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Abstract: In recent years, deep-learning approaches have had an enormous impact on the analysis of medical images, particularly in 

whole-heart segmentation. This active research focuses on the accurate delineation of substructures within the heart, the accurate 

assessment of cardiac function, treatment planning, and facilitating cardiac interventional procedures. It also provides essential 

morphological information. Ultrasound, Magnetic Resonance Imaging (MRI), and Computed Tomography (CT) are the widely used 

imaging modalities to segment the substructures such as the ventricles, Atria, and Aorta within the heart. The conduct of whole-heart 

segmentation is challenging because of laborious manual delineation, which is tedious, subject to change, and requires meticulous 

analysis. This article discusses the recent advancements in whole-heart segmentation and provides a comprehensive analysis of the 

various deep learning approaches employed in this domain. This paper highlights different deep learning models such as U-Net, V-Net, 

and attention mechanisms used to achieve accurate segmentation of the whole heart.  Additionally, this paper also explores the volume 

rendering methods that can be applied to heart structures and the advantages and limitations of these methods in obtaining accuracy and 

robustness in handling complex cardiac substructures. This article identifies these challenges and suggests research directions to promote 

reproducible and robust results. 

Keywords: Whole heart segmentation, Deep learning, neural networks, cardiac image analysis, MRI, CT 

1. Introduction 

In line with World Health Organization (WHO) data, heart 

diseases are identified as one of the most common causes 

of mortality in the world [1]. Around 17.9 million people 

succumb every year due to various known Cardiovascular 

Diseases (CVDs), including congenital heart disease, 

coronary heart disease, cerebrovascular disease, and other 

heart-related complications. By the year 2030, projections 

suggest that a global population of 23.3 million individuals 

will experience the CVDs [1]. Early detection and accurate 

diagnosis of CVDs are essential to reducing the mortality 

rate. Whole-heart segmentation in medical imaging has 

significant clinical and research implications and is useful 

for the accurate delineation and identification of various 

cardiac substructures. This can be done using different 

imaging modalities such as magnetic resonance imaging 

(MRI) scans, computed tomography (CT), and Ultrasound. 

The seven heart structures that make up the whole heart 

segmentation are as follows: (i) left ventricle (LV), (ii) 

right ventricle (RV), (iii) left atrium (LA), (iv) right atrium 

(RA), (v) the ascending aorta, and (vi) the pulmonary 

artery. Whole-heart segmentation results are essential to 

the advancement of cardiac imaging analysis, clinical care 

improvement, and treatment planning in cardiac surgeries. 

Surgeons may plan the most effective surgical strategies 

using 3D renderings of the segmented heart to understand 

complicated anatomical variations. Figure 1 shows the 

whole-heart segmentation results obtained for cardiac CT 

images in three orthogonal views. 

 

Fig 1: Cardiac CT images and its respective heart 

segmentation results 

The substructures of the heart need to be precisely 

segmented to do an accurate assessment of the heart. For 

instance, the findings of the segmented ventricles and the 

segmented myocardial results are used to compute the 

ejection fraction and myocardial mass, respectively, which 

are essential markers for identifying heart illness. 

Automatic segmentation of the whole heart is still a 

challenging endeavor due to the inherent noise, the 

interaction that exists between the boundaries of each 

cardiac structure, the changing shape of each patient's heart 

anatomy, and the low image quality. The majority of 
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research studies concentrate on the segmentation of a few 

structures, such as myocardial [2], [3], or ventricle 

segmentation [4]–[6]. Only a few studies currently 

specialize in whole-heart segmentation, which continues to 

rely on time-intensive manual segmentation (which 

requires 8–10 hours to manually segment substructures 

within the heart).  

The main motivation of this paper is to review the existing 

techniques, challenges, and methodologies. This article is 

structured as follows: Some of the difficulties encountered 

in the process of whole-heart segmentation are presented in 

Section 2. The common deep learning architectures useful 

for heart segmentation are discussed in Section 3. Different 

approaches to previous works are analyzed in Section 4. 

The evaluation metrics useful for segmentation are 

discussed in Section 5 and concluded in Section 6. The 

relevant papers, collected from online sources including 

the PubMed database, the IEEE Xplore database, and the 

Google Scholar search engine, have been referenced and 

focused on papers published since

2. Challenges  

In medical imaging, the manual segmentation of cardiac 

substructures is a challenging and time-consuming process. 

Several problems are identified with manual delineation, 

such as subjectivity as well as observer variability, which 

can raise discrepancies in the correct annotations; it is not 

suitable for large datasets; and this process is prone to 

errors and lack of consistency. As a result, automatic 

whole-heart segmentation has become increasingly 

prevalent nowadays. 

3. Deep Learning Architectures for Whole Heart 

Segmentation 

A good number of deep learning architectures have 

evolved to address the challenges of whole-heart 

segmentation. This paper explains notable architectures, 

including U-Net, V-Net, deep lab, and others, discussing 

their design principles, capabilities, and significance in 

achieving segmentation accuracy. 

3.1. U-Net 

In medical imaging, for accurate delineation of cardiac 

structures, the most prominent architecture that has gained 

significant attention is U-Net, which is implemented by  

Ronneberger et al. [7]. It is a fully neural network (FCN) 

combining an encoder and decoder in a U-shaped 

configuration. This unique structure helps the model to 

obtain intricate details while maintaining contextual 

information. This architecture consists of two parts, 

namely the encoder-decoder path or contraction-expansive 

path. In the convolutional path, high-level features are 

extracted by applying convolutional and pooling layers. 

This path consists of two 3 x 3 convolutions, followed by 

ReLu and batch normalization. In this process, this path 

preserves the important features and reduces the spatial 

dimensions by applying a 2 x 2 maximum pooling 

operation.  

 

Image 

On the other side, in the expansive path, 2 x 2 transposed 

convolutions are used to upsample the features, and the 

model generates a high-resolution segmentation map. Skip 

connections are helpful in mitigating the vanishing 

gradient problem  and also enabling accurate localization 

of cardiac structures. This architecture is broadly employed 

in many applications like segmentation of retinal blood 

vessels [8–10], detection and segmentation of tumors in the 

brain [11], and particularly in segmenting substructures of 

the heart [12]. 

3.2 V-Net 

In medical imaging, there is another powerful tool for 

segmenting volumetric structures. It is an extension of the 

U-Net and addresses the difficulties of segmenting 3D 

structures from MRI and CT imaging modalities. It also 

employs a skip connection encoder-decoder design like U-

Net. In this architecture, instead of a max-pooling 

operation, strided convolutions are used. This is performed 

through convolution with 2 x 2 x 2 kernels applied with 

stride 2. It uses 3D convolutions to handle the volumetric 

data. These 3D convolutions are performed using 5 x 5 x 5 

kernels in each stage with padding. 

 



International Journal of Intelligent Systems and Applications in Engineering                                                    IJISAE, 2024, 12(3), 402–411 |  404 

 

3.3 Deep Lab 

Deep lab architecture is a cutting-edge solution for 

accurate semantic segmentation tasks. It incorporates 

dilated convolutions and spatial pyramid pooling for 

capturing both local and global context within images. It is 

coupled with residual connections for the enhancement of 

gradient flow during training. 

3.4 Attention mechanisms 

Attention mechanisms have emerged as an important tool 

in improving the accuracy and contextual understanding of 

deep learning models for whole-heart segmentation. These 

mechanisms emphasize the appropriate parts of the image 

and enhance the segmentation of cardiac structures. This 

can be done by selectively focusing on specific regions of 

an image and assigning levels of importance to different 

areas. The model adjusts the weights that are assigned to 

each pixel at the time of feature extraction. So that it leads 

to more contextually informed segmentation. 

3.5 Variational auto-encoders   

Variational auto-encoders (VAE) are a type of generative 

model consisting of auto-encoders and probabilistic 

modeling. It is popular for unsupervised learning tasks, 

especially for generating new data samples in various 

domains that resemble a given dataset.  VAEs use 

stochasticity in latent space, which is represented as a 

probabilistic distribution. The encoder in VAEs maps the 

data to latent space, and the decoder generates data from 

sampled latent codes. It is useful in various applications 

like image generation, data compression, and medical 

imaging. 

4. Related Work 

In this section, we give a brief summary of existing 

research and literature related to automatic whole-heart 

segmentation. Numerous computerized methods have 

evolved to segment the cardiac structures. These 

techniques are grouped under traditional methodologies 

like segmentation methods using convolutional neural 

networks and registration-based methods.  

 

4.1 Traditional segmentation methods 

Traditional segmentation methods typically rely on 

techniques like registration, region growing, or 

thresholding to delineate anatomical structures. These 

methods often require manual input or predefined rules and 

can be less robust to variations in data quality and 

appearance. While they can achieve high precision under 

ideal conditions, their performance may degrade when 

applied to complex medical images with diverse shapes 

and intensities. 

4.1.2 Registration based methods: 

The method of Hortense [13], is based on multi-atlas 

segmentation within a non-rigid registration framework, 

aims to enhance the diagnosis of coronary artery disease 

(CAD) by providing functional information from the same 

CTA data, eliminating the need for additional scans. It also 

enables visualization of coronary arteries and serves as a 

region of interest for further segmentation. In validation, 

the method demonstrated high accuracy, with a mean 

segmentation error of 1.05±1.30 mm and an average Dice 

coefficient of 0.93 across 8 images. 

In the study of Yang et al. [14], a three-step multi-atlas-

based method for whole heart segmentation in CT images 

is proposed. The method involves initial heart region 

detection through alignment with low-resolution atlas 

images, precise heart segmentation through high-resolution 

atlas image registration, and refinement by minimizing 

dissimilarity within the heart region. The approach 

achieved promising results with an average Dice 

coefficient of 0.9051 in a leave-one-out experiment on 20 

training datasets, providing accurate segmentation for 

cardiac chambers, aorta, and pulmonary arteries. 

Zhuang X wt al. [15] developed a multi-atlas segmentation 

(MAS) scheme for automatic whole heart segmentation in 

cardiac CT images. The method employs a hierarchical 

registration process and introduces a novel atlas ranking 

criterion based on conditional entropy. Joint label fusion is 

used to combine multiple label estimates, resulting in a 

mean Dice score of 0.918 ± 0.021 and a runtime of 13.2 

minutes per case. Comparative analysis shows that this 

MAS approach outperforms other label fusion strategies 

https://www.spiedigitallibrary.org/profile/Hortense.Kirisli-109960
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and benefits from larger atlas databases, offering improved 

segmentation accuracy. Oster [16] achieved a good 

accuracy of 86.0% by using nonlinear registration 

combined with nonlocal fusion techniques, which is 

measured with the dice coefficient. In the study of Zhuang 

et al. [17], an updated label fusion methodology is 

implemented on MRI and CT images based on 

multimodality atlases with a 0.899 dice score. These 

traditional methods for heart segmentation are not reliable 

and yield disappointing results when the data quality is 

suboptimal. Segmentation of cardiac structures was 

successful in the study of Galisot et al. [18], but due to 

missing tags in the dataset, this yields erroneous results in 

segmenting pulmonary arteries that impact the overall 

segmentation results.  

4.1.2 Model based methods: 

Kang [19] approach belongs to the model-based category, 

and begins by smoothing images to reduce noise. It 

proceeds to detect the volume of interest (VOI) using k-

means clustering, extracting the whole heart roughly. Seed 

volumes are identified based on anatomical data, and the 

left and right heart are separated using power watershed 

analysis. Finally, the left and right sides of the heart are 

refined with an active contour model without edge, 

resulting in an average segmentation error of less than 5% 

and an average processing time of 51.66±3.35 seconds for 

clinical datasets. An automated approach for segmenting 

the four cardiac chambers in cardiac computed tomography 

angiography (CTA) is presented in Ho Chul Kang [20]. 

This involves image smoothing, k-means clustering to 

detect the volume of interest, and seed volume 

identification based on anatomical analysis. The left and 

right heart regions are separated using the power watershed 

algorithm, and the heart's sides are refined with the level-

set method. The atrium and ventricle are then extracted 

from the left and right heart regions using the split energy 

function. The method was evaluated on 20 clinical 

datasets, demonstrating an average segmentation accuracy 

of less than 3.3% when compared to manual segmentations 

across various patients. X. Zhao et al. [21] proposed a fully 

automatic method for thoracic CT image whole heart 

segmentation. It employs a Robust Active Shape Model 

(Robust ASM) to mitigate outliers caused by neighboring 

organs with similar intensities. Additionally, a shape-

constrained active contour model is employed for 

enhanced segmentation. Results indicate a mean point-to-

surface error of 2.37mm and an averaged Dice index of 

0.90 across 38 images. 

4.1.3 Thresholding based methods: 

Lee HY et al. [22] implemented a novel automatic left 

ventricle (LV) segmentation algorithm, called ITHACA, 

which has been developed for quantifying cardiac output 

and myocardial mass in clinical applications. This method 

combines region growth with iterative thresholding to 

segment the LV endocardium and utilizes active contour 

modeling guided by the endocardial border and myocardial 

signal information for epicardial extraction. Compared to 

both manual tracing and commercial MASS Analysis 

software, ITHACA significantly enhances myocardial 

border definition, with close agreement to manual tracing, 

making it a promising tool for clinical practice. The study 

of Katherine et al. [23] methodology involves the 

development and implementation of the Otsu Thresholding 

method, coupled with Hounsfield unit (HU) values, for 

heart segmentation in thorax CT scan images. The study 

evaluates its effectiveness by calculating balanced 

accuracy across 30 test datasets, with results averaging at 

72.54%. Rodríguez R [24] proposes a two-stage approach 

involving optimal window size and scale selection.The 

primary objective is to accurately extract the number of 

blood vessels from images, with segmentation errors less 

than 3%. This method is a part of a broader image analysis 

process aimed at diagnosing and predicting malignant 

tumors through morphometrical analysis. 

4.2 Deep learning-based methods in segmentation 

Nowadays, deep learning convolutional neural networks 

have achieved good results in segmentation of medical 

images. A detailed and evaluative survey of cardiac image 

segmentation is presented in [25] specifically focusing on 

whole heart, bi-ventricles, and left atrium segmentation 

across various imaging modalities such as CT, MRI, and 

echocardiography. This paper summarizes the challenges 

in cardiac image segmentation, comparing existing 

segmentation methods, categorizing notable contributions, 

and critically assessing their performance and accuracy. 

For instance, Multi-planar deep CNNs featuring adaptive 

fusion were employed by Mortaz et al. [26], effectively 

utilizing complementary data from different 3D scan 

planes. In this approach, three CNNs were tailored 

separately for CT and MRI images across three planes, 

each trained from scratch for voxel-wise labeling. The 

model was assessed with 4-fold cross-validation on MM-

WHS 2017 data, resulting in a precision and dice index of 

0.93 and 0.90 for CT, and 0.87 and 0.85 for MR images, 

respectively. Bian et al. [27] enhances the local contrast by 

combining 3D FCN and deep supervision mechanisms 

with transfer learning to overcome the difficulties in 

training. Tong et al. [28] presented a combination of 3D u-

Net with ROI to make the computational complexity more 

simple. MRI and CT data are combined for better 

extraction of different substructures. In the study of  

Smedby et al. [29], CT images are segmented at their first 

resolution using a two-stage U-Net architecture. Shi, Z. et 

al. [30] proposed a probabilistic deep voxelwise dilated 

residual network designed for automatic whole heart 

segmentation called Bayesian VoxDRN for 3D MR 

images. It incorporates variational dropouts to model 
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uncertainty through approximate Bayesian inference. It 

effectively handles imbalanced datasets using a 

combination of focal loss and Dice loss. In the study of Xu 

et al. [31] presented a novel whole heart segmentation 

approach i.e., combining faster  R-CNN and U-Net 

(CFUN) results in precise localization and heart 

segmentation. A 3D edge loss auxiliary loss function is 

used to improve the performance of the segmentation. It 

worked on MM-WHS dataset with average dice score of 

0.859. An enhanced Fully Convolutional Network (FCN) 

is implemented by Yang et al. [32] by incorporating 3D 

operators, transfer learning, and deep supervision. Class 

imbalance issues are addressed when dealing with multiple 

substructures, and introduce a hybrid loss that balances 

training across classes while preserving detailed boundary 

information. The framework proposed by M. Habijan et al. 

[33] employs two 3D U-Net neural networks: one for heart 

localization and the other for segmentation. Performance 

was assessed on five CT volumes from the MICCAI 2017 

Multi-Modality Whole Heart Segmentation challenge, 

yielding an impressive average dice score of 89%. 

Mahendra Khened et al. [34] introduced an efficient, 

highly parameter-reduced FCN-based architecture for 

medical image segmentation. This design incorporates 

innovations such as skip connections and Inception 

modules for multi-scale processing. They demonstrated its 

success on two datasets, achieving top results in the 

ACDC-2017 challenge and the highest Jaccard index in 

LV-2011, enabling an integrated framework for cardiac 

segmentation, parameter extraction, and disease diagnosis 

with clinical potential. Christian Payer et al. [35] propose a 

two-step approach, where the first step involves the 

localization of the heart on low-resolution images. 

Localization is done using U-Net architectures like FCNN 

with heatmap regression, which indicates the intensity or 

probabilities of certain features or objects. To streamline 

the process and optimize computational resources, the 

authors combine the localization and segmentation of 

convolutional neural networks (CNNs). This integration 

aims to minimize memory requirements and computation 

time, enhancing efficiency without compromising 

accuracy. Notably, the segmentation technique excels in 

MRI data, which often exhibits greater variations in 

anatomical field of view, intensity ranges, and acquisition 

artifacts compared to CT data. C. Ye et al. [36] introduces 

a novel deeply supervised 3D UNET architecture with 

multi-depth fusion for enhanced context information 

extraction. It pioneers the application of focal loss to image 

segmentation, extending its use to multi-category tasks. 

The proposed hybrid loss function, combining focal loss 

and Dice loss, effectively addresses category imbalance. 

Evaluation on the MICCAI 2017 whole-heart CT dataset 

achieved a Dice score of 90.73%. Tao Liu et al. [37] 

proposed a different approach for accurate and precise 

whole-heart segmentation. To segment the cardiac 

structures, a two-stage U-net architecture based 2D image 

segmentation technique is applied. Prior to network 

training, an adaptive threshold window is applied to 

determine the region of interest and minimize the noise. 

The first stage’s threshold range is [-1024, 1354]. Weight 

maps are introduced to improve the performance of 

segmentation and identify the correct boundary sections of 

the heart. Kening Le et al. [38] introduced an enhanced 

Unet-GAN model, termed R2Unet-GAN, with the 

generator being R2U-Net and the discriminator being FCN 

and adopted a cosine decay learning rate policy. This 

model exhibited improved accuracy, reaching 88.9% 

during training on 15 sets, with the highest accuracy on a 

single set reaching 94.0%.  

Sulaiman Vesal et al. [39] proposed a three-stage encoder-

decoder architecture that is used to emphasize a three-

dimensional understanding of spatial information. At the 

first stage, the course density map for target structures is 

estimated and localized. A 3D Dilated Residual Unet (3D 

DR-Unet) framework is used for accurate heart 

segmentation. An innovative aspect of this proposed 

approach is its capacity to perform these tasks without 

extensive pre- or post-processing steps, enabling the 

utilization of the full 3D volume. An innovative U-Net 

based GAN approach is introduced by Z. Lou et al. [40] 

employing a U-Net as the generative network and an FCN 

as the discriminator. The model was assessed using five 

CT datasets from MM-WHS 2017, resulting in an 

impressive average dice score of 86.32% (with a peak of 

93.64% on the best-performing dataset). Galea et al. [41] 

presented a simple and practical slice-by-slice 2D 

segmentation approach using region of interest (ROI) 

localization. This architecture uses simple bilinear 

interpolation instead of transposed convolutional  neural 

networks to reduce complexity and memory restrictions. 

Improved performance was achieved through the ensemble 

of various architectures.  

The study of Habijan et al. [42] introduces a novel Feature 

Merge Pre-Residual Unit (FM-Pre-ResNet) connectivity 

structure, enabling the development of deep models 

without significantly increasing the parameter count 

compared to pre-activation residual units. Additionally, 

proposed a 3D encoder-decoder architecture that 

incorporates FM-Pre-ResNet units and a variational 

autoencoder (VAE). In the encoding phase, FM-Pre-

ResNet units learn a low-dimensional representation, 

followed by VAE-based reconstruction. This approach 

offers robust weight regularization and mitigates 

overfitting. Evaluation on the MICCAI Multi-Modality 

Whole Heart Segmentation (MM-WHS) Challenge 

involving 40 test subjects yields compelling results, with 

an average Dice score of 90.39% for CT images and 

89.50% for MRI images in whole heart segmentation. 
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Tianchen Wang et al. [43] performed a two-stage analysis 

for segmentation and classification on Congenital Heart 

disease (CHD) images with the ImageCHD dataset [44] 

using multiple U-Nets. In the first stage, segmentation-

based analysis is done using 2D and 3D U-Nets. Shape-

based analysis is carried out to extract the connection 

features between the substructures of the heart. This 

methodology achieved 81.9% accuracy using the dice 

coefficient measure. Yuhui Songb et al. [45] introduce a 

two-stage segmentation network architecture that consists 

of two modules. One is the Feature Aggregation Module 

(FAM), and the other is the Multi-Level Attention 

Mechanism (mLAM). The first module consists of four 

feature extraction blocks to obtain multi-scale information. 

As a result, high-level feature maps can be generated from 

low-level feature maps.  

An overview of research studies focusing on whole heart 

segmentation using deep learning methods are presented in 

a table 4.1. It includes relevant references, the specific 

segmentation task addressed, the modalities employed 

(e.g., CT, MRI), the deep learning methods applied, and 

the reported accuracy, measured in terms of the Dice score.  

 

 

 

 

 

Table 1. Overview of Whole Heart Segmentation Studies Using Deep Learning 

S.No Reference Task Imaging 

Modalities 

Method Accuracy 

1. Mortazi et al. [26] 

(2017) 

Whole heart 

segmentation 

CT & MRI Multi planar deep 

convolutional network + 

adaptive fusion strategy 

Dice index 

for CT-0.90 

MRI- 0.85   

2. Bian et al. [27] (2018) Whole heart 

segmentation 

CT & MRI Deep supervision + 

knowledge transfer  

Dice index 

for CT - 

80.90 

MRI- 74.62 

3. Tong et al. [28] (2018) Whole heart 

segmentation 

CT & MRI 3D deeply supervised U-

Net 

CT- 0.849 

MRI- 0.674 

4. Smedby et al. [29] 

(2018) 

Whole heart 

segmentation 

CT & MRI Scout segmentation 

using Orthogonal 2D U-

Net + shape context 

CT- 0.807 

MRI- 0.87 

5.  Shi, Z. et al. [30] 

(2018) 

Whole heart 

segmentation 

MRI Bayesian VOxDRN MRI-90.83 

6. Xu et al. [31] (2018) Whole heart 

segmentation 

CT Combining Faster R-

CNN (localization) + U-

Net 

CT- 0.859 

7. Yang et al. [32] (2018) Whole heart 

segmentation 

CT & MRI Deep supervision + 

knowledge transfer 

+hybrid loss 

CT- 84.32 

MRI-77.86 

8. M. Habijan et al. [33] 

(2019) 

Whole heart 

segmentation 

CT Two 3D U-Net 

architectures + PCA for 

data augmentation 

CT- 89.00 

9. Mahendra Khened et al. 

[34] (2018) 

Whole heart 

segmentation 

MRI DenseNets+Multi scale 

processing 

MRI-0.82 

10.  Christian Payer et al. 

[35] (2019) 

Whole heart 

segmentation 

CT & MRI U-Net + Multilable 

Segmentation CNN 

CT- 88.9 

MRI-79.0 

11. C. Ye et al. [36] (2019) Whole heart 

segmentation 

CT Multi depth fusion 

network + focal loss 

CT-90.73 



International Journal of Intelligent Systems and Applications in Engineering                                                    IJISAE, 2024, 12(3), 402–411 |  408 

12. Liu et al. [37] (2019) Whole heart 

segmentation 

CT Two stage U-Net+ 

Adpative threshold 

window 

CT-0.793 

13. Kening Le et al. [38] 

(2020) 

Whole heart 

segmentation 

CT Conditional generative 

adversarial network + 

R2U-Net 

CT-88.9 

14. Sulaiman Vesal et al. 

[39] (2020) 

Whole heart 

segmentation 

MRI Encoder-decoder 

network+coarse density 

map +3D Dilated 

Residual-UNet 

0.928 

15. Z. Lou et al. [40] (2020) Whole heart 

segmentation 

CT U-Net based GAN CT-86.32 

16. Galea et al. [41] (2021) Whole heart 

segmentation 

MRI Ensembling of U-Net 

and Deeplab V3+ 

91.87 

17. Habijan et al. [42] 

(2021) 

Whole heart 

segmentation 

CT & MRI Feature merge residual 

unit + 3D encoder-

decoder +Variational 

auto encoder 

CT-90.39 

MRI- 89.50 

18. Wang et al. [43] (2021) Classification of 

Congential heart 

disease 

CT Multiple U-Nets used 

for segmentation +RoI 

cropping 

CT-88.8 

19. Yuhui Song et al. [44] 

(2022) 

Whole heart 

segmentation 

CT & MRI Feature aggregation+ 

multi level attention 

mechanism 

CT- 0.94 

MRI-0.934 

 

The above studies collectively represent the state-of-the-art 

in automated cardiac image segmentation and contribute to 

advancements in medical imaging for diagnostic and 

clinical applications. The accuracy scores offer insights 

into the effectiveness of deep learning models in accurately 

delineating whole heart structures, a crucial aspect of 

cardiovascular analysis. 

4.3 Volume rendering in heart segmentation 

Volume rendering is a visualization technique used to 

provide a dynamic and informative representation of 

cardiac structures. This technique transforms volumetric 

datasets like cardiac MRI and CT images into 

visualizations, which allow clinicians to understand the 

spatial relationships and substructures within the heart.  

This technique highlights specific tissues, vessels, or 

chambers and thus assists in the accurate delineation of 

cardiac structures. This technique needs a high-

dimensional transfer function to differentiate the target 

object from its surroundings, which is a trial-and-error 

process. For example, in the study of  Kuanquan Wang  

[46] for layered medical datasets, the context-preserving 

volume rendering method is adopted. In their approach, the  

 

3D cardiac gray scale is mapped to the respective optical 

attribute based on the anatomical structure of the heart. To 

improve the boundary information, local illumination 

ingredients are applied. F. Yang [47] conducted an 

investigation on the visualization of the segmented cardiac 

structures. An accelerated rendering method is used to 

improve the performance of the ray-casting rendering 

technique. In this approach, the shape and boundaries of 

cardiac structures visualization quality are improved using 

a transfer function. This function assigns a good opacity 

and color for each substructure. Overlapped cardiac 

substructures are visualized using carving techniques and 

solid rendering of surface models in the study of Tanja et 

al. [48]. Different visualization strategies are studied for 

the inner tissues of the cardiac structures in [49]. Kharche 

et al. [50] proposed a collaborative architecture that gives 

high-performance visualization for heart structures.  

5. Conclusion 

In this review paper, we embarked on a comprehensive 

journey through the realm of whole heart segmentation, 

shedding light on the ongoing advancements and 

challenges in the field of cardiac image analysis. The 
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ability to precisely delineate cardiac structures from 

various imaging modalities like CT and MRI has been 

crucial for understanding heart diseases and assisting in 

clinical diagnosis and treatment.We discussed the 

numerous challenges associated with whole heart 

segmentation, emphasizing the complex and diverse 

anatomical variations that can be present in medical 

images. In Section 3, we delved into deep learning 

architectures, highlighting key methodologies like U-Net, 

V-Net, DeepLab, attention mechanisms, and variational 

auto-encoders. These advancements have shown 

remarkable promise in improving segmentation accuracy 

and efficiency. In section 4, we examined traditional 

segmentation methods, model-based strategies, 

registration-based techniques, and thresholding-based 

approaches. The comparative analysis underscores the 

advantages of deep learning in handling the intricate task 

of whole heart segmentation. In Section 5, we considered 

the crucial role of loss functions and evaluation metrics in 

assessing the performance of segmentation algorithms. We 

discussed the significance of balanced loss functions and 

how they are applied in achieving more accurate results.  

Conclusively, the progress made in deep learning methods 

for whole heart segmentation has been instrumental in 

mitigating the challenges associated with complex 

anatomical variations and image quality. These modern 

architectures, such as U-Net, V-Net, and the incorporation 

of attention mechanisms, have significantly advanced our 

capabilities in accurately extracting the heart's anatomical 

structures. Furthermore, the adoption of balanced loss 

functions has contributed to reducing the impact of class 

imbalance in multi-class segmentation tasks. 
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