] is the most common. In most deep 

learning models, this is the default method used to improve 

performance as well as speed up convergence time. 

Moreover, random sampling contributes to improved 

generalization capability in batch normalization. It is 

important to note that while these techniques have shown 

promise in improving performance, achieving optimal 

performance in machine learning is an ongoing endeavour. 

Many studies have been conducted on deep neural networks 

aimed at reducing the computational cost of these networks. 

Researchers have focused on pruning non-essential 

connections in neural networks in order to reduce 

computational costs [34][35][36] since these networks 

contain a significant amount of redundant information. 

Quantization [37][38], on the other hand, focuses on 

reducing the memory usage and bit-width of floating-point 

weights. These techniques can be applied post-training of a 

model and it can be time and resource consuming. 

Researchers have begun to look at systematically searched 

neural networks instead of manually designed ones, due to 

increased processing power. By utilizing neural architecture 

search (NAS) convolutional neural networks 

[39][40][41][42][43] are capable of providing improved 

performance, however, they consume an enormous amount 

of computing resources. Manually designing [44] the CNN 

network space would require a great deal of manpower. 

A deep neural network (DNN) can be re-parameterized in a 

way that has no residual connections in the network. Re-

parameterization [45][46] refers to the process of replacing 

the parameters of a structure with those of another set of 

parameters. It is the case that the residual connections are to 

be removed at inference based on a re- parameterization 

process after the network with residual connections is 

trained. RepVGG [47] is a CNN model that resembles a 

multi-branch network, which can be transformed into a 

VGG-like model. Structural re-parametrization can be used 

to do so with stacks of 3×3 convolutions successively with 

ReLU. At inference, it produces the same results. The 

simplicity of RepVGG, while advantageous in many 

contexts, may be suboptimal for highly challenging tasks, 

such as training exceptionally deep neural networks. 

3. Proposed One-Layer Structures 

The present research study employs a network design 

pattern that bears close resemblance to DenseNet, using 

aesthetically similar configured components. To build the 

model, we employed multiple Dense-Blocks in conjunction 

with a transition layer. Our objective was to create a model 

that is more accurate, with fewer parameters, by presenting 

precisely intertwined designs of layers for one One-Layer of 

a Dense-Block. Our work presents sophisticated design 

approaches for the one-layer structure of a Dense-Block 

concerning two key factors: 1) To enhance the one-layer 

structure's exposure to a dual receptive field, our approach 

incorporates two kernel sizes - 3×3 and 5×5. The former 

maintains familiarity with the standard receptive field, while 

the latter provides access to an expanded receptive field. 

This duality in receptive field sizes enables the model to 

capture both fine-grained and larger contextual information, 

thereby enhancing its ability to comprehend complex data. 

2) We propose parallelizing the convolution operations 

within the one-layer Dense-Block by using 3×3 and 5×5 

kernel sizes. This strategic approach coordinates these 

operations in two and four parallel branches, allowing the 

model to benefit from both 3×3 and 5×5 convolutions 

simultaneously. This fosters a more nuanced and 

comprehensive feature extraction process, resulting in more 

effective and efficient operations. 

 

Fig 1. Standard OLS of Dense-Block. 'K' in the figure 

refers to the growth rate. 

3.1. Revisiting One-layer structure of DenseNet 

Traditional CNN models typically have no more than one 

connection with the adjacent upper and adjacent lower 

layers. DenseNet is made up of multiple Dense-Blocks and 

a transition layer in between every two Dense-Blocks. In a 

Dense-Block, every layer gets input information from all the 
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previous layers. Within this context, information refers to 

feature maps. In a Bottleneck Dense-Block, information 

received from all the preceding layers goes through Batch 

Normalization (BN), then Rectified Linear Unit (ReLU), 

and then a convolutional layer with 1×1 kernel size which 

produces 4×k feature maps. Here k is the 'growth rate' which 

denotes the number of newly generated feature maps. For 

all our proposed OLSs, we fixed the value of k=32. These 

4×k feature maps then go through BN, ReLU, and 3×3 

convolutional layer which produces only k feature maps. All 

these operations take place within a Dense-Block, which is 

considered to be one-layer. The standard OLS of the Dense-

Block is depicted in the figure Fig. 1. 

To evaluate the effectiveness of our proposed OLSs in 

reducing the number of learnable parameters and 

computations, we must first determine the parameter and 

multiplication count of the original OLS. This analysis will 

provide a baseline for comparison with our proposed 

approach, allowing us to quantify the extent of parameter 

and computation reduction achieved by our proposed OLSs. 

The original OLS gets m number of input feature maps at 

1×1 convolutional layer and generates 4×k feature maps. 

Kernel width and height are denoted by w and h. So, the total 

number of learnable parameters at this layer is given by the 

equation: 

𝑚 × 4 × 𝑘 × ℎ × 𝑤  (1) 

as w and h are 1, therefore it becomes: 4×m×k. The 4×k 

feature maps generated by 1×1 convolutional layer is then 

fed to 3×3 convolutional layer which in turn produces k 

feature maps. Then the number of learnable parameters 3×3 

convolutional layer is given as: 

𝑚 × 𝑘 × 𝑘 × ℎ × 𝑤  (2) 

Here h and w both are 3, so the total number of learnable 

parameters at this layer is given as 36×k2. So total number 

of learnable parameters for standard OLS can be calculated 

as:  

4 × 𝑚 × 𝑘 + 36 × 𝑘2 = 4𝑘(𝑚 + 9𝑘) (3) 

The number of multiplications occurring in standard OLS 

can be calculated as filter size multiplied by the output 

dimensions of generated feature maps. One filter volume 

size can be calculated as h×w×m. For 1×1 convolutional 

layer, volume size is 1×1×m. For 3×3 convolutional layer 

volume size can be calculated as h×w×4×k, but here h=3 

and w=3, therefore, the filter volume size for 3×3 

convolutional layer is 36×k. Dimension of generated feature 

maps after convolved with 1×1 convolutional layer is given 

as: 

4 × 𝑘 × 𝐻 ×𝑊  (4) 

where H and W are the height and width of generated feature 

maps respectively. Because values of H and W are the same, 

therefore, the dimension of generated feature maps is 

4×k×H2. Dimensions of generated feature maps after 

convolved with 3×3 convolution is given as 36×k×H2. 

Therefore, total number of multiplications needed after 1×1 

convolution are: 

4 × 𝑘 × 𝐻2  (5) 

and total number of multiplications needed after 3×3 

convolution are: 

36 × 𝑘2 × 𝐻2  (6) 

For the remaining parts of this paper, we will continue using 

the same notations to calculate the total number of 

parameters and the total number of multiplications for the 

proposed OLSs as we have done here. 

Table 1. Comparison of the total number of parameters 

and the total number of multiplication operations required 

for standard and proposed OLSs of Dense-Block. ‘k’ is the 

growth rate of feature maps. ‘m’ is input feature maps to 

OLS. ‘H’ is the height of generated feature map. 

Model 

Family 

Total 

Parameters 

Total Multiplications 

Standard 

OLS 

4k(m+9k) 4kH2(m+9k) 

OLS 1.0 4k(m+17k) 4kH2(m+17k) 

OLS 1.1 4k(m+14.625k) 4kH2(m+14.625k) 

OLS 2.0 4k(m+8.5k) 4kH2(m+8.5k) 

OLS 2.1 4k(m+7.87k) 4kH2(m+7.87k) 

OLS 2.2 4k(m+4.25k) 4kH2(m+4.25k) 

OLS 2.3 4k(m+3.938k) 4kH2(m+3.938k) 

OLS 3.0 4k(m+17.25k) 4kH2(m+17.25k) 

OLS 3.1 4k(m+11.5k) 4kH2(m+11.5k) 

OLS 3.2 4k(m+17.25k) 4kH2(m+17.25k) 

OLS 3.3 4k(m+13.75k) 4kH2(m+13.75k) 

 

 

Fig 2. Proposed OLS 1.0 (left) and OLS 1.1 (right). 
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Fig 3. Proposed OLS 2.0 (right) and OLS 2.1 (left). 

3.2. OLS 1.0 and OLS 1.1 (first family) 

We employ the two key factors described in section 3 to 

design the one-layer structure for Dense-Block. In this 

proposed design, the cardinality of parallelism is two. 

Hereafter, we refer to cardinality as the degree of parallel 

layers in a one-layer structure. Figure Fig. 2 (left) depicts 

the first proposed one-layer structure. This OLS is referred 

to as 'OLS 1.0'. The first 1×1 convolution operation here 

generates 4×k (4k) feature maps. As mentioned earlier here 

the cardinality is two, therefore we have two parallel 

branches of convolution operations operating on 4k feature 

maps. One with 

 

Fig 4. Proposed OLS 2.2. 

3×3 kernel size and another with 5×5 kernel size. Each 

branch generates k/2 feature maps. The input feature maps 

to this OLS are then concatenated with the output of these 

two branches. We mentioned in the previous section that 

whenever we refer to input feature maps being processed 

through convolutional layers, this means they have passed 

through BN and ReLU processes prior to being processed 

through convolutional layers. We have followed this series 

of sequential operations throughout our proposed OLSs. 

The total learnable parameter counts and multiplication 

count required by OLS 1.0 are mentioned in the Table 1. 

 

Fig 5. Proposed OLS 2.3. 

Another model in this family, namely 'OLS 1.1', is proposed 

as a further extension of OLS 1.0. In the 'OLS 1.1', figure 

Fig. 2 (right), we propose to use two consecutive 3×3 

convolutional layers instead of one 5×5 convolutional layer. 

The two consecutive convolutional layers of 3×3 kernel 

sizes cover the same receptive field as one 5×5 kernel. 

Comparing two consecutive 3×3 kernels to one 5×5 kernel 

has two advantages. The first advantage is that it requires 

fewer parameters, and the second is that it involves fewer 

computations. 

The total learnable parameter counts and multiplication 

count required by OLS 1.1 are mentioned in the Table 1. It 

is evident that the structure of OLS 1.1 is lighter than the 

structure of OLS 1.0. 

3.3. OLS 2.0, 2.1, 2.2, and 2.3 (second family) 

It is quite evident from the proposed OLS 1.0 and OLS 1.1 

that the number of parameters and computing operations is 

significantly greater than with the original DenseNet's OLS 

as a basis for comparison. We propose an evolving second 

family of one-layer structures for Dense-Block with 

cardinality two and four that is cost-effective, comparatively 

accurate, and lightweight. As shown in figure Fig. 3, OLS 

2.0 and OLS 2.1 are configured in a simplified one-layer 

structure. The received feature maps are processed in 

parallel on two distinct pathways. In every first branch, they 

are passed through a convolutional layer of kernel size 1×1. 

The 2k feature maps are produced separately for each of the 

1×1 convolutional layer on two parallel processing lines. In 

the structure of OLS 2.0, the output feature maps of 1×1 

convolutional layer from the first branch are further 

processed by stacking a 3×3 convolution layer, an operation 

that generates k/2 feature maps. It is in the second branch 

that the output feature maps of the 1×1 convolutional layer 

are further processed with a 5×5 convolutional layer. This 

also results in the output of k/2 feature maps. Afterward, 

output feature maps of this OLS are generated by 

concatenating feature maps made from the two branches and 

the received input feature maps to this OLS. In the structure 

of OLS 2.1, we essentially maintained the first branch of 
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OLS 2.0. However, we replaced one 5×5 convolution with 

two 3×3 convolutional layers in the second branch. The 

output features from the 1×1 convolutional layer of the 

second branch is passed through the first 3×3 convolutional 

layer that produces 1k feature maps. The k/2 feature maps 

are then created using the second 3×3 convolutional layer 

with the intent of enriching these feature maps. To generate 

output feature maps, feature maps from the two branches 

and actual input feature maps received to this OLS are 

concatenated. Based on the calculations in Table 1, we 

conclude that these two structures are lighter than the 

structures of the first proposed family, as indicated by their 

lower number of learnable parameters and multiplications. 

To make them more lightweight and enhance these OLSs 

further, we modelled two more one-layer structures in this 

family where cardinality is set to four. In the proposed 

model for OLS 2.2, all four parallel 1×1 convolutional 

layers process input feature maps and produce k feature 

maps. Parallel 3×3 convolutional layers from 2 left branches 

process k input feature maps independently, generating k/4 

feature maps for each branch. Likewise, the remaining two 

parallel 5×5 convolutional layers from the right branches 

process k feature maps individually and generate k/4 feature 

maps for each branch. The output feature maps are 

generated by concatenating feature maps from all four 

branches and the input feature map received at this OLS. 

Figure Fig. 4 illustrates these details of the OLS 2.2 

structure in a clear and concise manner. Later, an enhanced 

version of OLS 2.2 is developed, namely OLS 2.3, in which 

the 5×5 convolutional layer from OLS 2.2 model is broken 

down into two successive 3×3 convolutional layers. The 

first 3×3 convolutional layer generates k/2 feature maps and 

the second 3×3 convolutional layer generates k/4 feature 

maps. This OLS is outlined in figure Fig. 5. Our calculations 

over these two structures, as presented in the Table 1, show 

that OLS 2.2 and OLS 2.3 have lighter structures than the 

previous ones, as demonstrated by their lower number of 

learnable parameters and multiplications. 

3.4. OLS 3.0, 3.1, 3.2, and 3.3 (third family) 

We have designed four further new OLSs, labelled OLS 3.0 

to OLS 3.3. These are enhanced versions of the OLSs 

ranging from 2.0 to 2.3. Two of the structures have a 

cardinality of two, while the other two have a cardinality of 

four. Models 3.0 and 3.1 are implemented as one-layer 

structures similar to those of 2.0 and 2.1 respectively with a 

single additional layer before the concatenation of feature 

maps. That additional layer is a 1×1 convolutional layer in 

each pathway. Figure Fig. 6 illustrates the one-layer 

structure designs for OLS 3.0 and OLS 3.1. Similarly, one-

layer structure designs of models 3.2 and 3.3 are developed 

as those of 2.2 and 2.3 

 

Fig 6. Proposed OLS 3.0 (left) and OLS 3.1 (right). 

respectively, with an additional one 1×1 convolutional layer 

in each branch. The illustration of OLS 3.2 and 3.3 are 

depicted in figures Fig. 7 and Fig. 8 respectively. 

Comparison of total required parameters and total 

multiplication operations by all these OLSs are presented in 

the Table 1. 

 

Fig 7. Proposed OLS 3.2. 

 

Fig 8. Proposed OLS 3.3. 

3.5. Architecture designs 

We used the same design architecture framework as the 

original DenseNet-BC except for some minor modifications 

in layers and growth rate. The growth rate of every model is 

fixed at 32 (k=32). We developed our first three families of 

models for the CIFAR dataset where the input shape is 

32×32×3. A second three families of models have been built 

for the Imagenette dataset, which has an input shape of 
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224×224×3. Models for CIFAR-10 and CIFAR-100 are 

almost identical with the exception of the last layer. The 

output layer of the CIFAR-10 model has 10 neurons, while 

the output layer of the CIFAR-100 model has 100 neurons. 

Models for a 32×32×3 input shape composed of three 

Dense-Blocks. There are 6, 12, and 24 one-layer structures 

within each Dense-Block. Two consecutive Dense-Blocks 

are separated by an intermediate layer called a transition 

layer. Any of the OLSs that we proposed could be used as 

the one-layer structure. Table 2 has the details of the model 

for 32×32×3 shape of inputs. In the case of the input shape 

224×224×3, there are initially two convolutional layers 

followed by four Dense-Block layers. Each Dense-Block 

contains 6, 12, 24, and 18 one-layer structures. From our 

proposed designs, we can use any one of the OLS. In 

addition to this, there is a transition layer in between each 

set of consecutive dense blocks. The transition layer consists 

of one 1×1 convolutional layer and a 2×2 average pool layer. 

Architectural details for input shape 224×224×3 is 

mentioned in the Table 3. 

Table 2. Architecture details for CIFAR-10 and CIFAR-

100. 'D' is the depth of a model. 'OLS' stands for 'one-layer 

structure'. 'P' denotes padding and 'S' denotes stride. 

Layers Output Size 
k=32, 

D=47 

Convolution 32 × 32 

3 × 3 

Conv, 

P=1, 

S=1 

Dense 

Block–1 
32 × 32 

Proposed 

OLS × 6 

Transition 

Layer–1 
16 × 16 

1 × 1 

Conv, 2 

× 2 Avg. 

Pool 

Dense 

Block–2 
16 × 16 

Proposed 

OLS × 

12 

Transition 

Layer–2 
8 × 8 

1 × 1 

Conv, 2 

× 2 Avg. 

Pool 

Dense 

Block–3 
8 × 8 

Proposed 

OLS × 

24 

Average Pool 1 × 1 

Global 

Average 

Pooling 

Classification 

Layer 

10-D or 100-D fully 

connected linear layer 

Table 3. Architecture details for Imagenette. 'D' is the 

depth of a model. 'OLS' stands for 'one-layer structure'. 'P' 

denotes padding and 'S' denotes stride. 

Layers Output 

Size 

k=32, D=47 

Convolution 112 × 

112 

7 × 7 Conv, P=3, S=2 

Convolution 56 × 56 7 × 7 Conv, P=3, S=2 

Dense Block–1 56 × 56 Proposed OLS × 6 

Transition Layer–

1 

28 × 28 1 × 1 Conv, 2 × 2 Avg. 

Pool 

Dense Block–2 28 × 28 Proposed OLS × 12 

Transition Layer–

2 

14 × 14 1 × 1 Conv, 2 × 2 Avg. 

Pool 

Dense Block–3 14 × 14 Proposed OLS × 24 

Transition Layer 

– 3 

7 × 7 1 × 1 Conv 2 × 2, Avg. 

Pool  

Dense Block – 4 7 × 7 Proposed OLS × 18 

Average Pool 1 × 1 Global Average 

Pooling 

Classification 

Layer 

10-D fully connected linear layer 

 

4. Experimental Results 

4.1. Datasets 

4.1.1. CIFAR-10 & CIFAR-100 

CIFAR-10 [48] dataset consists of 10 class types and 60000 

RGB images of a 32×32 resolution, which is broken down 

into training data and testing data. There are a total of 50,000 

images in the training dataset, while the rest of the images 

appear in the testing dataset. A CIFAR-100 dataset [48] also 

consists of 50,000 training images and 10,000 test images 

distributed across 100 categories within the dataset. For the 

purposes of augmentation, the input images were cropped 

into 32×32 squares and horizontally flipped as part of the 

process. Images are cropped at random from the input 

images after they have been padded by four pixels. 

4.1.2. Imagenette 

Images in the Imagenette [49] dataset, a subset of the 

ImageNet dataset, are classified into ten categories (classes). 

Each of the ten categories in the Imagenette consists of 

approximately 950 images. A total of 9469 images were 

used for the training set, while 3925 were used for the 

validation set, and all of them have been grouped into 10 

categories. There are approximately 400 images in each 

category of the Imagenette in the validation set. We have 

applied the techniques that were used in the papers [6,50,51] 

in order to enhance training images in this work. We applied 

a center crop of 224×224 pixels to our dataset in order to test 

the efficiency of our model for test data. The presence of 

color jitter on the training set is determined by adjusting a 
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jitter value of 0.4. It randomly adjusts brightness, contrast, 

and saturation. As a regularization technique, a label 

smoothing technique using an epsilon of 0.1 is employed. 

4.2. Experiments on CIFAR-10, and CIFAR-100 

Dense-Block includes one of the proposed OLSs, creating 

10 models with different configurations. In order to 

demonstrate the progressive innovation of our model with 

respect to the original DenseNet, we have conducted 

extensive experiments with our proposed models. Our 

networks are first trained on the CIFAR-10 dataset. We used 

Stochastic Gradient Descent (SGD) as an optimization 

method to train all the models. The momentum value is set 

to 0.9. All the models have been trained for 200 epochs. 

Cosine Annealing has been used for scheduling the learning 

rate, and initially, the learning rate is set to 0.1. The value 

for weight decay is 0.0001. Weight matrices are initialized 

as per the recommendation of this [52] paper. Mini-batch 

size is 64 for all the models. The same hyper-parameters and 

training strategy we used for models designed for the 

CIFAR-100 dataset. To ensure a fair comparison, the 

original DenseNet model was also trained under an identical 

training process. In consequence, the original performance 

was marginally downgraded. In both datasets, the validation 

set was used to evaluate the models. 

4.3. Experiments on Imagenette 

The architecture specifications for the Imagenette dataset as 

an input to our model are mentioned in the Table 3. Any one 

of the proposed OLSs of the same type can be incorporated 

into that. Therefore, ten different models are possible. Each 

of these models was trained using SGD. The momentum 

value is 0.9. We trained all the models for 310 iterations, 10 

of which were chosen as cool-down epochs. We used these 

10 epochs to achieve stability of the learning rate at a 

minimum value. For weight decay, this value is 0.00002. 

There are 64 samples in a mini-batch. We are using a cosine 

annealing learning rate scheduler with an initial learning 

rate value of 0.05. Kernel weight matrices are initialized 

with the values suggested by the [52] paper. 

 

Fig 9. Train and Test set accuracies on CIFAR-10 of 

DenseNet with OLS 1.0, OLS 1.1, and standard DenseNet. 

 

 

4.4. Experimental results 

4.4.1. Results on CIFAR-10 

DenseNet, the state-of-the-art architecture in computer 

vision, serves as the benchmark base model for our 

proposed models. With k=32 and 4.36 million parameters, 

DenseNet demonstrates an accuracy rate of 94.99% on the 

CIFAR-10 benchmark dataset. In an effort to surpass the 

performance of DenseNet, we proposed the  

 

Fig 10. Train and Test set accuracies on CIFAR-10 of 

DenseNet with OLS 2.0 to OLS 2.3, and standard 

DenseNet. 

first model of our family, designated as 'DenseNet with OLS 

1.0', which incorporated additional parameters, specifically 

a total of 5.74 million parameters. Through extensive 

experimentation and evaluation, DenseNet with OLS 1.0 

achieved an accuracy rate of 95.56%, surpassing the 

performance of the base model. However, we recognized 

that the number of parameters can have a significant impact 

on the overall efficiency of the model. Therefore, the second 

model DenseNet with OLS 1.1 incorporated a reduced 

number of parameters, specifically a total of 5.33 million 

parameters. Despite the reduction in parameters, DenseNet 

with OLS 1.1 achieved an accuracy rate of 95.53%, which 

is comparable to the accuracy of DenseNet with OLS 1.0 

and higher than the base model DenseNet. Fig. 9 shows the 

learning curves of DenseNet and DenseNet with OLS 1.0, 

and 1.1. 

The first two models in the second family, designated as 

'OLS 2.0' and 'OLS 2.1', incorporate a unique architecture 

with two parallel branches. Despite having a lower number 

of parameters, specifically a total of 4.27 and 4.17 million 

respectively, both models demonstrate a high level of 

accuracy, achieving rates of 95.25% and 95.31% 

respectively on the CIFAR-10 dataset. These results suggest 

that a reduction in parameters may not necessarily result in 

a decrease in performance and may even potentially lead to 

improved accuracy. 

In an effort to further optimize the performance of our 

proposed models, we introduced the last two models in this 
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family, designated as 'OLS 2.2' and 'OLS 2.3'. These OLSs 

incorporate a more complex architecture, with four parallel 

branches. OLS '2.2' has 3.54 million parameters, while OLS 

'2.3' has 3.49 million parameters. Both models achieved an 

accuracy rate of 94.84% and 94.98% respectively. While the 

accuracy is marginally lower than the original DenseNet 

model, the number of parameters is considerably lower as 

well. In fact, OLS '2.3' has been proven to be almost as 

accurate as the original DenseNet model. Graph Fig. 10 

shows the learning curves of DenseNet with a second family 

and standard DenseNet. 

We proposed a third family of models to further investigate 

the relationship between model architecture, number of 

parameters, and accuracy. The first two models in this 

family, incorporate a unique architecture with two parallel 

branches, while the last two models have a more complex 

architecture with four parallel branches. Despite having a 

higher number of parameters than the original DenseNet 

model and our earlier proposed models, all models within 

this family achieved a remarkably high level of accuracy on 

the CIFAR-10 dataset. These results are presented in the 

Table 4 of our paper. 

These results of proposed OLSs with DenseNet suggest that 

an increase in the number of parameters does not necessarily 

result in a decrease or saturation in performance and that the 

architecture of the model plays a crucial role in determining 

the accuracy of the model. Moreover, the high accuracy 

achieved by these models, despite having more parameters 

in the third family than the previous models, highlights the 

potential of our proposed models to outperform the state-of-

the-art DenseNet model. 

4.4.2. Results on CIFAR-100 

The original DenseNet model achieves 80.53% accuracy on 

CIFAR-100. The first family of proposed OLS models, 

namely OLS 1.0, and OLS 1.1 achieves 81.07%, and 

81.24% accuracy respectively. OLS 1.0 and OLS 1.1 exhibit 

the same pattern of results as CIFAR-10, i.e., a greater 

number of parameters than standard DenseNet, and a higher 

level of accuracy. Among the first two models of the second 

family, OLS 2.0 and OLS 2.1, provide improved accuracy 

for fewer parameters than the original DenseNet. The next 

two models from the same family, OLS 2.2 and OLS 2.3 

achieve almost similar accuracy with considerably fewer 

parameters than the original DenseNet model. In all four 

models that are part of the proposed third family, OLS 3.0 

to OLS 3.3, an improvement in accuracy is observed over 

all the previously proposed models and the baseline 

DenseNet model. Since the number of convolutions per 1×1 

is higher in the third family, the parameters are higher as 

well. All the results are shown in Table 4. The train and test 

accuracy curves of DenseNet and DenseNet with the third 

family are shown in the Fig. 11. 

Table 4. Results on CIFAR-10 and CIFAR-100. 

Model 
Parameters 

(Million) 

FLOPs 

(GMAC) 

CIFAR-

10 

Accuracy 

CIFAR-

100 

Accuracy 

SWRN 

28-10-1 

[13] 

12 -  95.99% 80.77% 

WRN 28-

10 [13] 
36 - 96% 80.75% 

CCT-7 / 

3 × 1 

[12] 

3.76 0.95 94.78% 77.05% 

DenseNet 4.36 0.83 94.99% 80.53% 

DenseNet 

with OLS 

1.0 

5.74 1.19 95.46% 81.07% 

DenseNet 

with OLS 

1.1 

5.33 1.08 95.53 81.24% 

DenseNet 

with OLS 

2.0 

4.27 0.81 95.25% 80.60% 

DenseNet 

with OLS 

2.1 

4.17 0.79 95.31% 80.69% 

DenseNet 

with OLS 

2.2 

3.54 0.64 94.84% 80.33% 

DenseNet 

with OLS 

2.3 

3.49 0.62 94.98% 80.44% 

DenseNet 

with OLS 

3.0 

5.78 1.2 95.73% 81.72% 

DenseNet 

with OLS 

3.1 

4.8 0.95 95.45% 81.58% 

DenseNet 

with OLS 

3.2 

5.79 1.21 95.89% 81.78% 

DenseNet 

with OLS 

3.3 

5.19 1.06 95.58% 81.64% 

 

Fig 11. Train and Test set accuracies on CIFAR-100 of 

DenseNet with OLS 3.0, OLS 3.1, OLS 3.2, OLS 3.3, and 

standard DenseNet. 
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4.5. Results on Imagenette 

Our empirical investigation on the Imagenette dataset has 

yielded noteworthy findings, particularly in the context of 

the ARViT [53] and SmoothNet [54] architectures. ARViT, 

boasting a parameter count of 10 million, has demonstrated 

an impressive accuracy level, reaching 92.05%. Conversely, 

the reduction in parameter complexity within the 

SmoothNet model has led to a diminished accuracy 

performance, registering at 69.7%. 

With 7.93 million parameters, the standard DenseNet model 

on Imagenette achieves 92.7% accuracy. The proposed OLS 

designs from each family achieve higher accuracy than 

standard DenseNet; however, not all the models have fewer 

parameters. The proposed models from the second family 

have a much smaller number of parameters, especially 

DenseNet with OLS 2.2 and DenseNet with OLS 2.3. 

DenseNet with OLS 3.2 has 9.97 million parameters and 

delivers 94.01% accuracy. In contrast, DenseNet with OLS 

3.3 has 9.12 million parameters and achieves 94.36% 

accuracy. Results are mentioned in the Table 5 and figure 

Fig. 12 shows learning curves of test accuracies on 

Imagenette. Figure Fig. 13 shows the trade-off between 

number of parameters, number of floating-point operations, 

and accuracies of the models. Figure Fig. 13 shows 

GradCAM++ results with respective softmax scores of plain 

DenseNet and DenseNet with second family of OLS. 

Table 5. Results on Imagenette 

Model Parameters 

(Million) 

FLOPs 

(GMAC) 

Imagenette 

Accuracy 

ARViT 10 - 92.05% 

SmoothNet 3.4 - 69.7% 

DenseNet 7.93 4.42 92.713%  

DenseNet with OLS 

1.0 

9.9 5.54 93.936% 

DenseNet with OLS 

1.1 

9.32 5.21 93.885% 

DenseNet with OLS 

2.0 

7.808 4.37 93.427% 

DenseNet with OLS 

2.1 

7.66 4.29 93.478% 

DenseNet with OLS 

2.2 

6.76 3.83 93.325% 

DenseNet with OLS 

2.3 

6.69 3.79 93.427% 

DenseNet with OLS 

3.0 

9.97 5.59 94.166% 

DenseNet with OLS 

3.1 

8.56 4.8 93.987% 

DenseNet with OLS 

3.2 

9.97 5.64 94.013% 

DenseNet with OLS 

3.3 

9.12 5.16 94.369% 

 

 

Fig 12. Test accuracies of DenseNet with all the proposed 

OLSs and standard DenseNet on Imagenette. 

5. Observations 

5.1. 3×3 and 5×5 kernel size in split branch 

We employed an architecture that utilizes a combination of 

two parallel branches, one with a 5×5 kernel and the other 

with a 3×3 kernel. This architecture was implemented in our 

proposed OLSs 1.0 and 1.1 for the CIFAR and Imagenette 

datasets. The results of our experiments demonstrate that 

this architectural design leads to a significant improvement 

in the accuracy of the models on these datasets, resulting in 

a better overall model performance. 

5.2. Two 3×3 kernels instead of one 5×5 

In order to improve the efficiency of our proposed OLSs, we 

employed a unique architectural design that utilizes multiple 

smaller kernel sizes in place of a single large kernel. 

Specifically, instead of using a single 5×5 filter, which 

would require 25 parameters to be learned, we used two 

successive 3×3 kernels, which only require 18 parameters to 

be learned, resulting in a 28% reduction in the number of 

parameters to be learned. Through extensive 

experimentation and evaluation, we have demonstrated that 

this architectural design leads to results that are similar or 

have slightly better accuracy compared to models that 

utilize a single large kernel. 

 

Fig 13. Relationship between test accuracies, parameters, 

and FLOPs of models on Imagenette. 
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Fig 14. GradCAM++ and softmax score results of second 

family of OLS on Imagenette input image of chainsaw 

category. 

5.3. More parallel branches results in less parameters 

and better accuracy 

The two parallel branches were used to construct OLSs 2.0, 

2.1, 3.0, and 3.1. While OLSs 2.2, 2.3, 3.2, and 3.3 were 

constructed with 4 parallel branches. Empirical evaluations 

have been conducted to demonstrate that the latter versions 

with four branches exhibit a reduction in the number of 

parameters while concurrently achieving improved 

accuracy. 

5.4. Using more 1×1 convolutions give better results 

The third family of models under consideration incorporates 

a greater number of 1×1 convolutional layers. Empirical 

evaluations have demonstrated that the incorporation of 

additional 1×1 convolution operations lead to a marked 

improvement in accuracy, although this performance gain 

comes at the cost of an increase in the number of parameters. 

6. Conclusion and Future Work 

By leveraging DenseNet as a framework, we suggested ten 

intricately constructed One-Layer Structure architecture 

designs for Dense-Block categorized into three families. In 

this research work, we examined whether the use of a kernel 

of 5×5 in a split branch of Dense-Block leads to increased 

accuracy. Rather than using one 5×5 kernel, two successive 

3×3 kernels and breaking a branch into multiple parallel 

branches help to achieve a greater degree of accuracy and 

reduce the number of parameters that are to be learned. It is 

more advantageous to use multiple split branches and two 

consecutive 3×3 kernels rather than a 5×5. It reduces the 

number of parameters considerably. Along with these 

strategies, in the third family of models, there is a 

straightforward method that uses more 1×1 convolution at 

the end in the split branch of the Dense-Block. As a result, 

the accuracy increases, but at the expense of adding more 

parameters. In spite of this, we do not make any claims that 

our models are state-of-the-art; rather they serve as a starting 

point for further optimization through a collaborative effort 

between the architecture and training techniques. Our 

research highlighted the potential of utilizing split branches 

and various kernel sizes in improving the accuracy of image 

classification models and the importance of balancing the 

number of parameters with the desired level of accuracy. 

Our forthcoming research will tackle the issue of reducing 

the amplified memory needs that ensue from dividing a 

single branch into multiple branches and then merging them. 

Inadequate hardware support for these increased memory 

demands may lead to suboptimal training performance. Our 

future work will aim to optimize memory usage for multiple 

branches to further enhance the efficiency of our proposed 

method. 
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